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ABSTRACT. In a two-dimensional (plane strain) glacier domain, gravity-driven ice flow is balanced
by basal drag and the resistance associated with longitudinal stress gradients. The plane strain Stokes
model accommodates both these resistances, whereas several simpler models only account for basal
drag. Solving the Stokes equations is numerically challenging and computationally expensive, but simpler
models may lead to unrealistic dynamical behaviour. Here, we propose a factor which can be introduced
in shear-deformational flow models to yield results comparable to those from the plane strain Stokes
model. As this factor adapts simpler models to capture the effects of missing dynamics, i.e. longitudinal
stress gradients, we refer to it as the longitudinal stress (L-)factor. We assess the usefulness of this factor
for idealized domains with complex basal topography and evolving geometry. We apply the model to
Haig Glacier, Canadian Rockies, in order to present an illustration of how simulations of glacier response
to climate forcing can be improved through the introduction of the L-factor in a shear-deformational

flow model.

1. INTRODUCTION

Glaciers are natural indicators of climate change. Over the
past few decades, they have been continuously shrinking
in most regions of the world in response to climate
warming (e.g. Kaser and others, 2006; Lemke and others,
2007; Meier and others, 2007). However, the details of
glacier/climate interactions and the dynamical response
of glaciers to climate forcing are not straightforward and
efforts to understand these interactions involve coupling
of mass-balance and ice-flow models. Such models have
been formulated to reconstruct past climate (e.g. Oerlemans,
2005) and to project glacier behaviour into the future (e.g.
Oerlemans and others, 1998; Schneeberger and others,
2001; Flowers and others, 2005). Forecasts of glacier-derived
water resources have great significance for understanding
sea-level changes, as well as in other practical and scientific
fields, including hydroelectric power generation and water
supply for municipal, industrial and agricultural needs (e.g.
Jansson and others, 2003). For a given geometric and climatic
setting, the reliability of such forecasts depends, in part, on
how accurately the ice-flow model represents the actual
glacier dynamics. The dynamical sophistication of several
models developed to date is briefly summarized in a recent
paper by Blatter and others (2010).

Based on the current understanding of glacier dynamics,
Stokes models that solve the complete set of nonlinear
elliptical (full-stress) and hyperbolic (kinematic boundary
conditions) equations probably give the correct solutions
to the glaciological problem (e.g. Hindmarsh, 2004; Pattyn
and others, 2008). Such solutions have recently become
computationally tractable (e.g. Gudmundsson, 2003; Price
and others, 2007; Zwinger and others, 2007; Gagliardini
and Zwinger, 2008; Pattyn, 2008; Jouvet and others, 2009),
but these models are difficult to implement and apply in
a numerically and computationally efficient manner. For
instance, it is not currently feasible to use Stokes models to
simulate large ensembles of valley glaciers (e.g. for an entire
mountain range, or globally), nor are the necessary input data
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on ice thickness or bedrock topography available to justify
the cost of using such a complex model everywhere.

At the other end of the spectrum, shear-deformational
models describe the dominant physics of the system, where
the local gravitational driving stress is exactly balanced by
the local basal shear stress (e.g. Nye, 1952; Van der Veen,
1999). The non-dimensional form of this model is equivalent
to the zeroth-order shallow-ice approximation (SIA) of Hutter
(1983). This is the most widely used model for simulating
both continental ice sheets (e.g. Huybrechts, 1990) and small
valley glaciers (e.g. Oerlemans and others, 1998; Adhikari
and Huybrechts, 2009), although such models are strictly
valid only where horizontal gradients in ice thickness and
ice velocity are small and bedrock slopes are sufficiently
gentle. Since these criteria do not apply everywhere, even
in large ice sheets (Baral and others, 2001), the fidelity of the
SIA model for valley glaciers, which typically have irregular
geometry and steep bedrock slopes, is questionable. Le Meur
and others (2004) and Leysinger Vieli and Gudmundsson
(2004) address this issue specifically and conclude that
the accuracy of the SIA model decreases with increasing
bedrock slope.

There are several intermediate-complexity models whose
sophistication lies between the two end-member representa-
tions of the SIA and Stokes models. Hindmarsh (2004) com-
pares various low-order approximations to the Stokes model
and suggests that the effects of longitudinal stress gradients
(LSG) should be prioritized in most glaciological situations
where high-order dynamics are important. Most intermediate
models are developed with the aim of improving the SIA
model by accounting for the effects of LSG (Hubbard, 2000).
As examples of this approach, Nye (1969), Shoemaker and
Morland (1984), Kamb and Echelmeyer (1986), Marshall and
others (2005) and Soucek and Martinec (2008) introduce
different physical or numerical means of parameterizing
LSG effects. These methods are not completely satisfactory,
however, as they add considerable mathematical and
numerical complexity without fully describing the dynamical
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Table 1. Constants used in this study

Constant Symbol Value Unit
Glen’s flow law exponent n 3 -
Flow law rate factor A 1016 Pa—3a~!
Ice density p 910 kgm—3
Gravitational acceleration g 9.81 ms—2

system. High-order models of Blatter (1995) and Pattyn
(2003) provide more complete representations of glacier
dynamics, by extending their scope beyond capturing the
effects of LSG.

Since the longitudinal stress in a typical valley glacier
is of a similar order of magnitude to the basal shear stress
(e.g. Hubbard, 2000), including LSG effects is crucial when
modelling valley glacier dynamics. In this paper we restrict
ourselves to a two-dimensional (2-D; plane strain) isothermal
domain, in order to introduce an empirical approach for
parameterizing the effects of LSG in simplified (SIA-based)
models of valley glacier dynamics. We propose a factor
that is a function of bed characteristics (slope and sliding
condition), which can be incorporated in SIA models to yield
accuracies (in terms of englacial velocities) comparable to
Stokes models. This scaling term, which we call the L-factor,
is developed in the spirit of the shape factors introduced
by Nye (1965). With the L-factor, one can obtain more
realistic results without adding mathematical and numerical
complexity to the SIA model.

In order to define this factor, we consider the Stokes model
and a simpler model, derived by taking the longitudinal
stress deviators out of the system. We refer to this
reduced model as the shear-deformational (SD) model.
We simulate both the Stokes and SD models with finite-
element approximations, using the open-source software,
Elmer (http://www.csc.fi/english/pages/elmer), adapted for
Glen’s flow law for ice (Glen, 1955). We explore the role of
LSG by comparing the corresponding results from these two
models. For a domain with idealized geometry and no-slip
basal condition, we determine a factor that minimizes the
difference in results between the Stokes and SD models. After
defining this factor, we assess its usefulness against more
complex basal topography and evolving glacier geometry.
We then apply the model to Haig Glacier, Canadian Rockies,
in order to test how well the L-factor performs for a transient-
state real-world valley glacier. Finally, we analyse and
parameterize effects of basal sliding on the performance of
the L-factor.

2. PLANE STRAIN ICE-FLOW MODELS

We model the dynamics of a 2-D isothermal glacier by
treating ice as an isotropic, incompressible and highly
viscous non-Newtonian fluid that obeys the power law of
viscosity in a low Reynolds number flow. In order to derive
the governing equations for the ice flow in plane strain,
we consider an ice domain, Q(t), at time t, which can be
parameterized in a 2-D Cartesian frame, (x, z), as

) = [(x, 2) € R x € A bx) < 7 < s(x, 0] . (1)

Here A(t) is the unknown glacier length at time t and b(x)
is the bedrock topography, held constant in time. We define

https://doi.org/10.3189/002214311798843449 Published online by Cambridge University Press

Adhikari and Marshall: Improvements to shear-deformational models

the glacier surface, s(x, t), such that h(x, t) = s(x, t) — b(x) is
the ice thickness at time t.

Given the boundary conditions and some description of
the mass budget, we accomplish ice-flow modelling in a
two-step simulation: (1) diagnostic simulation of a set of
steady-state problems in order to obtain the (quasi-stationary)
englacial velocity (or stress) and pressure fields at time t
and (2) prognostic simulation satisfying kinematic boundary
conditions to update the glacier geometry at a subsequent
time, t + At.

2.1. Governing equations

2.1.1. Stokes equations
The plane strain Stokes equations are solved in the diagnostic
run of a Stokes model:

V-vV=0, 2)
V.o +pg=0. 3)

Here V is the 2-D velocity vector, o is the 2-D Cauchy
stress tensor, p is the ice density and g is the 2-D gravity
vector. The Cauchy stress tensor appearing in Equation (3)
is decomposed into its deviatoric part, 7, and an isotropic
pressure, p:

o=71+pl 4)

The presence of the identity matrix, I, implies that only
normal stresses are influenced by the pressure. For glacier
ice, only stress deviators are responsible for ice deformation
(e.g. Rigsby, 1958).

The stress deviator is linked to the strain-rate tensor, ¢, and
hence to the velocity vector, via linearized inversion of Glen’s
flow law (Glen, 1955):

T = 21, (5)

where
1-n
1 .
6% 5 Z €jj€ij (7)
if

and

. 1 819,‘ 819;’

€ij = E <6X; + Oxi . (8)

Here 7 is the strain-rate-dependent effective viscosity, A is
the flow law rate factor, n is the flow law exponent, é is
the effective strain rate (the second invariant of the strain-
rate tensor), ¥ is the components-of-velocity vector with
(i, j) = (u, w) and x denotes the Cartesian coordinates with
(i, )) = (x, 2). The physical constants and parameters used in
this research are the same as those used by Pattyn and others
(2008) and are listed in Table 1.

2.1.2. Shear-deformational (SD) flow

We compute the englacial velocity and pressure fields using
the SD model as well. In general, the diagnostic simulation of
this model solves the reduced Stokes equations (Equations (2)
and (3)), with vertical shear stress being the only stress
component in the momentum balance equation (Equation (3)
Vo with i # j = x,z). We consider the zeroth-order
SIA model by further assuming that along-flow gradients in
vertical velocity are zero (e.g. Van der Veen, 1999). The
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analytical solution for the horizontal velocity at the glacier
surface, u(x, s), is given by

2A n n
u(x, s) = u(x, b) + T (pgas)" hx)™. (9

Here u(x, b) is the basal velocity, g is the vertical component
of the gravity vector and as(x) is the glacier surface slope.
Although strictly we have considered the zeroth-order SIA
model, we hereafter call it the SD model.

2.1.3. Free-surface evolution

Surface elevation, s(x,t), is a part of the solution for
prognostic experiments of both the Stokes and SD models.
The rate of change in surface elevation should satisfy the
following kinematic boundary condition at the glacier-free
surface:

os(x, t)
ot

os(x, t)
ox

u(x, s) = w(x,s)+m(s(x, t). (10)

Here w(x, s) is the vertical velocity at the glacier surface, and
m(s(x, t)) is the local net mass-balance rate (mice eq. a h.

2.2. Boundary conditions and constraints

In addition to the kinematic boundary condition (Equa-
tion (10)), the glacier upper surface should satisfy the stress-
free condition, i.e. ns - (o - ns) = pam & 0. Here ns is the unit
normal vector pointing outward at the surface and pam is the
atmospheric pressure, whose role on the overall dynamics of
the glacier is assumed to be negligible.

At the ice/bedrock interface, we mostly impose a no-slip
boundary condition, i.e. V(x, b) = 0. However, for the last
set of experiments (Section 7) we allow ice to slip above
the bed according to the following parameterization of basal
shear stress (e.g. MacAyeal, 1993):

m =BV (x,b). (11)

Here 7, is the basal drag and B% > 0is the friction coefficient.

To define the basal topography in prognostic simulations
and to avoid having to specify a lateral boundary condition
at the glacier terminus, we impose the constraint h > hmin SO
that even deglaciated areas retain a minimum ice thickness
of hmin = 5 m. The prescription of a small ice thickness in the
glacier forefield does not affect the overall glacier dynamics
(Zwinger and Moore, 2009). In the Haig Glacier experiments
(Section 6), we impose a zero-flux boundary condition across
the ice divide.

3. NUMERICAL METHOD
3.1. Finite-element formulation and stabilization

3.1.1. Diagnostic (Stokes or SD) equations

We use the standard Galerkin method to formulate the
finite-element counterparts of the governing equations
(Equations (2) and (3), or the reduced equations, as explained
in Section 2.1.2). The Galerkin method is the weighted
residual approach in which the weighted sum of the system
residuals arising from the finite-element approximations of
a continuous domain is set to zero. First, we discretize the
continuous domain, €, into a number of elemental (body)
domains, €2e, and boundary domains, T'e. Over Qe of any
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element e, we then approximate the field variables as

node

Y=Y v v = [w] {7}, 2
i=1

P =Y WP 2pi =[]} (13)

i=1

Here U™ and ¥ are the interpolation functions for velocity
and pressure, respectively. The counter, i, refers to the
elemental degrees of freedom associated with the velocity
vector (Equation (12)) and pressure (Equation (13)). Hence
{V} and {p} represent the nodal velocities and pressure.

As the governing equations for the velocity vector
comprise a one-degree higher order of derivative than those
for the isotropic pressure (as can be shown by expanding
Equation (3), using Equations (4-8)), a typical Taylor-
Hood element (Hood and Taylor, 1974) with a quadratic
interpolation function for velocities and a linear function for
the pressure field is recommended. For simplicity, however,
we use the same interpolation functions for both the velocity
vector and pressure, i.e. ¥V = ¥P = ¥, Any instability
arising as a result is accommodated by using stabilized finite
elements (Franca and Frey, 1992).

We substitute the field variables in the governing equations
by their approximations (Equations (12) and (13)). This yields
some residuals; the weighted sum of these residuals over Qe
is then set to zero. For the Stokes equations, for example, we

obtain:
/ U; (V . \7(6)) dQe =0, (14)
/0 P, [2v - mé (we)) +Vpe +pg} 4% — 0. 15)

Here the Cauchy stress tensor is expressed in terms of
the strain-rate tensor and isotropic pressure. Also note that
weights are chosen to be the assumed interpolation function;
this is unique to the Galerkin method.

3.1.2. Prognostic equation
For any element, e, over the boundary domain, T, along the
glacier-free surface, we approximate the field variable as:

node

39 0=Y U (x, 05 = {\1/“)} (s}.  (16)
i=1

Here ¥ is the interpolation function for surface elevation.
After substituting the field variable, we obtain the residuals
of the kinematic boundary condition at the glacier surface
(Equation (10)). The weighted sum of these residuals,
according to the standard Galerkin method, is set to zero:

z(e) z(€)
/ o {a;t + uaasx —w+m)|dle=0.  (17)
T

This weak form of the kinematic boundary condition is a
hyperbolic equation, and is stabilized by adding the element-
wise terms (Donea and Huerta, 2003) to the mass and
coefficient matrices and the force vector.
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Fig. 1. (a) Surface velocity for a domain with bedrock slope o, = 0.3
and aspect ratio ¢ = 0.02. Both analytical and numerical solutions
are shown for SD flow. The blue curve illustrates the velocity ratio
(SD to Stokes solution). (b) The average ratio of surface velocity as
a function of oy,, averaged over the inner 80% of the domain. Data
points on the black curve represent domains with ¢ = 0.02. For a
fixed bedrock slope oy, = 0.3, the effects of aspect ratio are also
shown with red and blue circles.

3.2. Model validation

The Elmer software was discussed by Gagliardini and
Zwinger (2008) in the context of ISMIP-HOM (Ice Sheet
Model Intercomparison Project for Higher-Order Models;
Pattyn and others, 2008). We solve our own subroutine in
Elmer, however, in order to obtain solutions from both the
Stokes and SD (reduced Stokes, as explained in Section 2.1.2)
models. We test our Stokes model against the ISMIP-HOM
benchmark experiments, and find good agreement for 2-D
simulations (results not shown). The SD model is validated by
comparing results with the analytical solution (Equation (9))
for the SIA (e.g. Fig. 1a).

4. ROLE OF LONGITUDINAL STRESS GRADIENTS

Glacier ice deforms under gravitational acceleration. In the
full-system equations for plane strain, gravity-driven ice flow
is balanced by the basal drag and horizontal gradients in
longitudinal stress. The basal drag is the sum of all resistive
terms that act at the ice/bedrock interface to oppose the
ice flow. Depending upon basal topography and sliding
conditions, LSG either pull ice mass downslope or provide a
resistance to glacier flow (e.g. Van der Veen, 1999). As our
SD model is free from the longitudinal stresses, we compare it
with the Stokes model to illustrate the significance of LSG. In
this section, we assume a no-slip basal condition in order to
explore how the presence or absence of longitudinal stresses
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in the force-balance equations alters (1) the englacial velocity
field, (2) evolution of glacier geometry and (3) ice rheology.
In subsequent sections, we parameterize the LSG effects (for
internal deformation only) and analyse them. Basal sliding is
considered in Section 7.

4.1. Englacial velocity field

Glacier velocities are integrated from the bedrock to a
maximum at the upper (free) surface. Here we compare
surface velocity from the SD and Stokes models in order to
assess the role of LSG. We consider a number of domains
with a range of bedrock slopes, oy, and aspect ratios, ¢. The
uniform bedrock slope ranges between ap, = 0.1 and 0.5 at
intervals of 0.1. Domain length is fixed at / = 4000 m, and
the ice-thickness profile, h(x), is a flattened half-circle (as in
Le Meur and others, 2004):

h(x):2(\/x(l—x). (18)

The aspect ratio ranges from ¢ = 0.01 to ¢ = 0.03 atintervals
of 0.01. Here ( is defined as the ratio of the maximum ice
thickness, hmax = h(0.5/), measured perpendicular to the
bedrock, to the domain length. The range of ¢ is chosen
such that diagnostic solutions yield vertical shear stress at
the ice/bedrock interface, 7x.(x, b), in the range 50-300 kPa.
These are typical values for valley glaciers (e.g. Nye, 1952;
Oerlemans, 2001).

We calculate diagnostic solutions for the englacial velocity
field for each domain using both the SD and Stokes models.
The SD model generally yields higher velocity, as shown
in Figure 1a for a typical domain. For ease of comparison,
we normalize the velocity profiles by computing the ratio of
surface velocity between the SD and Stokes models. Larger
ratios (relative to unity) indicate that the role of LSG is
more pronounced and that there is greater error from the
SD model. For each domain, the surface velocity ratio is
spatially uniform except around the head and toe of the
glacier (Fig. 1a), especially for domains with smaller ¢. This
suggests that, for a given «y,, the role of LSG is spatially
uniform in the domain interior.

The velocity ratio near the margins of the diagnostic
domain follows an inconsistent trend. In-depth exploration of
these patterns is not important in the context of this research,
because the magnitudes of ice flux in those regions are very
small (and tend towards zero at the glacier head and toe)
in both the Stokes and SD systems. We therefore compute
the spatial average of the velocity ratio over the inner 80%
of the glacier, i.e. x € (0.1/ — 0.9/), for several domains
(Table 2; Fig. 1b). Figure 1b shows how the average velocity
ratio, and hence the role of LSG, increases with increasing
ay,. The average velocity ratios for domains with the same ay,
but different ¢ are also shown. Apparently, the role of LSG is
relatively less sensitive to aspect ratio. This is consistent with
the conclusions of Le Meur and others (2004).

4.2. Evolution of glacier geometry

We grow glaciers from zero ice volume to a steady state for
a number of geometric and climatic settings typical of valley
glaciers. The basal geometry, b(x), and glacier mass balance,
m(s(x)), are set constant in time:

b(x) = 3000 — oy, X, (19)
m(s(x)) = B (s(x) — ELA), s(x) <2900 m, 20)
=0, s(x) > 2900 m.
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Table 2. Numbers depicting the role of LSG for a number of
geometries. The aspect ratio ¢ = 0.02 for diagnostic simulations
and the balance gradient 8 = 0.01 miceeq.a~! m~" for prognostic
simulations (except for the rows marked 2 and P, where ¢ =
0.01 and 0.03, respectively, for diagnostic simulations and 8 =
0.0075 and 0.0125 miceeq.a~' m~!, respectively, for prognostic
simulations). Velocity ratio = (SD solution)/(Stokes solution) and
volume difference = (SD — Stokes solution)/(SD solution)

Bed slope, Diagnostic simulation Prognostic simulation
@b Velocity ratio Velocity ratio Volume
difference
%
0.1 1.020 1.003 —1.03
0.2 1.168 1.022 —3.39
20.3 1.406 1.068 —7.13
0.3 1.413 1.064 —7.20
b0.3 1.432 1.057 —7.45
0.4 1.812 1.108 —12.38
0.5 2.442 1.173 —18.23

Bedrock slopes, ay,, are varied as in Section 4.1. To capture
the height/mass-balance feedback (e.g. Oerlemans, 2001),
climate is chosen such that m(s(x)) depends on surface
elevation, s(x), according to Equation (20). We consider a
linear balance gradient, 8 (not to be confused with friction
coefficient, 8%, in Equation (11)), that ranges from g =
0.0075 to 8 = 0.0125 miceeq.a~'m~" at intervals of
0.0025. The equilibrium-line altitude (ELA) is set at 2000 m.

For each combination of geometry and climate, we grow a
glacier by running the prognostic simulation for a sufficiently
long time to achieve a steady state. In each case, results
suggest that the Stokes model retains more ice mass at all
elevations (Fig. 2b) and throughout its evolution towards
a steady state (Fig. 2a). We compute the difference in
steady-state ice volume between the domains from the SD
and Stokes models (Table 2; Fig. 2c). For a given climate
i.e. mass-balance gradient, 3, the figure reveals that the
absolute difference in ice volume, and hence the role of LSG,
increases with increasing «y,. In other words, the volume
error for the SD model is higher for steeper bedrock. For
a fixed basal geometry, climatic effects are depicted. The
circles are close to each other, indicating that the role of LSG
is relatively insensitive to climatic setting. As in the case with
diagnostic simulations, this suggests that the significance of
LSG for simple geometric settings depends primarily on the
bed slope.

As in Section 4.1, we compute the ratio in surface velocity
for each steady-state domain. The spatial average of velocity
ratio over 0.1/ < x < 0.9/ gives a similar plot to that
in Figure 1b. However, for the range of bedrock slope
considered, i.e. 0.1 < oy, < 0.5, we find a smaller range in
velocity ratio (Table 2). This is because, unlike the diagnostic
runs, the glacier surface here is evolved towards a steady-
state geometry that is in equilibrium with the specified basal

topography.

4.3. Ice rheology

The diagnostic and prognostic simulations discussed above
suggest that the Stokes model yields reduced ice velocities
and thicker glaciers than the SD model. Therefore, for
domains on smooth and realistically sloped (in the direction
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Fig. 2. (a) Evolution of ice volume and (b) the steady-state ice
thickness, obtained from prognostic simulations for a domain
with bedrock slope oy, = 0.3, under constant (in time) climate
with a linear balance gradient of 3 = 0.01 miceeq.a~"m~".
(c) Difference in steady-state ice volume for the SD model relative
to the Stokes solution. Data points on the black curve are for
B = 0.01miceeq.a~ ' m~". For a fixed bed slope oy, = 0.3,
climatic effects are shown with red and blue circles.

of flow) beds, the net effect of LSG (for internal deformation
only) is resistive. Hereafter this is referred to as second-type
resistance, following Van der Veen (1999). We now explore
how this type of resistance affects ice rheology.

With a Glen’s flow law exponent n = 3, the effective
viscosity of glacier ice, n, is inversely proportional to the
second invariant of the strain-rate tensor (Equation (6)). In the
Stokes model, this invariant (Equation (7)) is directly linked
to the sum of squares of all strain-rate components. Only the
square of shear strain rate is considered in the SD model. If
differences in the englacial velocity field between these two
models do not significantly alter the magnitude of the strain-
rate components, then the second invariant in the Stokes
model would have a relatively larger magnitude, suggesting
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Fig. 3. Variation of (a) velocity and (b) effective viscosity with depth
at x = 0.5/ for a domain with bedrock slope o}, = 0.3 and aspect
ratio ¢ = 0.02. Note the logarithmic scale (base 10) for effective
viscosity. (c) Vertically averaged effective viscosity for the same
domain. Dashed lines correspond to glacier-wide average values.

a smaller 7. This is not, however, supported by the results.
Both the depth and along-flow variation of 1 for a typical
domain indicate that the Stokes model has a larger value than
the SD model (Fig. 3b and c), with glacier-wide averages of
3.64 x 10" and 2.80 x 10" Pas, respectively. Looking at
englacial velocity fields (Fig. 3a), the SD model yields higher
magnitudes with larger gradients in velocity. This difference
in velocity gradient dominates the additional terms in the
strain-rate tensor from the Stokes model. This confirms the
greater significance of LSG as resistance, relative to its
impacts on softening of the ice viscosity.

5. LONGITUDINAL STRESS (L-)FACTOR

We have shown that bedrock slope is the key parameter to
determine the magnitude of error in the SD model (relative to
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the Stokes solution), which increases with increasing bedrock
slope. Since valley glaciers commonly rest on steep bedrock,
the SD model will then generally yield unrealistic results.
We aim to minimize error in the SD model by including a
factor that empirically accounts for the missing dynamics.
As the primary dynamical effects that are missing in plane
strain SD flow are associated with LSG, we refer to this
correction factor as the longitudinal stress (L-)factor. With
the L-factor, the basal drag in the zeroth-order SIA model
(hereafter referred to as the modified shear-deformational
(MSD) model) takes the following form:

T = Lpghas. 1)

The L-factor has two components, namely (1) the deforma-
tional factor, Ly, and (2) the sliding factor, Ls, so L = L4 X Ls.
For internal deformation only, for example, L = Ly as the
sliding factor does not come into play, i.e. Ls = 1.

The L-factor is analogous to the classical Nye shape
factor (Nye, 1965), with which the SD model accounts for
the effects of lateral drag. This drag is the ‘third type’ of
resistance (e.g. Van der Veen, 1999) associated with lateral
stress gradients and is an important component for modelling
narrow valley glaciers.

5.1. Theory

We explain the L-factor based on the fundamental concept
that glacier flow is driven by gravity and opposed by several
resistive forces (e.g. Whillans, 1987; Van der Veen, 1999).
This concept is applied individually and collectively to
both components of the L-factor. To discuss this concept
mathematically, we split the Cauchy stress tensor, o, into the
resistive stress, R, and hydrostatic pressure, py, so that

o=R+ppI. (22)

The hydrostatic pressure at any elevation, z, in a steady-state
glacier is the weight of ice above, i.e. p, = pg (s — z). Since
the Stokes model employed is based on the 7—p splitting
of the Cauchy stress tensor, we set up links between resistive
stresses and stress deviators. Eliminating o from Equations (4)
and (22), we obtain

R=7+TI(p—pn)- (23)

For the vertical normal stress, it follows p — py, = Rzz — 2.
Setting the first invariant of the deviatoric stress tensor, i.e.
Txx + Tzz, by definition to zero, the resistive stresses can be
written as Rxx = 27xx + Rzz and Rz = Txz.

In the plane strain Stokes problem, the force-balance
equations in horizontal (x) and vertical (z) directions take
the following forms:

ORxx 0(s—2) ORxz

ox P87 ax Tz T 0. @4)
ORx; OR., d(s—2) _
dx + oz tr8 oz +rg=0. @5

Integrating Equation (24) from the bed, z = b, to surface,
z = s, of the glacier and switching the order of integration
and differentiation using Leibniz’s rule, we obtain:

0 Os ob

s
a /b Rxx dZ — Rxx(s)a + RXX(b)a

Js
-I-pgha + Rxz(s) — Rxz(b) = 0.
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Here h is the ice thickness. After imposing a stress-free
surface boundary condition and rearranging the terms,
Equation (26) can be rewritten as

s
pghas = Rxz(b) — Rxx(b)ab — i / Ruxdz. (27)
—_—— —— ox b
Td Th,SM

Tl

Here «as and «4, are the surface and bedrock slopes,
respectively. From the force budget along the x-axis
(Equation (27)), it is clear that the gravitational driving stress,
74, for a given transient domain in the plane strain Stokes
model (SM) is partly balanced by the basal drag, 7, s\, and
partly by the second-type resistance, 7.

The vertical force-balance equation (Equation (25)) can be
rewritten as

ORxz . ORz

ox 0z
For a reasonably smooth basal topography with a no-slip
condition, the weight of an ice column is fully supported
by the bed underneath, i.e. 0,z = py, and hence R,; = 0.
From Equation (28), this implies that the horizontal gradient
in vertical shear stress is negligible and that the force budget
along the z-axis does not contribute to resist the ice flow.
This, however, is not true in the case of basal sliding, for
example, in which nonzero vertical resistive stress, i.e. R,z #
0, can have a noticeable contribution to basal resistance
through ‘bridging effects’ (Van der Veen, 1999).

From Equation (27), it is clear that 7, m/74 and 71/74 are,
respectively, fractional contributions of basal drag and the
second-type resistance to oppose the glacier flow. In order
to account for the effects of LSG, we modify the SD model
such that the basal drag (the sole resistance in it) resists
only a relevant fraction of driving stress. This fraction is
introduced through L (Equation (21)) and can be understood
as L = m, gu/74. Here we may consider three distinct cases:
(1) when the role of LSG is negligible, 7, s ~ 74, and hence
L =~ 1; (2) when the net effect of LSG is resistive, 7, s < 74,
and hence L < 1; and (3) when the LSG work in cooperation
with driving stress, 7,sm > 74, and hence L > 1. In the
latter two cases, by multiplying 74 by a factor L # 1 in
the MSD model (Equation (21)), we are essentially reducing
and enhancing the effective driving stress, respectively. For
a given domain, this is equivalent to parameterizing LSG
effects.

=0. (28)

5.2. Defining the L4-factor

We estimate Ly for a number of glacier domains, whose
geometries are defined in Section 4.1. By definition, Lq is
obtained from the Stokes model as a ratio between the basal
drag and the driving stress. For each domain, 74 can be
obtained analytically. However, the basal drag is unknown
for the Stokes model. We estimate Ly numerically based on
the correction factor required to produce the correct surface
velocity with the MSD model (with respect to the Stokes
solution).

For each domain, we first compute a ratio between the
vertical shear stress and the local driving stress (Fig. 4a), i.e.
Ly = Txz,sm(x, b)/74. As seen in the figure, L is reasonably
uniform except around the head and terminus of the glacier.
This allows us to compute a single value of L for the interior
flow by spatial averaging over the inner 80% of the domain.
With L} as an initial guess for Ly, we run the MSD model (by
multiplying the force vector in the SD model by the L-factor)
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Fig. 4. (a) Driving stress and the vertical shear stress at the
ice/bedrock interface, obtained from the Stokes model for a domain
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line illustrates the stress ratio, L; (basal shear stress to driving stress).
(b) Surface velocity from the Stokes, SD and MSD models. The
velocity profile for the MSD model is achieved in the course of
optimizing Ly. (c) The longitudinal stress factor, Ly, as a function of
ay, for various aspect ratios, ¢.

to obtain the diagnostic surface velocity for each domain.
Lq is then optimized to minimize the difference in average
surface velocity between the Stokes and MSD models. We
find that L} ~ Ly, indicating 7y;,sm(x, b) is a good proxy
of basal drag. This is as expected for the no-slip boundary
condition.

A typical example is given in Figure 4b for a domain with
bedrock slope o, = 0.3 and aspect ratio ¢ = 0.02. In this
particular case, we obtain Ly = 0.883 when minimizing the
difference in average surface velocity between the Stokes
and SD models from 45.3% to 0.04%. Although the average
difference is minimized sufficiently, there is a spatial misfit
between the velocity profiles. The SD-based treatment of
glacier deformation of the MSD model cannot fully describe
the Stokes system.
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Table 3. The longitudinal stress factor, Ly, for domains with various
geometries. As Ly is relatively insensitive to aspect ratio, average
values are given for bedrock slope

Bedrock slope, oy, Aspect ratio, ¢ Average
0.01 0.02 0.03

0 - - - 1

0.1 - 0.976 0.966 0.976
0.2 0.946 0.939 0.930 0.938
0.3 0.889 0.883 0.875 0.882
0.4 0.818 0.813 0.808 0.813
0.5 0.741 0.737 - 0.737
o) - - - 0

The optimized values of Ly for a number of domains are
listed in Table 3 and plotted in Figure 4c. Results suggest
that Ly is less sensitive to ¢ than «y,. Hence for each value
of ayp,, we compute the average value of Lyq. As expected,
Ly decreases with increasing «y, in order to account for the
increasing effects of LSG. As the values are computed for a
number of discrete cases, Ly for intermediate «y, is obtained
from a quadratic fit to the test cases:

Lg = 1.00 — 0.18y, — 0.70aj. (29)

The relative insensitivity of Ly to ¢ is an encouraging result
because it means that a constant value can be used for
prognostic simulations, in which ¢ varies in time according
to the glacier and climate evolution.

As would be suggested by, for example, Equation (29),
Ly = 1 for a flat bed (o, = 0) does not necessarily imply that
both the Stokes and SD models yield exactly the same results.
Rather, this illustrates the inability of Ly to capture LSG effects
that are due to surface slope or thickness gradients. For valley
glaciers, such effects should be smaller than for the bedrock-
slope-dependent LSG, as discussed in Section 4.

5.3. Testing L, against complex basal topography

As a first step to test the usefulness of Ly for a more compli-
cated basal topography, we perform diagnostic simulations
on domains with idealized bedrock roughness. We consider
a 4000 m long domain that rests on smooth bedrock with
slope o, = 0.3 and has an idealized ice-thickness profile
according to Equation (18), with aspect ratio ¢ = 0.02.
Roughness is added to the glacier bed by bending it sharply
at x = 0.5/ in both directions by 0.2hmax in turn. A
second set of bed roughness experiments is run with the
bedrock topography perturbed based on a sine wave with a
fixed amplitude of 0.1hmax and wavelengths of 2000, 4000
and 8000 m. Both types of basal roughness are shown in
Figure 5a.

For domains with each set of basal roughness, we obtain
the englacial velocity fields from diagnostic simulations of
the MSD model. The value of Ly is chosen as the one for an
unperturbed bedrock slope, i.e. Ly = 0.882 for oy, = 0.3.
For comparison, we also simulate the Stokes and SD models
for each domain. In order to highlight the usefulness of Ly,
the ratios in surface velocity are computed for both the SD
and MSD flows with respect to the Stokes solutions. The
values are plotted in Figure 5b for domains with the first
set of basal roughness and in Figure 5c for the sinusoidal
bed. In both cases the surface velocities using Ly are, on
average, closer to those from the Stokes model. Over the
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Fig. 5. (a) Sample bed roughness used for assessing Ly on beds
with nonuniform slope. The unperturbed bed has a uniform slope of
oy, = 0.3, sharply bended beds have a maximum bend of £0.2 hmax
(ten times exaggerated in figure) at x = 0.5/, and a sinusoidal bed
has an amplitude of 0.1 hmax (ten times exaggerated) and wavelength
of A = 2000 m. (b, c) Assessment of Ly for domains with (b) a sharp
bend of various magnitudes at x = 0.5/ and (c) a sinusoidal bed
of amplitude 0.1hmax and various X. In both cases, comparison is
made between the SD (black lines) and MSD (red lines) models
in terms of velocity ratio with respect to the Stokes solution. The
reference curve (blue) with a magnitude of unity is applied to
ideal domains where all models yield the same results. Common
geometric features of domains (b, c) include an unperturbed bed
with oy, = 0.3 and aspect ratio ¢ = 0.02.

inner 80% of the domain, average absolute misfits in the
ratio between the MSD and Stokes models are 2.8% (for the
sharply bended bed) and 3.4% (for the sinusoidal bed), while
the corresponding misfits between the SD and Stokes models
are 41.7% and 40.8%.

For each test case, there remains some spatial misfit in
velocity between the MSD and Stokes models. This misfit
is, in general, inherent to the employed (MSD) model,
as explained in Section 5.2. Larger misfits (for domains
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with greater roughness) associate with the incompatibility
between the idealized (disequilibrium) surface profile and
the bedrock topography. The chosen diagnostic domains are
not glaciologically feasible geometries, and could only be
supported by unrealistic climate (mass-balance) conditions.
Such a synthetic and unrealistic climate does not represent
real-world scenarios, and hence it is not to be considered
while modelling real-world glacier dynamics. When evolved
under reasonable mass-balance profiles, modelled glacier
geometry (both transient and steady state) and surface
velocity are very similar in the Stokes and MSD models, as
we demonstrate in the next set of experiments.

5.4. Testing L, against evolving geometry

For internal deformation alone, as we noted earlier, the SD
model generally predicts thinner ice due to the absence of
second-type resistance. For more complex basal topography,
we demonstrate how Ly helps this simpler model to
compensate for the under-predicted ice volume. We consider
a fixed climate, as defined in Equation (20), with linear
balance gradient 8 = 0.01m iceeq.a~' m~', and a sharply
bended bedrock as defined below:

b(x) = 3000 — 0.4x, x <3000 m

= 1800 1.8 3000 (30
= 1800 = 275 (= 3000,

This yields an average bedrock slope of oy, = 0.3 fora 10 km
long bed.

First, we perform prognostic simulations of the Stokes
and SD models and grow glaciers from zero ice volume
to a steady state (Fig. 6a). The figure reveals the expected
discrepancy in cumulative ice volume throughout the glacier
evolution, with a maximum difference of 4.95 x 10*m?
(10.1%) after attaining steady state. We then run the same
simulation with the MSD model, first using a single value of
Ly associated with the average bedrock slope (o, = 0.3,
Ly = 0.882), and then using multiple values appropriate
for each basal segment (Ly = 0.813 for oy, = 0.4, and
Ly = 0.907 for aq, = 0.257). The evolution of glacier ice
volume is shown in Figure 6a (blue curves). Comparing
these curves with the one for the Stokes model illustrates
that including Ly minimizes the difference in ice volume
throughout the evolution. The difference in ice volume at
steady state is reduced to 0.69 x 10*m? (1.4%) by using a
single value of L4, and to 0.02 x 10*m? (0.03%) by using
multiple values. The performance of Ly is equally impressive
for transient states. A transient domain after 75 years of
simulation, for example, retains 9.7% less ice mass in the SD
model relative to the Stokes solution. The under-predicted ice
mass can be recovered progressively using single (3.5% less
ice mass) and multiple (0.8% less ice mass) values of Ly.

Similarly, we plot surface velocity (Fig. 6b) and ice
thickness (Fig. 6¢) for steady-state domains obtained from
all three models. For both cases, the misfit is successfully
minimized by the introduction of Ly, especially when using
multiple values (solid blue lines). Comparable results are
achieved for transient-state domains (e.g. after 75 years of
simulation; results not shown).

Use of multiple Ly-factors enhances model results con-
siderably. The number of factors to be used is determined
by the complexity of the bedrock topography. For sharply
bended bedrock, one can introduce different Ly-factors cor-
responding to each slope. Real-world bedrock topography
can similarly be broken down into piecewise-linear slopes,
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with Ly-factors fitted to each linear segment. Alternatively,
L4 can be considered as a continuous function of bedrock
slope (Equation (29)). For a section of bedrock with an inverse
slope, one can use Ly > 1 with magnitude 1 + (1 — Ld(ab))
in order to account for the ‘pulling’ effects of LSG. In the next
set of experiments, we consider a present-day (transient-state)
real-world valley glacier and demonstrate the technique of
using multiple Ly-factors, including the one for inverse slope.

6. EXAMPLE APPLICATION: HAIG GLACIER

One of the key reasons for using a dynamical ice-flow
model is to simulate past and future states of glaciers
under different climatic scenarios. For a given geometric and
climatic setting, the fidelity of such projections depends,
in part, on how accurately the model computes englacial
velocity and pressure fields. This implies that simulations
from the SD model are likely to be less reliable. Here, under
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Fig. 7. (a) Present-day (AD2005) surface and basal topography of
Haig Glacier. A fixed ELA used to simulate the present-day domain
is also shown. Dotted vertical lines separate basal segments; we
use a unique L-factor for each segment. (b) Evolution of the glacier
under a chosen climate and (c) surface velocity after 200 years of
simulation, according to the Stokes, SD and MSD models.

a suitable climate, we simulate the present-day geometry
(AD2005) of Haig Glacier, Canadian Rockies (50°43'N,
115°18" W; Fig. 7a), in order to demonstrate how the L-factor
helps the SD model to yield more accurate results. In doing
so, we overlook the drag associated with valley walls. The
subglacial topography of Haig Glacier was surveyed in May
2009 using a ground-penetrating radar system, indicating an
average (along the flowline) thickness of 150 m, a maximum
ice thickness of 225 m and an overdeepened bed. The glacier
is isothermal and hydrologically well drained. Ice velocity
measurements from the site (unpublished) indicate surface
speeds of ~10ma~' over the past decade, suggesting little
or no basal flow (hence L = Lg). Other details of the field
site are given by Shea and others (2005) and Marshall and
others (2011).

We fit the bedrock topography with four different linear
segments (Fig. 7a) as listed in Table 4. Notice that the inverse
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Table 4. Discretization of basal topography of Haig Glacier into a
number of piecewise-linear slopes. The relevant values of L are
also listed

Segment x < Mean slope, oy, Ly
m

1 830 0.283 0.893

2 1720 —0.064 1.014

3 2150 0.382 0.829

4 3000 0.088 0.979

bedrock slope (the second segment) leads to a factor L > 1.
Beginning with the present-day glacier extent (Fig. 7a), we
model glacier growth through the initiation of a climate
cooling:

m(s(x)) = 0.012 (s(x) — 2550), s(x) <2760 m

. (31)
=0, s(x) > 2760 m

Here the present-time (2001-09) linear balance gradient is
used, 8 = 0.012miceeq.a~ ' m~'. The present-day ELA is
~2720ma.s.l. at this site (Marshall and others, 2011), so
a step change to 2550 m induces glacier thickening and
advance. As the glacier forms a part of a small ice field, we
ensure no flow across the ice divide by imposing a zero-flux
boundary condition throughout the ice column.

Figure 7b shows the simulated volume gain of the
glacier over 200 years with the Stokes, SD and MSD
models, demonstrating the large improvement through the
introduction of multiple L-factors. Similar improvements are
noticeable in velocity profiles as obtained after 200 years
of simulation (Fig. 7c). This example with Haig Glacier
illustrates the promise of the proposed technique (MSD
model) for simulations of real-world glacier advance and
retreat in response to climate change.

7. EFFECTS OF BASAL SLIDING

So far, we have designed and developed the L-factor for
valley glaciers, to be strictly applied only if all of the
following are true: (1) ice is an isotropic and incompressible
material; (2) ice is a highly viscous non-Newtonian fluid
that obeys the power law of viscosity in a low Reynolds
number flow; (3) the constitutive relation follows Glen’s flow
law for ice with flow law exponent n = 3; (4) domains
are isothermal and they describe plane strain flow; (5) the
glacier upper surface is stress-free; (6) the glacier terminus
does not meet the water bodies; and (7) there exists no
sliding at the ice/bedrock interface. Although most of these
criteria satisfy the general conventions in mid-latitude valley
glaciers, the no-slip basal condition is commonly invalid.
Here we analyse how basal sliding alters the dynamics
through the LSG, and how such effects can be parameterized
effectively.

In order to study effects of basal sliding alone, we consider
an infinitely long glacier, [ = oo, with uniform ice thickness,
h, and we allow ice to slip only within the domain interior
(we call it the sliding length, ). We define tilted Cartesian
coordinates such that the x-axis follows the ice surface. For
Is = 0, the chosen geometry (a slab glacier with dh/dx = 0)
allows both the Stokes and SD models to yield exactly the
same englacial velocity fields, i.e. Vem(x, z) = Vsp(x, 2). In
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Fig. 8. (a) Surface velocity for a domain with surface slope as = 0.2
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The velocity profile for the MSD model is achieved in the course of
optimizing Ls. (b) Ratio in maximum surface velocity (sliding to no-
slip solutions) and (c) the longitudinal stress factor, Ls, as a function
of Is/h. Curves are plotted for various slip ratios, c.

such cases, the gravitational driving stress is solely balanced
by the basal drag (Equation (27)). This is true for the Stokes
model as well, as longitudinal stresses vanish throughout the
domain. We induce the LSG by allowing the ice to slip over
a part of the glacier bed, i.e. [s > 0.

7.1. Role of the slip-induced LSG and its
parameterization

Two extremes of the employed sliding law (Equation (11))
represent (1) the no-slip case, i.e. V(x,b) = 0 or 62 =
+oo, and (2) free-floating ice, i.e. 62 = 0. The basal
condition for real-world valley glaciers is likely to fall
between these two conditions. It is useful to define a slip
ratio, ¢ (e.g. Gudmundsson, 2003), as a ratio between sliding
and deformational velocities. From the analytical solution for

https://doi.org/10.3189/002214311798843449 Published online by Cambridge University Press

1013

Table 5. The longitudinal stress factor, Ls, associated with basal
sliding. Values are given for various slip ratios and sliding length
to thickness ratios, Is/h

Is/h Slip ratio, ¢

0.5 1 2 3 4 5
0 1 1 1 1 1 1
2 1.015 1.031 1.056 1.071 1.081 1.089
5 1.048 1.101 1.193 1.265 1.321 1.368
10 1.082 1.163 1.299 1.407 1.496 1.573
20 1.111 1.209 1.369 1.497 1.604 1.697
50 1.131 1.239 1.413 1.552 1.668 1.770
00 1.144 1.260 1.442 1.587 1.710 1.817

deformational velocity and unperturbed (no-slip) basal drag,
Equation (11) gives the following relation between 2 and c:

—1
(pgsin as)2 h? ) (32)

2
b= “hti
It is apparent that (1) ¢ = O represents the no-slip
condition, in which sliding velocity is negligibly smaller than
deformational velocity and (2) ¢ = +oo represents the case
of free-floating ice, in which vertical shear deformation is
negligible.

For a number of slip ratios, we obtain surface velocity from
the Stokes model (see Fig. 8a for a typical plot). For each slip
ratio, we present results as a function of the ratio of I to h. To
understand the role of slip-induced LSG, we compute a ratio
in surface velocity from the Stokes model with and without
basal sliding. Figure 8b shows how including basal sliding
yields higher surface velocity for various combinations of ¢
and Is/h. This confirms that the slip-induced LSG works in
cooperation with local driving stress, i.e. the ice is locally
being pulled from down-glacier or pushed from up-glacier.
We find that results are insensitive to bedrock (or surface)
slope and aspect ratio (or ice thickness).

Since there is no deformation-based LSG in the chosen
geometry, the difference between the SD (or Stokes) with
the no-slip condition and Stokes with basal sliding is solely
explained by the slip-induced LSG. It is therefore possible
to define Ls, so that the MSD model (Equation (21)) takes
the form 7, = Lspghas (as Ly = 1). We obtain Ls by
minimizing the difference in average (over x € k) surface
velocity between the Stokes (with sliding) and MSD models.
A typical illustration of an optimized MSD solution is given
in Figure 8a; Ls factors for several combinations of c and s/ h
are listed in Table 5 and plotted in Figure 8c.

7.2. Compatibility of [-factors

We defined Ly by excluding the sliding effect (Section 5.2)
and Ls by choosing the domain such that the deformation-
based LSG is negligible (Section 7.1). The MSD model
(Equation (21)) in these cases takes the forms: 7, = Lypghas
(as Ls = 1) and 7, = Lipghas (as Ly = 1). In order to test
the compatibility of these two factors, we choose a domain
that is used to define Ly (Section 4.1) and impose a sliding
condition at the ice/bedrock interface. The MSD model now
takes its master form: 7, = Lpghas = LyLspghos.

For different ¢ and s/ h, surface velocities from both the
Stokes and MSD models are obtained (Fig. 9) for a 4000 m
long domain that rests on bedrock slope oy, = 0.3, and has an
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Fig. 9. Surface velocity for domains with (a) sliding length 0 < s
< 4000 and slip ratio ¢ = 2.0, (b) 1600 < /s < 2400 and ¢ = 1.0
and (c) 2000 < s < 4000 and ¢ = 0.5. Other geometric features
include bedrock slope oy, = 0.3 and aspect ratio ¢ = 0.02 in
thickness profile (Equation (18)). Results are also shown for a no-
slip case.

ice-thickness profile according to Equation (18), with aspect
ratio ¢ = 0.02. In all three cases, Ly = 0.882 (for ay, = 0.3;
see Table 3) is used, whereas Ls varies spatially according to
Is/ h. For the second experiment (Fig. 9b), however, Is/h ~ 10
over all , hence we use Ly = 1.163 (for ¢ = 1; see
Table 5). The master L-factor in this particular case reads
L = 0.882 x 1.163 = 1.026 over x € [ and L = 0.882
elsewhere. Apart from poor performance at the ‘slip/no-slip’
transition (Fig. 9b and c), the MSD model generally yields
accurate results with respect to the Stokes solution in all three
experiments. In each case, the absolute difference in average
velocity (over x € ) between the Stokes and MSD models is
<4.0%. In the context that even Stokes models yield a larger
spread of solutions in a sliding zone (e.g. fig. 10 of Pattyn
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and others, 2008), the MSD solutions obtained with ad hoc
parameterization of LSG effects are encouraging.

In principle, Ls can be obtained (Fig. 8c) and applied
for infinitely large slip ratios, c. For larger c, however, the
ice flow becomes nonlocal (e.g. Gudmundsson, 2003) and
represents ice-shelf or ice-stream style of flow, for which
vertical shear deformation is negligible, and it does not make
sense to apply the MSD flow model. It should also be noted
that the Ls parameterization is designed to improve estimates
of ice velocity in ice-flow models that explicitly model only
internal shear deformation. If basal sliding is prescribed or is
separately modelled through local, empirical ‘sliding laws’
(e.g. Budd and others, 1979), this can be superimposed onto
the shear deformational flow simulated with the MSD model.
In model applications with a local sliding law, however,
momentum is not conserved and the actual basal shear stress
is unknown; rather, itis usually assumed that 7, = 74, despite
the fact that there is slip at the bed. In these cases our
suggested L-factor correction may not apply.

8. CONCLUSIONS

Widely used SD models, such as the SIA model, do not
include the effects of LSG. For internal deformation only, the
LSG works as a resistance to glacier ice flow. Consequently,
SD models yield larger velocities (in diagnostic simulations)
and reduced ice volumes (in prognostic simulations), relative
to the Stokes solutions. Analyses reveal that the magnitude
of such errors increases with increasing bedrock slope, with
only minor sensitivity to the aspect ratio and climate. Since
most valley glaciers rest on steeply sloping bedrock, simpler
models are likely to yield unrealistic results. With the aim of
improving simulations within simpler SD-based models, we
propose the introduction of the L-factor, which helps account
for the effects of LSG.

The L-factor is based on a simple concept of balance
between the gravity-driven ice flow and resistances to oppose
it. For internal deformation only, it can be calculated as
a function of the bedrock slope, and works well with
piecewise-linear fits to realistic bed geometries. In principle,
the usefulness of the [-factor tends to decrease with
increasing complexity in the basal topography. This can
be compensated for, however, through the use of multiple
L-factors. The L-factor also works well in cases with basal
sliding, provided that one knows either the extent of ice
motion associated with basal flow (the slip ratio) or the
effective friction coefficient.

The recommended parameterization of the L-factor allows
one to approximate the effects of LSG in one-dimensional
or plane strain flowline models. For three-dimensional
(3-D) domains, values of L might change slightly because
a fraction of the driving stress is opposed by the lateral
drag. In principle, the L-factor would still apply and improve
the simulation of ice velocities. Where the glacier cross
section is relatively simple, such cases would be amenable
to a combination of the L-factor and Nye shape factors
in order to parameterize 3-D high-order stress effects in a
simple flowline model. We shall consider analysing this in
future work.

Our model is simplistic compared with past efforts to
introduce the effects of LSG in simplified models of glacier
dynamics, but this has many advantages. It allows a local
solution to models of the deformational ice velocity, based
only on local ice thickness, surface slope and bedrock slope.
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This is computationally expedient and orders of magnitude
faster than nonlocal (e.g. Stokes) solutions, and therefore
offers a good compromise between accuracy and efficiency
in glacier simulations. Stokes models are computationally
tractable, so one can argue that approximations to such
models are not needed. In reality, Stokes models are complex
and computationally intensive, making them inaccessible to
many applications. Pragmatic flowline models are, however,
more justified in many applications, and the improvements
to ice dynamics through the proposed L-factor will enable
such models to more reliably predict glacier dynamics and
the response of glaciers to climate change. Furthermore,
knowledge of many critical glaciological inputs (e.g. 2-D
subglacial topography, ice thickness and mass-balance fields)
is lacking, so a complex, high-order, 3-D solution to ice
dynamics is often not warranted. However, the proposed
parameterization does not replace complete Stokes solutions
where complex flow regimes demand it; if a high-order flow
model and the requisite inputs and computational capacity
are available, a complete Stokes solution is optimal.
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