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POINTS OF LOCAL NONCONVEXITY AND FINITE
UNIONS OF CONVEX SETS

MARILYN BREEN

1. Introduction. Let S be a subset of R% A point x in S is a point of local
convexity of S if and only if there is some neighborhood U of x such that, if
v,2 € SM U, then [y, z] € S. If S fails to be locally convex at some point ¢ in
S, then ¢ is called a point of local nonconvexity (Inc point) of S.

Several interesting properties are known about sets whose Inc points Q may
be decomposed into n convex sets. For S closed, connected, S ~ Q connected,
and Q having cardinality #, Guay and Kay [2] have proved that.S is expressible
as a union of # + 1 or fewer closed convex sets (and their result is valid in a
locally convex topological vector space). For S closed, connected, and Q de-
composable into # convex sets, Valentine [7] has shown that S isan L,,4 set,
and Stavrakas [4] has obtained conditions which insure that S be an L, 4, set.
In this paper, we show that with suitable hypothesis, S may be decomposed
into 2" or fewer closed convex sets.

Throughout the paper, S is a closed, connected subset of R¢ where d =
dim aff S. Q denotes the set of Inc points of S, and S ~ Q is connected. We
assume that Q = Uj—; C; where each C, is convex. Since Q is a closed set,
without loss of generality we consider each C; to be closed. Further, we assume
that # is minimal in the following sense:

For every 1, there are points of C; which do not belong to any C; for
j#14,1=<4,j<n Thatis, C; € U{C,: 1 £j =< n,j#i].

2. The dimension of the C; sets. Guay and Kay [2] have proved that
when Q is finite and nonempty, then S is planar. A similar result is obtained
in our setting, for if Q = U= C; where C, is convex and essential, then dim
C; = d — 2. The following lemma will be important in our proof.

LemMMA 1. § = cl (int S).

Proof. By appropriately adapting techniques employed in [1], it may be
shown that S ~ Qisdense in.S. Thus.S C cl (S ~ Q). Stavrakas [3] has proved
thatif .S (not necessarily closed) is a nonplanar subset of R? with .S C cl (S~ Q)
and S ~ Q connected, then S C cl (int .S). His proof generalizes easily to R?
where d = dim aff S, and so S C cl (int S) in our setting. Furthermore, since S
is closed, cl (int.S) C S, and the lemma is proved.
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Definition 1. If Q = U’ C; where C; is convex, we say C; is essential if and
only if for every x in C;, there is some neighborhood A4 of x such that for A4
convex and A C A", (SNA) ~ C, is connected.

Note that for x in C; = C, C essential, and/4" a neighborhood of x satisfying
Definition 1, x is an Inc point for the connected set cl 7', where 7" = (S M\ A)
~ C. Moreover, every point of C M cl.A4 is an Inc point for cl 7: For y in
CNA, yis an Inc point for S and hence for SN.A". Since S = cl (int S),
cd SNA)=cl [(SNA)~C]=cl T, and y is an Inc point for cl T.
Since the Inc points of cl 7 form a closed set, each point of C N cl.A4 is an Inc
point for cl 7. Trivially, C N cl A is essential for cl 7" when .4 is convex.

The following version of a result by Valentine [7, Corollary 2] will be needed.

LeEmMa 2. If [x, y] U [y, 2] € Sand no point of Q lies in conv {x, y, z} ~ |x, 2],
then conv {x, y, z} C S.

THEOREM 1. If C; is essential, then dim C; < d — 2 (where d = dim aff .S).

Proof. Clearly dim C; < d — 1. Assume thatfor C; = C,dimC =d — 1 to
obtain a contradiction. Since by an early remark, Q = U’—; C; where 7 is
minimal, we may select x in rel int C and in no other C; set. Let A4/ be a
neighborhood of x satisfying Definition 1. There is some convex neighborhood
N of x, ¥/ TN "', with cl4 disjoint from the remaining C, sets. Moreover,
A may be selected so that cl A M aff C C C. Letting T = (SNA )~ C,
clearly all the Inc points for cl 7" lie in C.

Since / C AN ', T = T ~ Cisconnected. Also T ~CCcl T ~CCcl T,
socl " ~ Cis connected, and cl 7" ~ aff C is connected.

Let H be the hyperplane determined by C, Hi, H, the corresponding open
halfspaces. Certainly one of these sets, say H;, contains points in cl 7. The
set Hy M cl T is locally convex, and since cl I"~ aff C = ¢I T ~ H is con-
nected, H; M cl T is connected. Thus H; M cl T is polygonally connected, and
for x, y in H; M ¢l T, there is a polygonal path N\ in H; M ¢l T from x to y. By
repeated use of Lemma 2, [x,¥] C cl 7', and H; M cl T is convex. Since cl T is
not convex, there must be points of cl 7 in Hy, and ¢l T~ C=cl '~ H
cannot be connected, a contradiction. Thus, our assumption is false and
dim C =d — 2.

The proof that dim C; = d — 2 will require two easy lemmas. We adopt the
following standard terminology: For x, y in S, we say x sees y via S if and only if
[x,y] C S. For./ asubset of S, we say x sees.A via S if and only if x sees every
point of A via S.

LEmMMA 3. If [x, 2] © S ~ (U= aff C,), then there is a neighborhood N of x
such that z sees /' M Svia S ~ (U=, aff C,).

Proof. Since S ~ (U'=1 aff C;) # @ is open in S, for every point ¢ on [x, z]
there exists a convex neighborhood of ¢ disjoint from U’ aff C,. Since [x, z]
is compact, clearly there is an open cylinder about [x, z] disjoint from
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U, aff C,. Choose A4 to be a neighborhood of x interior to the cylinder with
N NS convex. For pin A/ NS, [p,x] U [x, 3] C S, no point of Q lies in conv
{p,x,2},s0 by Lemma 2, [p, 2] C S. Furthermore, [p, 2] © S ~ (U’ aff Cy).

LemMA 4. If C,is essential, 1 £ 1 < n, then S ~ (U= aff C,) is connected.

Proof. Since S ~ (\U"=; C,) is connected and locally convex, it is polygonally
connected, and by standard arguments, since S = cl (int .S), int.S ~ (U%=1 C)
is polygonally connected and hence connected. By Theorem 1,dim C; £ d — 2,
so int S ~ (U= aff C;) is connected. Again using the fact that S = cl(int .S),
S ~ (U%=1 aff C)) is connected.

THEOREM 2. If C; # @ 1s essential, then dim C;, = d — 2.

Proof. For the moment, let Q = C # @ and assume dim C =d — 3 to
obtain a contradiction. Select points x, y in S ~ aff C for which [x, y] £ S.
(Clearly such points exist for otherwise S would be convex.) Then since
S ~ aff Cis connected (by Lemma 4) and locally convex, there is a polygonal
path X in S ~ aff C from x to y. Without loss of generality, assume there is
some z in S ~ aff C for which [x, 2], [z, v] C S ~ aff C.

Use Lemma 3 to select a neighborhood A" of x such that z sees A M S via
S ~ aff C. Moreover, since [x, y] € S, .4/ may be chosen so that y sees no
point of A/ M S via S. Since dim C £ d — 3 and S = cl (int.S), there is some
xo in A M .S with x ¢ aff (C\U {z}). Clearly [z, x0] €S, [y, xo] € S.

Similarly, select a neighborhood.# of y such that x, sees no point of .# M S
via S and z sees # M S via S~ aff C. Choose y, in A4 with y, ¢ aff
(C\J {xo, 2}).

Then no point p of aff C may lie relatively interior to conv {z, x,, v}, for
otherwise yo € aff {x, p, z} and y, € aff (C U {xq, 2} ), a contradiction.

Hence [x, 2], [2, o] are in S ~ aff C, no point of aff C is in conv {xq, o, 2} ~
[x0, ¥0], s0 by Lemma 2, [x,, o] € .S. We have a contradiction, our assumption
is false, and dim C = d — 2.

To complete the proof, let Q = U%-;1 C; where # is minimal. For C, essential,
let C = C;. Asin the proof of Theorem 1, select x in rel int C and in no other C;
set, and let A’ satisfy Definition 1. Select a convex neighborhood A4 of «x,
N SN, with cl A disjoint from the remaining C; sets and with A4 N aff C C
C. Letting T = (SNA) ~ C, by previous remarks, C N\ cl A = Qy is the
set of Inc points for cl 7. Also, cl "~ C = cl T ~ aff C is connected.

Now since S = cl (int.S), dim 7" = d. By applying the first part of this proof
to cl T, dim Qr =2 d — 2 and hence dim C = d — 2, finishing the proof of
the theorem.

CoRrOLLARY. If C; # 0 1is essential, then dim C; = d — 2.

3. Expressing S as a finite union of convex sets. The representation
theorem requires the following lemma. (We note that a form of Lemma 5
appears in [4, Theorem 4].)
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LEMMA 5. If Q = C and C is essential, then every point of C sees S via S.

Proof. By Lemma 4, .S ~ aff Cis connected. Let ¢ € C and examine the set 4
of points in S ~ aff C which ¢ sees via S. We assert that 4 is open and closed
in S~ aff C:

Clearly if (x;) is a sequence in 4 converging to x € S ~ aff C, then ¢ sees
x via S, and 4 is closed in S ~ aff C. To show 4 openinS ~ aff C,letp € 4.
Then [p, ¢) S ~ aff C and we may select a sequence (q;) on [p, gq) con-
verging to ¢. Choose a neighborhood .#’ of p with.# ' M S =.# convex and
disjoint from aff C. For 7 arbitrary and r in.#, [r, p] \U [p, ¢;] € S, no point
of Clies in conv {r, p, ¢;},so by Lemma 2, [, ¢;] C S. Thus for every 1, g, sees
M via S. Since S is closed, q sees M via S, # C A, and 4 is open in S ~ aff C.

Thus 4 is open and closed in the connected set S ~ aff C. If 4 # @, then
A = S ~ aff C,and since S = cl (int .S), g sees S via S.

Now define

D = {g; ¢ in C and ¢ sees some point of S ~ aff C via S}.

By a theorem of Valentine (7, Lemma 1], every point of .S sees some point of C
via .S, so D # @. Also, by the preceding paragraph, each point of D sees .S via S,
so D is closed. Clearly conv D C S.

Since C is essential, we assert that C = D: Let ¢ € C and let.#’ be any
neighborhood of ¢ satisfying Definition 1. For 4" a convex neighborhood of ¢
withcl WV T A ' let T = (SNA ) ~ C. Then cl T is a closed connected set
having C M cl A as its set of Inc points. Again by Valentine's theorem, for
every tin cl 7"~ aff C, ¢ sees via cl T" some Inc point p of cl 7. Hence ¢ sees
pviaS,p € C,and p € D. We conclude that every neighborhood of ¢ contains
some point of D, so ¢ € cl D. Since D is closed, ¢ € D, and C C D. The reverse
inclusion is obvious, and C = D, completing the proof.

Guay and Kay [2] have proved that for Q a singleton point, .S is expressible
as a union of two closed convex sets. The following theorem generalizes this
result to the case in which Q is convex.

THEOREM 3. If Q = C # 0 and C is essential, then S may be represented as a
union of two closed convex sets.

Proof. By the corollary to Theorem 2, dim C = d — 2. Select points x, y in
int (S ~ aff C) with [x,y] € Sand x ¢ aff (C\U {y}). Then [x,y] N aff C = 0.
(Clearly this is possible by techniques used in Theorem 2, since S = cl (int.S).)
Let H, J denote the hyperplanes determined by C \JU {x}, C \U {y}, respective-
ly. And let R denote the closed convex region determined by H, J which
contains [, ¥]. Note that int R M aff C = @since C € H M J.

For z in (RN S) ~ aff C, z cannot see both x and y via S, for otherwise
[x, 2] Y [z, y] © S ~ C, no point of C would be in conv {x, y, z}, and hence
[x, ] € S, a contradiction.
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Now let S, denote the closed subset of .S which x sees via S. Then we assert
that (R M S;) ~ aff C is a convex set: For p, ¢in (RN S,) ~ aff C, [p, x] U
[x, ¢g] € S, no point of aff C lies in conv {p, x, ¢}, and so conv {p, x, ¢} €S ~
aff C. Thus x sees [p, q] via S, so [p, ] C (RN S,) ~ aff C. Similarly, if S, is
the closed subset of S which y sees via S, (R N S,) ~ aff C is convex.

We will show that

(SNR)~aff C =[(S;\R) ~aff C]U [(S, N\ R) ~ aff C]:

Letz € (SN R) ~ aff C. Lemma 4 implies that S ~ aff C is polygonally con-
nected, so there is a polygonal path X\ in S ~ aff C from z to x. Let w denote
the first point of X in bdry R. By repeated use of Lemma 2, z sees w via .S and
[z, w] © S ~ aff C. To finish the argument, we consider two cases.

Case 1. Suppose w € H. By Lemma 5, C sees S via S, so the d — 1 dimen-
sional sets conv (C\U {w}), conv (C\U {x}) lie in S. Moreover, since H con-
tains x, w and C, each of the above convex sets lies in H M R. Since dim
C = d — 2, the sets conv (C\U {x}), conv (C\U {w}) necessarily intersect in
some p € S~ aff C. Then [w, p] U [p, x] C S, no point of C lies in conv
{w, p, x}, and by Lemma 2, [w, x] € S ~ aff C. Recall that by the preceding
paragraph, [z, w] €S ~ aff C, and again by Lemma 2, [x, z] C S. Hence
z € S; M R, the desired result.

Case 2. If w € J, then by a similar argument, [w, y] C S ~ aff C, [y, 2] C S,
and z € S, R.

We conclude that (SN R) ~aff C C [(S; N\ R) ~aff C]\U [(S, N\ R) ~
aff C]. Since the reverse inclusion is obvious, the sets are equal.

The sets (S, M R) ~ aff C, (S, M R) ~ aff Caredisjoint, non-empty convex
sets and can be separated by a hyperplane M. Since C sees R M Svia S, Cisin
the boundary of each of the above convex sets, and aff C € M. Furthermore,
M can contain no point sof H ~ aff C (or J ~ aff C), for otherwise aff (C\U {s}) =
H C M, clearly impossible. Since dim (aff C) =d — 2 = dim (H N M),
HMN M = aff C. Similarly J M M = aff Cand (bdry R) N\ M C aff C.

We assert that there is some point w in (S M M) ~ R: Otherwise S ~ aff C
would be the union of the disjoint sets (S/M M;) \J [(S; N\ R) ~ aff (],
SN M) \J[(S, N\ R) ~ aff C], where M, M, are the open halfspaces deter-
mined by M, with S; N\ R C cl M; and S, N R C cl M,. But each of these
sets is closed in S ~ aff C. The proof follows. Let

K= (N M)UIS.NR) ~ aff (]

and let p be any limit point of K. Then either p is in K or p is in M and hence
in RNM If pe (RMNM)~bdry R, then p € (S,;NNR)~aff CC K. If
p € (bdry R) M M, then p € aff C. We conclude that K contains its limit
points in S~ aff C, and K is closed in S ~ aff C. Similarly (SN M,) U
[(Sy, M R) ~ aff C] is closed in S ~ aff C. However, this contradicts the con-
nectedness of S ~ aff C, and we conclude that (SN M) ~ R = @.

Now let w be any point in (S M) ~ R. We show that w sees S via S:
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For p in S ~ aff C, there is a polygonal path X\ in S ~ aff C from w to p. For
[w, q] U [g, r] in A, the only way that a point of aff C may lie in conv {w, ¢, 7} is
for [g, 7] to contain some point of (int R) M SN M. Then ¢ ¢ M for otherwise
either [w, ¢] or (g, ] would cut aff C. Without loss of generality, assume
q € M,. If r € M,, then some point of [¢, 7] would lie in (S, int R) N
(S, N\int R), a contradiction since these sets are disjoint. Furthermore,
r ¢ M,, for otherwise (g, r] could not cut M. Hence r must lie in M. For s
with [, s] € A\, we may use Lemma 3 to select a neighborhood .4 of 7 such that
both ¢ and s see & M S via S ~ aff C. Select 7y in [q, ) NA M Sand replace
r by roin \. Since 7o € My, no point of aff C lies in conv {w, ¢, o}, and [w, 7] &
S ~aff C, by Lemma 2. We may repeat the argument for [w, 7¢] \U [7y, s].
Inductively, if [w, t] \J [to, p] C S ~ aff C, then [w, po] C S ~ aff C, where
po € [to, p) is selected arbitrarily close to p. Hence [w, p] € S and w sees
S ~ aff Cvia S. Since S = cl (int.S), w sees S via S, the desired result.

Finally, if u, v belong to S M M,, then [u, w] U [w, v] C S, no point of Cis
in conv {u, w, v}, and [u, v] € S. Thus SN\ M, is convex. Similarly, S M M,
is convex, and the sets cl (SN M,), cl (S M,) are convex sets whose union
is S, completing the proof of the theorem.

The set C must be essential for Theorem 3 to hold, as the following example
illustrates.

Example 1. Let D denote the unit disk centered at the origin in the complex
plane, P the infinite sided convex polygon having sides s, = [{,_1, {,], where
ty = exp (w1/2") for n = 0. Further, let R, represent the closed region bounded
by s, and bdry D which does not contain P, let P, = n/(n + 1)P, and let
D, =D X [0, —1] in R3.

Inductively, for each n = 1, attach a copy P»,’ of Ps, to D, along s, at an
appropriate angle so that for S,, = D; U conv (R,, U Py,’), the Inc points
of S,, are exactly sg,, Sz, ~ 2, is connected, S, N S2; = D; for 7 < n, and
the P, sets converge to P. If S = Us-1.S2, then S has P as its set of Inc
points, S ~ P is connected, yet .S is not a finite union of convex sets.

Using Theorem 3, it is possible to obtain the following representation
theorem.

THEOREM 4. If Q = U1 Cy, C; s essential for 1 £ i = n, and
(rel int C;) M C; = @ for 1 # j,
then S may be represented as a union of 2" or fewer closed convex sets.

Proof. By the corollary to Theorem 2, dim C; = d — 2 for each <. For C;,
as in the proof of Theorem 1, select a point x relatively interior to C; and in
no Cy, 1 # 1. Let A/ be a neighborhood of x satisfying Definition 1, and let A
be a convex neighborhood of x disjoint from the remaining C; sets, with
cd N Naff C, C C,, ¥/ CTAH'. Letting T = (SNAN )~ Cy, by previous
arguments, cl T~ C, is connected, dim 7 = d, and C; N\ cl A = Qy is the
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set of Inc points of cl T". Clearly Qr is convex and essential and has dimension
d — 2. By repeating the argument used in the proof of Theorem 3, we may
select a hyperplane M so thatcl (TN M), cl (T M M) are convex sets whose
union is ¢l 7.

We assert that all Inc points for cl(S M M), cl(S N M) are in U= Ci:
For v in C, ~ [\J}=2 C{], since x € rel int Cy, [, y] is disjoint from U’—. C,.
For every point p on [x, y], select a neighborhood A/, of p disjoint from U= C;
and with (S f\/V,,) ~ C, connected. Reduce to a finite subcollection A4, .. .,
N, of the N, sets which covers [x, y]. Choose a convex neighborhood U’ of
[x, y] with ¢l U’ CAH U ... UN;, and let U= (U’ N S) ~ Ci. Clearly
the Inc points for cl U are exactly C;1 M cl U, cl U is closed, connected, and
cl U~ C;is connected. Using the fact that cl U M cl T is d dimensional, the
previous argument for ¢l 7" may be adapted to cl U to show that M separates
cl U into two convex sets, cl(U M M1) and cl(U M M,). Moreover, y cannot
be an Inc point for cl(S M M), for U’ is a neighborhood of y whose intersection
with cl(S M M;) is convex, ¢ = 1, 2. Thus the Inc points for cl(S N M;),
cl(S M M) lie in %2 C;, the desired result.

Let A;, 42 denote the components of S ~ M containing TN\ My, T M M,
respectively. Let B; denote the union of those components of S ~ cl(4;\J 4,)
whose closure contains points of 4, B, the union of the remaining components
of S~cl(4,\U 4,). Define P, =cl(4,\U B,;), P, = cl(4,\J B,). Since
S = cl(int S) and S~ Q is connected, the closure of every component of
S~ cl(4:\U 4,) necessarily contains points of at least one of 4, 4,. Hence
Py, Py are connected, and S = P, \U P,.

By our choice of B, B,, it is clear that P; # P,. Moreover, our previous
argument for cl(S /M M), cl(SM M,) shows that the Inc points for P, P,
lie in U%=2 C;. We assert that P, M\ C;, P, M C, are convex for 2 < ¢ £ n:
P LN Ci;=0or Py C; = Cy, theresult is trivial. Otherwise, each of 4, 42
contains points of C;,and Py M C, = (cl My) N Cy, Po N\ Cy = (cl M) N C,,
each a convex set.

We have P, closed, connected, P; ~ (U%=2 C;) connected, and the Inc points
for P; a union of £ n — 1 essential convex sets (and similarly for P;). Hence
the argument may be repeated for each of Py, P,, and for C,, to obtain < 22
sets, each having the above properties and with Inc points a union of < n — 2
convex sets. Inductively, repeating the argument » times, we obtain < 27
closed connected sets having no Inc points (and thus convex by a theorem of
Tietze [5]). Therefore, .S is expressible as a union of = 2" closed convex sets,
completing the proof.

The following example shows that the number 2" in Theorem 4 is best
possible.

Example 2. Let S C R?® be the set in Figure 1. Then Q is expressible as a
union of n = 2 essential convex sets, yet S may not be decomposed into fewer
than 4 convex sets. The example may be extended to higher values of # by
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considering a prism whose basis is a 2z — gon and removing wedges appropri-
ately from non-basis facets.
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