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ON THE EMBEDDING OF PROCESSES IN BROWNIAN MOTION
AND THE LAW OF THE ITERATED LOGARITHM
FOR REVERSE MARTINGALES

D.J. Scort anp R.M. HuGGINns

Techniques from martingale theory are used to obtain the
Skorokhod embedding of reverse martingales in Brownian motion.
This result is then used to obtain a functional law of the

iterated logarithm for reverse martingales.

1. Introduction

It is well known that for ordinary discrete time square integrable
martingales there exists a sequence of stopping times on Brownian motion
such that the stopped Brownian motion has the same distribution as the
martingale. Also for continuous path square integrable martingales there
exists a Brownian motion and a time change process such that the martingale
is almost surely the same as the time changed Brownian motion; see Kunita
and Watanabe [§], Knight [7]. In the first section of this paper we use
a theorem of Heath [4] which enables us to exploit the continuous time

results to obtain an embedding of reverse martingales in Brownian motion.

A previous attempt to obtain a reverse martingale embedding was made
by Loynes [9] who considered the stopping times of Root [12] and attempted

to construct stopping times in the following manner.
We may consider a reversed martingale {Sn’ Fn; n 2z l} as a

martingale indexed by the negative integers, that is, set Sé = S—n .
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Fr'L = F-n , n =<1 . Therefore for each 7n < -1 the process

{S.;" FJ’., n<gJ < -1} is a martingale which may be embedded in a Brownian

motion via a finite sequence of stopping times {T;.n); nsg= -l} . A

quick consideration shows that we do not necessarily have T;.n) = T;m) R
n #m . A counter example may be easily provided by showing that the sum

of two stopping times which are defined as the first hitting times of

barriers, that is, Roots stopping times, need not be the first hitting time

of a barrier. Thus we may take TEJ..l) to be the first hitting time of a
barrier whilst T_(_12) need not be such a hitting time,hence

(-1) (-2)
T—l # T—l

We have therefore a triangular array of stopping times

(-1)
T

(-2) (-2)
T_5 L

(n) (n)
T e T

To obtain the reverse martingale embedding from this approach we thus

n .
require that Té- ) £, Tj as n +> - for each g = -1 . All that is

known about these stopping times is that they exist and have the same first
moment. The obvious, and seemingly only possible, way of proceeding is to
try to show compactness of an appropriate space of stopping times and the

results of Root [12] give some hope of this. The problem therefore reduces
to considering a subspace SK of the space S of all stopping times on

our Brownian motion where S: = {1t ¢S : Et = K} equipped with the metric
d(t, T) = inf{e : P(|1-T| = €) < €} , that is the metric of convergence in
probability. To prove the reverse martingale embedding we require that
this space be compact and it does not seem possible to prove this as
results which give necessary and sufficient conditions for convergence are

inapplicable in this case. See for example, Theorem 18, p. 297, of Dunford
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and Schwartz [2].

This and Loynes' unsuccessful attempt lead us to conclude that the
usual construction of stopping times in the martingale embedding does not
provide enough structure to yield the necessary compactness results and a
stronger form of the martingale embedding is required. Such an embedding

is the subject of the next section of this article.

For discrete time martingales previous embedding results have been
used to obtain various limit results, for example, Strassen [16], Scott
{13], Heyde and Scott [6], Hall and Heyde [3]. The connection between the
original martingale and the stopping times is made via conditional moment
inequalities which we obtain here from a theorem of Millar [11]. The
conditional moment inequalities given here are more general than those
usually associated with the Skorokhod embedding as they hold for any
O-fields with respect to which the process is a martingale (or a reverse
martingale) instead of those generated by the process. The proof given
here is quite straightforward and fills a noticeable gap in the literature

concerning the Skorokhod embedding.

The basic statement of the continuous time embedding result, which is
contained in Theorem 3.1 of Kunita and Watanabe [§] and Theorem 1 of Knight

[7] is as follows.

THEOREM A. Let {Yt, Gt; t = 0} be a square integrable martingale,
that is, EYi <o forall t , defined on a complete probability space

(R, F, P) . Suppose {Y,; t = 0} has continuous paths and the family

£3

{G; t 2 0} of o-fields is right continuous. Then there exists a

5

Brownian motion {B(u), F;; u 20} and a process T = {Tu; u = 0}

satisfying

(i) for each u € [0, =) , T, is a stopping time with
respect to the family of o-fields {F;; u =0} and

u >

(i1) for almost all w €Q , u € [0, =) » T, € {0, ®) i3 a

continuous and non-decreasing functionm,
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L. _ *
(ii1) Y, B(Tt] almost surely, Gt c FT , and

. 2 s s
(iv) {Yt—rt, Gt’ t 2 0} is a martingale.

The original result of Kunita and Watanabe was restricted to
martingales without intervals of constancy however this restriction was
removed by Knight. As observed by Meyer [10], p. 92, the process

T = {Tu; u =0} is just the quadratic variation of the martingale {Yt}

Note that the quadratic variation of a square integrable martingale is
defined as the limit of the sums
n-1
(Yt _Yt ] 2
1=0 i+l 1

over partitions (to, t . tn] of [0, t] which become arbitrarily

1°
fine. We shall denote the quadratic variation by Qt and note that Qt
is purely a function of the paths of the process. The above embedding in
the continuous case differs from the usual discrete time versions in that
the stopping times are natural, being the quadratic variation of the
martingale, and the Brownian motion is defined in terms of these stopping
times and the original martingale whereas in the usual discrete time case

the stopping times are constructed.

We exploit the fact that our stopping times in continuous timq
correspond to the quadratic variation of a martingale via the following

theorem due to Millar [11].
THEOREM B. Let {Yt’ Gt; t 2 0} be a square integrable martingale

with almost surely continuous paths. Then for 1 < p < » there exist

positive constants Mb and Nb depending only on p such that
wE[@?) < g, P < v 5(P?)
p Ut - th T p Ut o
The result of Heath [4] which is the key part of our embeddings is as
follows.

THEOREM C. If {Sn’ F,s n21} is a mrtingale on (R, F, P) there

is then (on a possibly enlarged version of (Q, F, P) ) a martingale
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{Yt’ G t2 0} such that Y, has continuous paths and for n 21 ,

t

Y =5 and F € G .
n n n—'n

The proof of this theorem depends on constructing O-fields

Gn

Fovo{fl(s); 0ss <, j=n} ir n=1, 2,

FnVAn’
and

Gt = G[t] v O{S[t]+l+3[t]+l(¢(s)); 0<s= t-[t]} , t not an integer,

k
where {B (2); k = l} is a countable family of Brownian motions

independent of each other and of FO° = V Fn . The function ¢ is any
n=1

continuously differentiable function on (0, 1] for which ¢(0+) = +° and

$(1) =0 with ¢’ <0 . The martingale Y, is constructed as a separable
version of the process given by Y, = E{S[t]+1|Gt} . See Heath [4] for

details of the proof.

2. Discrete time embedding results

We now utilise the theorems in our introduction to obtain embeddings
for martingales, reverse martingales and doubly infinite martingales. We
take (R, F, P) +to be a complete probability space. The definition
relating to martingales, reverse martingales, stopping times and Brownian

motion are sufficiently well known for us to need not mention them here.

THEOREM 1. If {Sn’ F,s n 21} is a square integrable martingale,

that is, ESrzl < ® for each n , then {on a possibly enlarged version of
(Q, F, P)) there exists a Brownian motion {B(u), F;; u 2 0} and a non-

decreasing sequence of stopping times {rn; n z 1} such that Fn c F; and
n

B(Tn} = Sn almost surely. Furthermore there exists an increasing family
of o-fields Gn such that T, i8 Gn measurable and the following
results hold:
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_ 2
(2.1) E{Tn_Tn-llGn-ll = E{[Sn-sn—l) an-l} almost surely,
and for 1 < p < > there exist positive constants Mp and Np depending

only on p such that

1A

- P
E{lsn Sn-ll an—l}

p/2
NbE{[Tn_Tn-l) lGn-l} almost surely.

(2.2) M%E{(Tn—Tn—l)p/zlqn-l}

A

Proof. The actual embedding follows directly from Theorem C and
Theorem A, as noted in Heath [4], once it is observed that we may take the

O-fields {Gt} associated with Theorem C to be right continuous. To do

this, replace Gt by Gt+ = N Gs . It is then easy to show that
s>t

E{Ysth+} =Y, almost surely; that is, Y, is still a martingale with

t
respect to the O-fields Gt+ .

To obtain the conditional moment results first note that (Zv) of

Theorem A implies that, as Yn =5 ,

n
2 _ 2
E{Sn-Tann-l} - E{E{Sn_ran(n—l)+}|Gn—l}
_ &2
= Sn—l - Tn-l almost surely

so that

2 &2
E{Sn—Sn_lIGn_l} = E{Tn-Tn_lIGn_l} almost surely.

Using the martingale property and the fact that by construction

Gn—l = Fn—l v An-l where An-l is independent of the o-field generated
by Sn’ Sn—l and Fn—l the equality (2.1) follows from the above.

The condition moment inequalities, (2.2), are obtained in the

following manner. Considér the martingale {Yt’ Gt; t = 0} . For any

fixed n and any 4 € Gn— the process I(A)(Yt-yn—l) , t=2mn-l, is

1

still a martingale as, for t 28 2n ,
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i

E{r(a) (v,-¥, )6} = H(a)Efr,-¥ 16}

I(A)(Ys-Yn_l)

The quadratic variation of this martingale is just I(4) [Qt-Qn_l)
Therefore from Theorem B we have that, considering the left hand

inequality, for any A € Gn-l and t = n-1 ,

p/2\ . p
MbE{I(A)IQt—Qn_l| } < E{I(A)lYt-Yn_ll } .

Hence using the definition of conditional expectation, for any
AE€EG we have

n-1
p/2 < _ p
!A A%E{th_Qn_l| |Gn_l}dP < JA E{|Yt Yn_l| {anl}dp .

We may rewrite this as, for any A € Gn—l .

(2.4) Ll E:{”t-yn-llpIGn—l}-MpE{th'Qn-llp/z|Gn_lHdP >0 .

By choosing

- p - _ p/2
A= {E{]Yt—Yn_ll |Gn_l} MbE{|Qt Q, ;! ]Gn_l} < o}
it follows immediately from (2.4) that P(A) = 0 . Hence
2
(2.5) MbE{|Qt-Qn_l|p/ IGn_l} < E{Iyt-yn-llplcn-l} almost surely.

As S =Y |, S =Y > T, = Qn and Tn—l = Qn—l we have

p/2 p
M%E{lTn—Tn-ll IGn-l} = E{ISn-Sn_ll IGn—l} almost surely.

Similarly we have for the other part

P p/2
E{Isn-sn_ll lGn-l} < NpE{lTn-Tn_ll |Gz_1} .

To complete the proof of (2.2) we have only to note that as above

Gn—l = Fn-l v An—l where An—l is independent of the 0-field generated by
_ p = p
Sn’ Sn-l and Fn—l so that E{ISn Sn-ll IGn-l} E{Isn-sn-ll an-l} .

This method of proof extends quite easily to reversed martingales.
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THEOREM 2. Let {Sn’ Fn; n 2 1} be a reverse martingale with

E’Si < © gnd suppose without loss of generality that S = 0 (if not
consider the reverse martingale 5, = 5, ). Then (on a possible enlarged
version of (R, F, P) ) there exists a Brownian motion {B(u), F;; u 2 0}
and a non-increasing sequence of stopping times | T,nZ 1} such that

Fn c F_’[* R B(Tn] = Sn almost surely. Furthermore there exists a
n

decreasing family of o-fields Gn such that T, i8 Gn measurable and

the following results hold:
— 2
(2.6) E{Tn_Tn+l|Gn+l} = E{(Sn—Snﬂ] |Fn+l} almost surely

and for 1 < p < ® there exist positive constants Mp and Np depending

only on p such that

/2
(2.7) MpE'{ [Tn—Tn+l]p |Gn+l}

IA

- p
E{|sn Sy |Fn+l}

p/2
NpE{ (Tn—Tn ) 16,

A

} almost surely.

Proof. Firstly note that we may consider a reverse martingale as a

martingale indexed by the negative integers.

LEMMA 1. If {Sn’ Fn-, n =1} is a reverse martingale and we set,

for n<-1, §)=5_, F' =F_ there is then (on a possibly enlarged

version of (Q, F, P) ) a martingale {Yt’ G t = -1} such that Y, has

continuous paths and for n=<-1, S'=Y , F'cG .
n n n n
Proof. The lemma is the obvious reverse martingale analogue of

Theorem A. We set

Gn=Fr’lvo{B‘7(s);O$s<°°,—m<j$n} if n=-1, -2, ...

and

G, = G[t] v G{S[t]+l+B[t]+l(¢(s)]; 0<sg= t—[t]} if t=-1,

t not an integer.
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For t <0, [t] denotes the greatest negative integer not exceeding

t . Also {Bk(t); k = -l} is a countable family of Brownian motions

independent of each other and of Fl , whilst ¢ is any continuously

differentiable function on (0, 1] for which ¢(0+) = +2 and ¢(1) =0
with ¢’ < 0 as in Heath ([4].

Now Heath's Theorem 1 depends only on reasoning on the interval

[0, 1] so we may now follow his proof, that is, let Yt be a separable
. . _ ' _

version of the process given by Yt = E{S[t]+llct} , t = -1, and the

lemma follows as in [4].

To find our Brownian motion define f=k o hog : [-», -1] > [0, «]
by letting g : [-®, -1] > [-1, -4] be given by g(t) = t/(1+|t]) ,
h: [-1, -3] ~ [0, 1] Vve given by h(t) = 2(#+1) and k : [0, 1] »> [0, =]
be given by k(t) = 1/(1-t) . For t ¢ [0, ®) 1let ?t =Y and
1
()
Then {Yt’ Gt; t > 0} is a square integrable martingale

~

& -6 .
e

and using our Theorem A we may find a Brownian motion {B(u), F;; u = O}
with stopping times {Tt; t > O} such that Yt = B(1¥) almost surely and

almost

G, c F* . = - =5' = =¥
A FTt , t € [0, =) Now for n 1, S-n Sn Yn Yf(n)

= ' = i
surely and F-n Fn Gn Gf(n) so that by setting, for n 21 ,

Tn = Tf(-n) we have B[Tn) = B(Tf(—n)] = yfT—n) = Sn almost surely.

Similarly set Gn = Gf(-n)

The argument used in Theorem 1 to obtain the conditional moment

resutls is again applicable and the proof is complete.

As a consequence of the preceding two theorems it is a straightforward

matter to show the following.

THEOREM 3. If {Sn, F 3 == <n <=} is a square integrable doubly

infinite martingale with S__ = lim § =0 almost surely, then (on a
>0

possibly enlarged version of (Q, F, P) ] there exists a Browntan motion

3

{B(w), F;- u = 0} and a non-decreasing sequence of stopping times
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fr,; == <n <=} such that B(1) =5, almost surely, F, c F;n s
-o < n <o, Furthermore there exists an increasing family of o-fields
G, such that T, is G, measurable and the following results hold:

- 2 .
(2.8) E'{Tn-Tn_lIGn_l} = E’{(Sn-sn_l] IFn-l} almost surely;

and for 1 < p < = there exist positive constants Mp and le depending

only on p such that

P/2 < - P
(2.9) Mpp{[rn—rn_l] IGn—l} < E{ISn Sn-ll |Fn-1}

/2
IVpE'{ (Tn—'rn_l]p IGn-l} almost surely.

1A

The proof of this theorem follows quite easily from the above if we
change the function f of the proof of Theorem 2 to f' =h o g and for

n =2 put S;; = Sn_2 , that is, the part of the martingale indexed by the

negative integers is contained in the interval [0, 1] , SO = Sg and the

rest of the martingale S; is as above.

3. The law of the iterated logarithm for reverse martingales

As an application of the previous results we obtain a functional law
of the iterated logarithm for reverse martingales. This result is new and
unlike the central limit theorem cannot be obtained from the corresponding

result for ordinary martingales.

Let {B(t); t = 0} be a Brownian motion on [0, «) starting from O

and define

-3
(3.1) Eu(t) [214 1og,2u_l] B(ut)

d(u)B(ut)

for t € [0, 1] and u<e-l.

Denote by (C, p) the Banach space of continuous real valued

functions on [0, 1] with

plx, y) = sup |xz(t)-y(t)]| , =,y €ecC.
0=t=<1
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Let K be the set of absolutely continuous x € C such that x(0) =0

l L]
and [ [x(t)]zdt <1 where x denotes the derivative of & with respect
0

to Lebesque measure and determined almost everywhere.

THEOREM 4. With probability one the set {Eu; u < e-l} is

relatively compact and the set of its limit points as u tends to 0O 4is
K .

The proof of this theorem depends on noting that for any constant ¢ ,

c-%B(ct) and c%B(t/c) have the same distribution. The proof then
follows that of Theorem 1 of Strassen [15] as Strassen's proof depends on
estimates of probabilities which by the above have the same distribution as

those that we require.

For the iterated logarithm law for reverse martingales we use a
formulation similar to that of Hall and Heyde [3] which allows the use of

random and deterministic norming sequences. Let {Sn’ Fh; n > l} be a

reverse martingale, with ES? < © . on a probability space (Q, F, p) .

o2
= - 2 _
For nz1 put X =5, -5, ., Vfl = jgn E’{X?leﬂ} ana S5 =BV .

Note that S, = lim Sn almost surely always exists for a reverse
ni o

o
. 2
martingale, S, - 5, = }E X, and s, >0 as n>«.
J=n
For a non-increasing sequence of positive random variables

{W%; n =2 1} such that without loss of generality W? <el gefine

-1
=0, u?> Wf ’
where

p = plu) = max{j : W? > u}
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and
(3.3) u (t) = ¢[W§]u[W§t] , telo,1].

THEOREM 5. Suppose that {Sn; n 2 1} is a random sequence (not
necessarily even a reverse martingale) such that 5, = B(Tn) for some
sequence of non-increasing, non-negative random variables {Tn; n =1},
the Brownian motion being defined on the same probability space. If

-1

(3.4) T <e, T +0 almstsurely, T T 1 almost surely,
and
~1
(3.5) T W, > 1 almst surely,
then

5
|nu(u)-B(w) | = o([u logzu_l} ) almost surely as u ~+ 0

and with probability one the sequence {un; n = 1} 1is relatively compact
in C , the set of its limit points coinciding with K .

Proof. The condition on {1%} and the definition of y give

|u(u)-B(u)] = max{lB(Tp(u)}—B(u)I, IB(Tp Y-B(w) |}

{u)+1
with

Wi () 1 almost surely and u_lfb

p

(u)+1 + 1 almost surely as u + 0 .

A suitable modification of p. 217 of Strassen [15] then yields the theorem.
See also Hall and Heyde [3].

THEOREM 6. Let {Zn; n = 1} be a sequence of non-negative random
variables and suppose Zn and Wh are Fn+1 measurable. If

(3.6) 1lim ¢[WS] én zllx | > z)-elx (x| > z)|F 1 =0

71->00

almost surely,
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2. 2
(3.7) um W~ ¥ [%{xir(|xk| < Zk)le+l}—(E{XkI(|Xk| = zk)IFk+l}]:] =1
noe k=n
almost surely,

= by < ©
(3.8) kgl Wy, E{XkI[IXkI < Zk] IFk+l} < ® almost surely,

RS
(3.9) i}:ol Wl =1 almost surely and W, > 0 almost surely

then with probability one the sequence {un; n =2 1} 1is relatively compact
in C and the set of its limit points coincides with KX .

Proof. We follow the proof of Theorem 1 of Hall and Heyde [3] fairly
closely with appropriate changes so in some places only a sketch of the

proof is needed.

Set
.1 X.=x1I(|x.| =z.) ,
(3.10) 5= KI{lx] = 2)
and
. + =X, - E{X.|F.
(3.11) X3 ; E{XJIFJ+1}
- 2 2 2 1
Let S;; = Z x* V;: = Z E’{X* le+lf and for u € [0, 1] put

gen 7 i=

st = o) o (2420 ) (a42)
vhere I = l(n, u) = max{j >n : quL SW?} .

Note that both Sn and S;; are reverse martingales with respect to

the same o-field {Fn; n =1}

Now
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sup |, (w)-u(u) |

O=<us<1
< _Y*
- ¢[Wi] n;;:l:oo jgk (X'j Xj)
= cb[Wz] ni]lclgw jgk [XJ.—XJ.I( |xj| = zj) +E{XJI(|XJ.| < zj] |Fj+l}]|
- ofF) sm |3 Bl > zy-staringl > 21,0
n<k<eo lg=k
+ 0 almost surely,
using (3.6).

We now introduce the Skorokhod embedding for the reverse martingale

{S*, ; W 2 1} . From Theorem 2 there exists a Brownian motion and a

n,
sequence of stopping times Tn such that Sr’: = B(Tn) almost surely. Also

there exist 0-fields Gn such that Tr' is Gn measurable and if we let

tn = Tn - Tn+l then
%2
(3.12) E{t, |6 a1l = E’{Xn an+1} almost surely,
and
/2 p
(3.13) {tp I n+l} s CPE{IXQI IF

for some constant Cp depending only on p .
From Theorem 5 and the condition on Wn we need only show
(3.14) W;lzTn > 1 almost surely

and as a first step we obtain

n

{X* |FJ+1}

(3.15) W2 [Tn-VT’;z) + 0 almost surely.

We have

1A

163{i(lt|r.+ }
16E'{X I[IX | =2 ]| .7+1}

1A
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and hence, from (3.8),

b Y
(3.16) jéﬁ W E{X; |Fj+1} < ® almost surely.

Clearly if (3.16) holds then

(-]

(3.17) Y E{X’ShIF. }< ® almost surely.
if J J+1

Also Lemma 2 below gives

00 _2 -
(3.18) ng W [tJ.-E’{tj]Gjﬂ}] < almost surely
and
(3.‘19) jgl [tj—E{thGj+1}] < ® almost surely.

Finally an application of Lemma 1 of Heyde [5] gives

(o]
(3.20) W;e y [tj-E‘{tlej+l}] + 0 almost surely

J=n

which is equivalent to (3.15).

The following result which we used above is the reverse martingale

457

analogue of Corollary 2.8.5 of Stout [714] and the martingale proof may be

duplicated using the notion of starting times instead of stopping times.

(For {FJ.; Jz l} a decreasing sequence of O-fields a random variable

is a starting time ir {7 = j} ¢ Fj .)

J
difference sequence. If forsome p, l=p <=2,

LEMMA 2. Suppose {Xj, F.; § 21} s a reverse mrtingale

o«
(3.21) y E{IX.|p|F. } < w
P g gl
then
(3.22) ) X; converges almost surely.
J=1
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The proof of the theorem will now be complete provided we show

(3.23)

2

— 2
= o5
WV 1 almost surely

which is essentially what condition (3.7) says.

W22
n n
so (3.23)
L1l
[2]
£3] P.G.
[4]
[51 C.C.
(61 C.C.

To see this observe that

o
-2 2
ey E’{X’? |F. }
n Jj=n J g+l

) J-Zn H{T1F - CHE 17, 1]

V2 jgn E{X;I(‘IXJ.I < Zj)IFj+l}'(E{XjI[IXj| = Zj)|Fj+l})2:[ g

follows. This completes the proof.
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