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ABSTRACT

In this paper we discuss some properties of counting distributions whose
discrete density {p,}i_, satisfies a recursion in the form

bi
ai+A
n

Pn-i (n = 1’23"')

with p, = 0 for n < 0 and present an algorithm for recursive evaluation of
corresponding compound distributions.
1. INTRODUCTION

Following PaNJER (1981) there has grown up an extensive literature on
recursive evaluation of compound distributions. Panjer assumed that the
discrete density {p,}-o of the counting distribution satisfied the recursion

b

n

Pn = a+ Pn-1 (n=1,2,...)

for some constants ¢ and b. SUNDT and JEWELL (1981) showed that the only
non-degenerate members of this class are the Poisson, the binomial, and the
negative binomial distributions.

SCHROTER (1990) generalised Panjer’s recursive algorithm to the class of
counting distributions satisfying the recursion

b c
Pn = a+ — Pn-1 +*pn72 (l’l= 1’2’)
n n
with p_, = 0 for some constants a, b, and ¢, and discussed the properties of

this class. In particular he showed that the convolution of a Poisson distribu-
tion and a distribution from Panjer’s class belongs to this extended class.

In the present paper we study the even more general class satisfying the
recursion

k
(1) Pn = Z
i=1

! This paper is dedicated to Professor W.S. JEWELL on the occasion of his 60th birthday July 2,
1992.

b;
+

a; i (n=112,..)

n
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for some integer k£ and constants ¢; and b, (i = I, ..., k) with p, = 0 for n < 0.
We see that p, > 0 for all distributions in this class.

In Section 2 we introduce some notation and definitions. In Section 3 we
discuss some properties of counting distributions satisfying (1). In Section 4 we
study convolutions of such distributions, and Section 5 is devoted to mixtures
of distributions satisfying (1). In Section 6 we generalise Panjer’s recursive
algorithm for compound distributions to counting distributions satisfying (1).
Finally we discuss some possible generalisations in Section 7.

2. DEFINITIONS AND NOTATION

2A. We shall denote a counting distribution with discrete density satisfy-
ing (1) by R.[a, b) with a = (a,, ..., a;) and b = (b,, ..., by). Let.#, denote
the class of such distributions for fixed k. We see that any distribution in. %, _,
can be considered as a distribution in. %, with a;, = b, = 0. Thus. %, _, < .#,.
We introduce

A= Hpe~ Py k=120
the class. %, consists of the degenerate distribution concentrated at zero. We see
that Panjer’s class is equal to.%#,, and Schréter’s class is contained in.#,.
The definitions of R, [a, b], .%,, and .%#} easily extend to k = co. In that
case (1) can be written as

b;
a;+ — | py_i- n=12..)
n

) Pe= Y
i=1

The class.#°, consists of all distributions in.#,, that cannot be expressed as a
distribution in.%; for any finite j.

For the rest of the paper we shall for simplicity silently assume that
k> 0.

2B. The stop loss transform F of a cumulative distribution F is defined by

Fix) = j

0 o

(y—x) dF(y) = j (1-F(»)) dy.

X X

q
2C. We make the convention that Z =0if g <p.
i=p

3. SOME PROPERTIES OF . 7%

3A. Let {p,}i-, denote the discrete density of R,[a, b], and let y be the
probability generating function of this distribution, that is,
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W) = ). Pus”
n=0

We have
’ S S n—1 b;
W)=Y, puns" = Y ns" 'Y e+ 2 p,
n=1 n=1 i=1
k oG k o«
= Z (na+bt)pn l = Z z (nai+iai+bi)pnsn+i_l’
i=1 n=i i=l n=0
which gives
k
(3) () = ) las'y' (s)+(ia+b)s ™ y(s)l.
With
d y'(s)
ps) = —Iny(s) = ——
ds w(s)
we obtain

k
Z (ia;+b) s}
4) pls) = — ,

k
- Y s

i=1

63

which together with the initial condition y (1) = 1 determines the distribution

R,[a, b] uniquely. We therefore have the following theorem.

Theorem 1. A counting distribution belongs to.#, if and only if the derivative
of the natural logarithm of its probability generating function can be expressed
as the ratio between a polynomial of degree at most k—1 and a polynomial of

degree at most k with a non-zero constant term,

By multiplying numerator and denominator in (4) by 1+g¢s for an arbitrary

number ¢ and rearranging them, we obtain

k+1
Y (ic;+dys
i=1
p(s) = P
1 - Z ;s
i=1
with
¢ = a;tqa; d = bi+qbi-1—a;_y) @(=12,...,k+t])
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a = —1 by = brer = arey =0,

and thus Ry[a,b} = R, [e,d]withe = (¢y, ...,y ) and d = (d,, ..., dpy)).
From this we conclude that the k-tuples @ and b are not uniquely determined
by Ri[a, b] if R,[a, b] ¢ %).

On the other hand, if R,[a, b] € #}, then there exists no k' < k such that
p(s) can be written in the form

y
Y (i +b)s'!
L

pis) = -

g

1 - Z a.s’

i=1

This means that the numerator and the denominator in (4) do not have any
common factors, and thus the coefficients of these polynomials must be
uniquely determined by p, which implies that they are uniquely determined by
Rk [a, b] .

We have now proved the following theorem.

Theorem 2. The k-tuples a and b are uniquely determined by R, [a, b] if and
only if R.[a, ble.#}.

Example 1. The Poisson distribution with discrete density

At

Pn=-—-¢e"* (n=0,1.)
n!

satisfies the recursion

A

pn :7pn—l (ﬂ:1,2,...)
n

po =e

that is, this distribution is equal to R,{0, 4], and we have p(s) = A. However,
we can also write

and thus R,[0, 1] = R;[(—4¢, 0), (A+gq, gA)]. Therefore this distribution satis-
fies the recursion

ityg gi
Pn = (_q+ )pnl +7pn*2 (n= 1727)
n n
with p_, = 0. This example has also been discussed by SCHROTER (1990).
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3B. Let N be a random variable with distribution R,{a, b]. As p(1) = EN
and p'(1) = Var N—EN, we obtain from (4)

k
Y. (ia/+b)
i=1
EN= —
k
1 - a[
i=1
k k k k
Y iGa+b) Y, Ga+b) Y, ja; Y. il(+EN)a;+b)]
i=1 i=1 =1 i=1
Var N = + ’ =

k
1 —

k 2 k
a; (1_201') I—Za,-
i=1 i

i=1

These formulae generalise Proposition 2 in SCHROTER (1990).

3C. The following theorem shows that any distribution on the range
{0, 1, ..., k} with positive probability at zero is contained in.%,.

Theorem 3. A distribution on the range {0, ..., k} with positive probability at
zero and discrete density {p,}*_, can be expressed as R,[a, b] with
a=(a,...,a) and b= (b, ..., b) given by
a=-2 p=2i% =1,k
Po Po

Proof. With y denoting the probability generating function of the distribu-
tion {p,}%_,, we have

k k
. i— . Vi [ —
> et Y

d _ Y _ L )
- ln |//(S) - - - 3
ds pis) & ‘ , i\
Z p;s’ 1 - z ( - ——) st
i=0 i=1 Do
and the theorem follows by comparison with (4). Q.E.D.

The distribution in Theorem 3 is not necessarily contained in .#_. For
instance, if it is binomial, then it is contained in.# regardless of k.

Theorem 3 holds in particular for £ = co. Thus we see that all counting
distributions with positive probability at zero belong to. %, .

4. CONVOLUTIONS

4A. Let y,, w,, and w be the probability generating functions of R, ][a, b],
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R[c, d}, and their convolution. From (4) we obtain

d d d d
—Iny@)=—Infy, ) y()] = —Iny(s) + — Iny,(s)
ds ds ds ds

k !

Y, Ga+bys™ Y (ici+d)s™!

i=1 i=1

= +

k /
I—Za,-s’ I—ZCis'
i=1 i=1

I

k !
(Z (iai+b,»)si_1) (1— Z cs'
i=1 ‘

1]
—_

It
—_

This is the ratio of a polynomial of degree at most k+/~1 and a polynomial
of degree at most k+/ with a non-zero constant term, and from Theorem 1 we
see that the convolution of R [a, b] and R,[c, d] is contained in.#, ;. Thus we
have the following resuit.

Theorem 4. The convolution of a distribution in.#, and a distribution in %, 1s
a distribution in %, ;.

Even if R[a, b]€.%) and R,[c,d] € #, we cannot conclude that their con-
L T d
volution is a distribution in.#¢, ,;; from the way we constructed — In w(s),

ds
k I

we see that if the polynomials 1— Z a;s' and 1— Z ¢;s' have a common
i=1 i=1

factor of degree g, then the convolution is a distribution in . #,; ,. In
particular, if / = k and ¢ = a, we obtain

k k
Z (ia;+b)s'™! z (ia;+d)s'™"
d i=1 i=1
—Iny(s) = +
d

§ : i : i
1 - Z a;s 1 - Z a;s
i=1 i=1

lia;+ (ia,+ b, + d)]s"!

M-

I
—_

k
1 — Z a;s'
i=1
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that is, the convolution of R,[a,b] and R, [a,d] is R,[a,e] with
e = (e,...,e) given by

e; = iq;+b;+d;. (i=1,....,k)

The following theorem is an obvious generalisation of this result.

Theorem 5. The convolution of the distributions R, [a, b/ with
a=(a;,...,a) and BV = B\, .. b)) (j=1,...,m) is R.[a, f} with
B= (B, .... B given by

B = (m—1)ia; + Z B . (i=1,...,k
j=1

Corollary 1. The m-fold convolution of R.[a,b] is Ri[a, f] with
B = (B, ..., B given by

B, = (m—Via+mb,. (i=1,..k)

The following corollary is a simple consequence of Theorem 3 and Corol-
lary 1.

Corollary 2. The m-fold convolution of a distribution on the range {0, ..., k}
with positive probability at zero and discrete density {p,}*_, is R.[a, b] with
a=(a,...,aq)and b = (b;, ..., b) given by
a=-"" b =m+nif. =1,k
Po Po

The recursive algorithm for evaluation of convolutions indicated by Corol-
lary 2, was presented by DE PriL (1985).

4B. Any counting distribution with positive probability at zero can be
expressed in the form R [a, ] for any sequence a = (a;, a,, ...); if {p,}u=g 1S
the discrete density of this distribution, then we can let b = (b, b,, ...) with
the b,’s given by the recursive algorithm

1 n—1
b= [npn -y (nai+bi)pn_i} -t (= 1,2,..)
Po =1

which is obtained by solving (2) with respect to b,. By combining this result
with Theorem 5, we obtain the following recursive algorithm for evaluating
convolutions of counting distributions with positive probability at zero.

Theorem 6. The discrete density {z,} -, of the convolution of m counting
distributions with positive probability at zero and discrete densities respectively
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(P20 (j = 1,..., m) can be evaluated recursively by

(5 Ty = Y

i=1

(6) Tty = 1]

with

a; +v e n=12..)

(m=Dna, + Y b (n=1,2..)

Jj=1

Bn

Lo o -
b = [np,(,f) Z(naﬁb,m)p(,{l{] = na,. n=12,..5j=1..,m
(/) —~
Do i=1
This algorithm holds for any sequence (a,, a,, ...) of real numbers.

The algorithm of Theorem 6 becomes much simpler in the special case
a = 0, and normally one would presumably apply this choice of a. However, in
some applications one might get computer overflow or underflow when
performing the recursions, and we might be able to overcome this problem by
using non-zero values of a; for some values of i. For recursive evaluation of
compound distributions when the counting distribution belongs to the Panjer
class, the problem with overflow and underflow has been discussed by PANJER
and WiLLMoT (1986).

Let us now look at the special case when the m distributions are identical.
For simplicity we drop the top-scripts in this case, and we put @ = 0. Under
these assumptions, (5) and (6) reduce to

7 7= b, (1=12..)
n i=1

@®) Mo = Py -

It is remarkable that when we have calculated the b;s, then we can easily
evaluate the m-fold convolution of {p,} - for any m. It is interesting to
compare this algorithm with the algorithm implied by Corollary 2. It seems
that if we want to evaluate the m-fold convolution for one particular value of
m, then the algorithm of Corollary 2 would be preferable. However, if we want
the m-fold convolutions for several values of m, then it might be more efficient
to first calculate the b;’s and then use (7) and (8).

The recursive algorithm of Theorem 6 was presented by DE PrIL (1989) with
a = 0. De Pril also deduced a closed-form expression for the b,’s. As the
algorithm is rather time-consuming, De Pril introduced a class of approxima-
tions, and he gave upper bounds for the inaccuracy of these approximations.
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4C. For the rest of Section 4 we shall concentrate on convolutions of
distributions in.#, .

By putting £ = 1 in Theorem 5 we obtain the following corollary.

Corollary 3. The convolution of the m distributions R, [a, b\], ..., R [a, b,,) is
R, [a, B] with

B=(m—Da+ ) b.
j=1

The following theorem is proved by SUNDT and JEWELL (1981).

Theorem 7. A distribution R, [a, b] € %! is binomial if a < 0, Poisson if a = 0,
and negative binomial if ¢ > 0.

Let us apply Corollary 3 to each of the three cases described in Theorem 7.
i) Binomial

Let the jth distribution be binomial with parameters (¢;, g), that is, it has
discrete density

) t;
= ( ’ )q"(l—q)”‘"- (n=0,1,....1)
n

and we obtain

b=(m-—1)(—*—
1

m
that is, the convolution is binomial with parameters ( Z t, q) .

i) Poisson
Let the jth distribution be Poisson with parameter /;, that is, it has discrete
density

_ Al
D=0 e=h  (n=01,2..)
n!
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Then

J

A

j 3
and we obtain

b=(m—1)0 + i A= i X
j=1 j=1

m
that is, the convolution is Poisson with parameter z A
j=1

i) Negative binomial
Let the jth distribution be negative binomial with parameters («;, ¢), that
is, it has discrete density

. +n—1
O = & h (1-¢)%q". (n=0,1,2,..)
n
Then
a=yq bj:q(aj_l)a

and we obtain
b=(m-Dg+ Y q-1)=gq ( Y a,—l) ,
j=1 Jj=1
that is, the convolution is negative binomial with parameters ( Z %, q) )
j=1

The results shown above about convolutions in these three classes of
distributions should be well known. However, it seems interesting to consider
them in relation to Corollary 3.

4D. Let us now more generally consider the convolution of the m distributions
Rl[al’ bl]a R Rl [am> bm]

We have the following result.

Theorem 8. The convolution of the m distributions R,[a,, (], ..., R;[am, b
is R,[a, B], with @ = (&, ..., a,) and g = (B, ..., f,) given by

i

©  a=(-D" Y g, (=1,..,m
1<ji1<jp< ...<ji<m k=1
m i—1
(10)  fi=(-D"")Y b > 4, (=2...m
r=1 1<ji<p<...<jio,€m k=1
JAEra=1,...,i-1)
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(11) Bi=Y b
j=1

Proof. The probability generating function y of the convolution is given by

m

d
(12) pls)=—Iny(s) = ),
ds

=1 l—a;s

a;+b;

with the initial condition (1) = 1. On the other hand, by Theorem 4 we see
that the convolution is a distribution in.#,,, which can be written in the form
R, [a, f], and thus

i (io;+B)s' ™!

m
%
i=1

It remains to show that @ and g given by (9)-(11) satisfy (12) and (13).
We rewrite (12) as

(13) p(s) =

i (a;+b) l_[ (1—as)

k#j
(14) p(s) =

m

[T ad-as)

We see that (13) and (14) are satisfied if

(15) Y Ga+prsT =) @+b) [ A-acs)
=l j=1 k4j
(16) 1= i [m] (1—as).

From (16) we obtain (9), and (15) gives (11) and

i—1

(A7) Bi=(=1)"*') (a,+b) Y a;,— e (i
r=1

1<) <jp< ... <jio €<m k=1
JiFEr=1...,i—1)

I
>

.., m)

Insertion of (9) in (17) gives (10). This completes the proof of Theorem 8.
Q.E.D.
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We see that the a;’s do not depend on the b/s.
In the special case when all the bs have the same value b, then (10) sim-
plifies to

(18) Bi= —(m—i+Dbo_,. (i=2...,m)

In particular, if 6 = 0, then (11) and (18) give that all the s are equal to zero
too. In this case the jth distribution is geometric with parameter a;, that is,
negative binomial with parameters (1, a)).

4E. Let us look at the case m = 2. In this case Theorem 8 reduces to the
following corollary.

Corollary 4. The convolution of Ry[a;,b] and R|[a,,b,] is
Ry[(a,+a,, —a @), (by+by, —(a,by+ay b))

Corollary 4 was proved by SCHROTER (1990) in the special case a, = 0.

Corollary 4 applies in particular when a; = a, = a; in that case we obtain
that the convolution is R,[(2a, —a®),(b,+b,, —a(b,+b,))]. However, by
Corollary 3 this distribution does not belong to.%#7, and it is more convenient
to express it as R,[a, a+b,+b,].

Example 2. We consider the convolution of a binomial distribution with
parameters (¢, ¢) and a negative binomial distribution with parameters (o, ¢).
Then

a = - — bl"—‘—q‘-(t+1)
1—¢ 1—¢

a=q by = q(x—1),
and by Corollary 4 the convolution is equal to
2
T @--)|.
1—¢

2 2
sl(-5an) [
l—q 1—9¢q
5. MIXTURES

It is natural to ask whether a mixture of a distribution in.#, and a distribution
in. %, belongs to.#,, for some finite m when k and / are finite. Unfortunately we
cannot give a general yes or not to this question. There are cases where the
property holds, but there are also cases where it does not. In this section we
shall look at some examples.

We start with a trivial observation. As a finite mixture of counting
distributions on a finite range with positive probability at zero is a counting
distribution on a finite range with positive probability at zero, the property
holds for distributions on finite ranges by Theorem 3.
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Now let {p{"}%y and {p{P}*_, be discrete densities in ., resp. .#, with
probability generating functions w, resp. w,. Let {p,}-¢ be the mixture
defined by

pe=wpV+1=v)p?®, (n=0,1,2,..;0<v<]l)
and let ¥ denote its probability generating function. We have
v =wit(0=-v)y,,
which implies
v (s)+(1—v) y(s)
Wi () +(1=v) pals)

We can apply (19) and Theorem 1 to decide whether the mixture belongs to.#,,
for some finite m.

d
(19) p(s) = —Iny(s) =
ds

Example 3. We look at a mixture between two Poisson distributions with
parameters A; and A, with A, # 4,. Then

BV i) = AT, (= 1,2)

wi(s) = e
and insertion in (19) gives
vA 1T+ (1 =) Ayt D

s) = ,
pis) ve'1 6D 4 (1 —y) ettt

which obviously cannot be written as the ratio between two polynomials. Thus
the mixture does not belong to.%#,, for any finite m.

Example 4. Let us look at a mixture between two geometric distributions with
parameters ¢, and ¢, with ¢, # ¢g,. Then

1—g, A
) = U ) = WU

5 (=12
1—g;s (1—g;s)

Insertion in (19) and some rearranging gives

p(s) = v (1—g) (1= q28)* +(1=v) g2 (1= q) (1 — ¢y 5)°
v(1=g) 1=q19) (1 =25+ (A=) (1=42) (1~ q25) (1= ¢y 5)’
We see that the numerator in this fraction is a polynomial of degree two and

the denominator a polynomial of degree three with a non-zero constant term.
Thus the mixture is contained in.#;.
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Example 5. We consider a mixture between two negative binomial distribu-
tions with parameters («;, ¢) and (a,, ¢) with «, > ;. Then

(=12

1—- &; a(l—ag)¥
w,-(S)=( ") vie) = LD

1—gs (1-gs)s™'
Insertion in (19) and some rearranging gives

vag(1—gs)f+(1-v) (a+p) g(1—gq)
v(1—gsy "'+ (1-v) (1 -q)f(1—gs)

with &« = «; and f# = a,—a,. If f is an integer, then the numerator is a
polynomial of degree § and the denominator a polynomial of degree f+ 1 with
a non-zero constant term, and thus the mixture belongs to.#;, . However, if §
is not an integer, then the mixture does not belong to.%,, for any finite m.

p(s) =

6. COMPOUND DISTRIBUTIONS

6A. Let N be a non-negative integer-valued random variable with distribution
Rila, B], and let Y;, Y,, ... be non-negative integer-valued random variables,
mutually independent and identically distributed with common discrete density
£, and independent of N. We denote by {p,}, - the discrete density of N. Let g
denote the discrete density of

N
X=) ¥,

i=1

that is,

[e o]

g= Y pS"

n=0

For convenience we introduce g = f(0).

Theorem 9. We can evaluate g(x) recursively by the algorithm
X

ZgO:y)z

Q20) gkx)=——

a+_~)f%) (x=1,2,..)

1
- Y

Q1) g =) p.q"
n=0
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Proof. Formula (21) obviously holds.

n

Let X, = z Y;(n=1,2,..). For x > 0 we have

i=1

0 oo k
)= pf") =Y, Y (@t = punif (%)
n=1 n=1 i=1
Yk« = bi\ L b, X; n*
=2 Lrwifart | ST0= 0 Y pei Bl — X = x| ()

i
=
s
e

3

b .
a,-+—’1)f DL (x+y)
1 X

i=1 n=i y=0
= Ylat+ "2 Y paeif T (x=)

y=0 i=1 1 X n=i

x k x k

b,y b, y "

=Y Ylat T e-y =) gx—y) ), v)f )

y=0 i=1 i x y=0 i=1 i x
which gives (20). This completes the proof of Theorem 9. Q.E.D.

As the severities are usually assumed to be strictly positive, we state the
following corollary.

Corollary 5. If ¢ = 0, then

X

k
gx) =) glx-») ),
i=1

y=1

b; y i*
al+)fl (y) (x=1’2’)
I X

g(©0) = py.

The recursive algorithm presented by PANJER (1981) is obtained as a special
case of Corollary 5 by letting £k = 1. With k =2 and a4, = 0 we obtain
SCHROTER’s (1990) generalisation.

6B. Let

m = max{y:f(y)>0}.
As 7 (y) = 0 for all y > mi, (20) can be written
mk

k
2 g(x—y) Z
i=1

g(x) =

1 bly i*

T +*)f y), (x=12..)
X

-2, ad’

i=1

and we obtain the following result.
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Theorem 10. The distribution of X is R,;[¢, d} with ¢ = (¢, ..., ¢,y) and
d=(,,...,d,) given by

" b, .
>, af () vy, =/
i=1 i=1

) ¢=—— d=—— | (y=1,...,mk)

k
1= ) ag' 1- ) aq
i=1 i

k k

Let
M= #{Y,>0:i<N}.

If N is the number of claims occurred in an insurance portfolio during a given
period, and Y; is the amount of the ith of these claims, then M is the number of
non-zero claims. The following corollary to Theorem 10 shows that the
distribution of M belongs to the same class as the distribution of N. Analogous
results have been discussed by PANJER and WiLLMOT (1984) and SuNDT
(1991b) for the case k£ = 1.

Corollary 6. The distribution of M is R,[c,d] with ¢ = (¢, ..., ¢;) and
d=(d,, ..., d) given by

k i - k
(), B

i=y y—1
k
1 - z a;q'
i=1

i—1

i~y

e, =(—qy d,=(1-q) L y=1,...,k

k
1 - Z a;q’
i=1

Proof. We obtain the corollary from Theorem 10 by letting f be the discrete
density f, defined by

So(0) = g = 1—/fo(1)
and using that

i

fo"'(y)=( )(1—q)yq"*y. (y=0,...,0) QE.D.

y

Corollary 7. If N has the distribution R, [a, b] and m is a positive integer, then
mN has the distribution R, [c, d] with ¢ = (¢, ..., ¢y and d = (d|, ..., dy)
given by

¢ = @y d, = mby, (y =m,2m, ..., km)

and ¢, = d, = 0 for all other values of y.
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Proof. We can apply Theorem 10 with the Y’s identically equal to m, that is,
f(y) = 9d,,, (Kronecker delta). Then f "y) = Simy, y» and the corollary follows
by insertion in (22). Q.E.D.

6C. For the present subsection we assume that ¢ = 0. Furthermore we
assume that all the ;s are equal to zero, like in the case with convolutions of
geometric distributions mentioned at the end of subsection 4D. Then (20)
simplifies to

X

k
g =) gx-» Y af (. «=12.)
i=1

y=1

In this case we have similar recursions for the corresponding cumulative
distribution and its stop loss transform. Let F and G be the cumulative
distributions corresponding to f and g respectively. Analogous to the deduc-
tion of the corresponding formulae in the special case £k = 1 in subsec-
tion 10.4D in SUNDT (1991a) we obtain

X k
23)  G(x) =po+ Y, Gx=») Y af(y) (x=01,..)
y=1 i=1
X k
Gx) =) Gx—y) Y af"®) x=1,2..))
y=1 i=1
GO) =EX=ENEY.

k

If all the a;s are non-negative with z a; <1, then (23) is a renewal equa-
i=1
k

tion with defective distribution Z a;F" (cf. FELLER (1971, Section XI.6)),
i=1

and we can obtain asymptotic expressions for g, G, and G analogous to the
ones deduced for the case K = 1 in SUNDT (1982). By Theorem 10, in our case
the distribution of N is a compound distribution; its counting distribution is
geometric with parameter

=2 a

i=1

and its severity distribution has discrete density {c;}*_, given by
c;=—. (i=1,....k

Thus G is a compound distribution with geometric counting distribution
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k

with parameter r and compound severity distribution z c;F”, and by using
i=1

this representation of the G, we can apply the asymptotic results in

SunDT (1982).

6D. Generalisation of Theorem 9 to cases where the Y/s can also take
negative values, is in most cases rather complicated. However, if there exist
finite numbers y, and ny such that Y; > y, and N < ny with probability one,
then we can proceed like in Section 6 of SUNDT and JEWELL (1981).

7. GENERALISATIONS

7A. SunDT and JEWELL (1981) generalised PANJER'S (1981) recursive algo-
rithm to the class of counting distributions with discrete density {p,}n =o
satisfying the recursion

b
a+ —
n

Pu = Pu-t- @=m+l,m+2,..)

Panjer’s class is obtained with m = 0. We make a similar extension of.”#, and
consider the class of counting distributions satisfying the recursion

k

(24) =

i=1

bi
ai+—
n

Pni W=m+l,m+2, ..)

with p, = 0 for n < 0. We obtain the following generalisation of Theorem 9.

Theorem 11. If {p,}; - satisfies the recursion (24). then g(x) can be evaluated
by the recursive algorithm

1 = b .
(25) g(x)=——k——(2 [p,,— > lat+ = pn.}f" (x) +
X n=1 i=1 n
1 - Z a;q'
i=1
x k b y -
+ Z gx—y) Y. aﬁ%—)f"(y)) (x=12.)
y=1 i=1 1 X
260 g0 = Y, p.q”
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Proof. Formula (26) obviously holds. For x > 0 we have

0 m 0 k
g) =Y, p ST = pf )+ Y, Y |a +— Paeif " (%),
n=1 n=1 n=m+1 i=1
that 1is,
m k
Q) gkx) = Z [ Y a +— Pa- ,Jf (x)
n= i=1
el k
Z Z a + — pn tfn (X)
Like in the proof of Theorem 9 we obtain
0 k b X k
Yo e+ T peif ) = Y gx-p) Y, |a +)f"(y),
oy By | n =0 i=1

and insertion in (27) and solving for g (x) gives (25). This completes the proof
of Theorem 11. Q.E.D.

7B. A natural question is, could we extend the results shown in Sections 3
and 4 to the classes of counting distributions satisfying (24)? Unfortunately,
possible extensions are not trivial. The deductions in Sections 3 and 4 depended
very much on the simple form of p given by (4); in extended classes we do not
get such a simple form.

To indicate the difficulties, we look at a simple case. Let

k
i=1

0, (n<m

b;
a;+ — | po-i (n>m)
n

Pn

and let y denote the probability generating function of this distribution.
Analogous to the deduction of (3) we obtain

o © k
_ _ _ b;
W)=Y, pns" = mpus™ T Y ns" Y e+ 2 pan
n=m n=m+1 i=1 n

k
mpps™ 4 Y as'y (5)+ (g bysT w )],
i=1
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which gives

+ mp,s™ ' =0.

k k
ves) Y. (ia,-+b,~)s"‘1—w'(s)(1 - Y as
i=1

i=1

We see that the presence of the term mp,,s™ ' makes the situation much more
complicated for m > 0.
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