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Force and torque reactions on a pitching flexible
aerofoil
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Experimental measurements in a wind tunnel of the unsteady force and moment that a
fluid exerts on flexible flapping aerofoils are not trivial because the forces and moments
caused by the aerofoil’s inertia and others structural tensions at the pivot axis have to
be obtained separately and subtracted from the direct measurements with a force/torque
sensor. Here we derive from the nonlinear beam equation general relations for the force
and torque reactions at the leading edge of a pitching aerofoil in terms of the fluid force and
moment on the aerofoil and its kinematics, involving geometric and structural parameters
of the flexible aerofoil. These relations are validated by comparing high-resolution
numerical simulations of the flow–structure interaction of a two-dimensional flexible
aerofoil pitching about its leading edge with direct force and torque measurements in a
wind tunnel.
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1. Introduction

Relevant propulsion features of natural flyers and swimmers are captured by analysing
basic motion modes of two-dimensional aerofoils such as pitching, heaving and their
combinations (Lighthill 1969; Platzer et al. 2008; Wu 2011; Smits 2019; Wu et al.
2020). In particular, the study of flexibility effects on these simple flapping modes is of
great importance because natural flyers and swimmers make use of flexible wings and
fins to enhance their propulsion capabilities (Wu 1971; Katz & Weihs 1978; Pederzani
& Haj-Hariri 2006; Heathcote & Gursul 2007; Zhu 2007; Alben 2008; Kang et al.
2011; Ramananarivo, Godoy-Diana & Thiria 2011; Dewey et al. 2013; Moore 2014;
Fernandez-Feria & Alaminos-Quesada 2021; Peng et al. 2022).
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Experimental measurements of the force and moment that the fluid exerts on the pitching
and/or heaving flexible aerofoil are essential for these propulsive performance studies.
They can be used directly to compute the thrust force and the propulsive efficiency of
the aerofoil, or indirectly for the validation of numerical codes simulating the complex
flow–structure interactions of the flapping flexible aerofoil. However, this is not a trivial
task because what one measures with a force and torque sensor installed in a wind or
a water tunnel are not the force and moment that the fluid exerts on the aerofoil, but
the reactions on the axis where the aerofoil is attached to the sensor, so that the forces
and moments caused by the aerofoil’s inertia and others structural tensions at the pivot
axis have to be obtained separately. Different strategies have been used to solve this
experimental difficulty. We focus here on the case of a flexible aerofoil undergoing pure
pitching, including the rigid aerofoil as the limit of very large stiffness. For pure heave,
the inertial torque is not needed to compute the power input as in the case of pitching
(Heathcote & Gursul 2007).

Mackowski & Williamson (2015) considered a rigid aerofoil undergoing pure pitching,
employing a force/torque sensor in a water channel, circumventing the above-mentioned
difficulty by mounting an identical aerofoil and sensor out of the water flow and subtracting
both measurements. Since air density is approximately a thousand times lower than
water density, so are the force and moment that the air exerts on the aerofoil, and
the measurement in air corresponds approximately to the inertial force and moment in
comparison with the water measurement. Obviously, this technique cannot be used in wind
tunnel experiments. It must also be emphasized that the aerofoil’s inertia effects on the
force and moment measurements are approximately a thousand times more important in
air than in water, greatly hindering direct measurements of the fluid force and moment
on non-stationary aerofoils in a wind tunnel. In fact, inertial and aerodynamic forces
are of the same order of magnitude in oscillating foils in air for reduced frequencies
of interest in propulsion and energy harvesting applications (Siala, Kamrani Fard &
Liburdy 2020). For a rigid aerofoil, the inertial contributions can be computed by just
measuring synchronously with the force and torque the pitch angle α(t), but this is not
enough for deformable aerofoils. To circumvent this difficulty for flexible aerofoils, several
momentum-based and vortex-based approaches have been implemented experimentally for
incompressible flows, but they involve high-resolution measurements of the flow field in a
sufficiently large control volume around the aerofoil, and in most cases, these techniques
provide just an estimation of the fluid force and moment (see e.g. the review by Rival &
van Oudheusden 2017).

A novel technique is proposed here to compute the force and moment that the fluid exerts
on a pitching flexible aerofoil in terms of the reaction force and torque at the pivot axis
and the time evolution of a few points along the foil chord length. In the present paper,
all these quantities are obtained by solving numerically the flow–structure interaction
problem. The technique is validated by comparing the numerical results with experimental
measurements in a wind tunnel of the reaction force and torque on a flexible aerofoil
pitching about its leading edge. Although we use air as the fluid in numerical simulations
and experiments, the technique is formulated in general for an incompressible flow, not
limited to any density or viscosity of the fluid.

2. Formulation

We consider a two-dimensional flexible plate of chord length c and thickness ε immersed
in a uniform fluid current of velocity U in the x direction and undergoing pitching motion
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Figure 1. Schematic of the flexible pitching plate (dimensional quantities).

about the leading edge with angle

α(t) = α0 sin(2πft) (2.1)

in relation to the x axis (see figure 1), where α0 and f are the pitch amplitude and frequency
(in Hz), respectively. For a thin beam (ε/c � 1) with structural bending rigidity EI and
extensional rigidity characterized by structural tension T , the nonlinear equation of motion
can be written as (Connell & Yue 2007)

ρsε
∂2r
∂t2

− ∂

∂s

[
T(s, t)

∂r
∂s

]
+ EI

∂4r
∂s4 = f (s, t) + F r δ(s − s0) − g δ′(s − s0), (2.2)

T(s, t) = Eε

[
1 −

(
∂r
∂s

∂r
∂s

)−1/2
]

, EI = Eε3

12
, (2.3a,b)

with s the Lagrangian coordinate along the plate centreline, s = 0 at the leading edge, and
position vector r(s, t) fixed at the leading edge. Here, ρs is the solid density and

f = τ+ · n++τ− · n−, τ = −pI + μ(∇u + (∇u)T), (2.4a,b)

is the Lagrangian force (per unit area) exerted on the plate by the surrounding fluid, where
τ is the fluid stress tensor, I is the unit tensor, and n+ and n− are the unit normal vectors on
each side of the plate at the given point r (see figure 1). The fluid pressure p and velocity
u satisfy the incompressible Navier–Stokes equations,

∇ · u = 0, ρ

(
∂u
∂t

+ u · ∇u
)

= ∇ · τ , (2.5a,b)

with ρ and μ being the fluid density and viscosity, respectively. The velocity boundary
conditions are u = ∂r/∂t on the fluid–plate moving boundary, and u = Uex at infinity.

The last two terms on the right-hand side of (2.2) are included to account for the point
reaction F r (per unit span) that fixes the leading edge at the origin of coordinates, and
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for the point torque at the leading edge, modelled here as a couple of opposite point
forces ±g that provide the necessary torque M r to generate the pitching motion (2.1).
Mathematically, the localized force is modelled by Dirac’s delta function δ, and the torque
by its derivative δ′ (Fernandez-Feria & Alaminos-Quesada 2021), both applied at point
s = s0 that is chosen very close to the leading edge, s0 → 0+, but not exactly at s = 0 for
structural (and mathematical) reasons.

The boundary conditions at the constrained leading edge are

r = 0 and
∂r
∂s

= cos α(t) ex + sin α(t) ey ≡ eα(t) at s = 0, (2.6)

where eα(t) is the unit vector tangent to the aerofoil at the leading edge, while at the free
trailing edge of the plate,

− T
∂r
∂s

+ EI
∂3r
∂s3 = 0,

∂2r
∂s2 = 0 at s = sf � c, (2.7)

where sf (t) is the length of the plate at the instant t, which for large extensional rigidity is
practically equal to c.

Integrating (2.2) between s = 0 and s = sf , using integration by parts and applying the
above boundary conditions, one obtains the reaction F r at the leading edge (actually at
s0 � 0) as

F r(t) = −F (t) + ρsε

∫ sf

0

∂2r(s, t)
∂t2

ds − T(0, t) eα(t) + EI
[
∂3r
∂s3

]
s=0

,

F (t) ≡
∫ sf

0
f (s, t) ds, (2.8)

where F is the total force (per unit span) exerted by the fluid on the plate. On the other
hand, multiplying (2.2) vectorially by r and integrating between s = 0 and s = sf , using
again integration by parts and the boundary conditions, the torque at the leading edge can
be written as

M r(t) ≡ eα ∧ g(t) = −M(t) + ρsε

∫ sf

0
r ∧ ∂2r(s, t)

∂t2
ds − EI

[
∂r
∂s

∧ ∂2r
∂s2

]
s=0

, (2.9)

where

M(t) ≡
∫ sf

0
r ∧ f (s, t) ds (2.10)

is the total bending moment (per unit span) with respect to the leading edge that the fluid
exerts on the aerofoil.

The last terms in (2.8) and (2.9) evaluated at s = 0 come from the fact that the leading
edge is not a free end like the trailing edge, but it is constrained with the pitching motion
(2.6). If the stretching stiffness is very large – more precisely, if the non-dimensional
stretching stiffness is K = Eε/(ρU2c) � 1 – in first approximation |∂r/∂s| = 1, T = 0,
sf = c, and one can neglect the second term in (2.2). Consequently, the term in (2.8)
containing the tension T at the leading edge can be neglected. On the other hand, according
to the condition (2.6), the position vector close to the leading edge (i.e. for small s) can be
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Force and torque reactions on a pitching flexible aerofoil

written as

r(s, t) = s eα(t) +
[
∂2r
∂s2

]
s=0

s2

2
+

[
∂3r
∂s3

]
s=0

s3

6
+ · · · , (2.11)

which allows the computation of the derivatives at s = 0 of the last terms in (2.8) and (2.9)
proportional to the bending rigidity EI from the knowledge of r near the leading edge,
calculated either numerically or experimentally. Clearly, these terms vanish for a rigid
foil, where r(s, t) = s eα(t) everywhere (see below). But even for flexible foils, in practical
applications the bending rigidity has to be sufficiently large for efficient propulsion (e.g.
Alben 2008; Moore 2014), and though the flexural deflection may become large in some
parts of the foil, at the leading edge the curvature cannot be large if the actuating torque
has to generate an efficient pitching motion of the foil. Thus these terms evaluated at
the leading edge are usually small compared with the inertial terms in most practical
applications (see § 3), and will be neglected in what follows.

Equations (2.8) and (2.9) provide the force and torque F r(t) and Mr(t) that one has to
apply at the leading edge to generate the desired pure pitching motion (2.1) in terms of the
fluid force and moment, F (t) and M(t), and the kinematics r(s, t) of the flexible aerofoil
of known structural parameters and geometry. Alternatively, these equations provide the
fluid force and moment, F (t) and M(t), if the reactions F r(t) and Mr(t) are measured
experimentally and the instantaneous position r(s, t) of the flexible aerofoil is obtained
either numerically or experimentally. Here, r(s, t) is obtained numerically along with
F (t) and M(t), and the resulting F r(t) and Mr(t) will be compared with experimental
measurements in a wind tunnel. But the expressions can be used the other way around,
to obtain F (t) and M(t) from experimental measurements of F r(t) and Mr(t), and
simultaneous video recording of the aerofoil motion to determine r(s, t).

For a rigid aerofoil, i.e. when the non-dimensional stiffness ratio is S = Eε3/

(ρU2c3) � 1, one has r(s, t) = s eα(t) = s[cos α(t) ex + sin α(t) ey]. Thus r is known if
α(t) is known, and the inertial and structural terms in (2.8) and (2.9) can be obtained
analytically (all the structural terms at s = 0 vanish):

F = −F r + mc
2

[−(α̇2 cos α + α̈ sin α)ex + (−α̇2 sin α + α̈ cos α)ey], (2.12)

M = −M r + mc2

3
α̈ez, (2.13)

where m = ρsεc is the mass of the aerofoil per unit span, and the dots denote time
derivatives. These expressions can be used to determine F (t) and M(t) just measuring
α(t) synchronously with F r(t) and Mr(t).

For a flexible aerofoil, the inertial and structural terms on the right-hand sides of (2.12)
and (2.13) are more complex and cannot be obtained analytically, in general. They have
to be computed by integrating numerically the second terms on the right-hand sides of
(2.8) and (2.9), and computing the derivatives of r(s, t) at s = 0 for the additional terms
associated with the rigidities of the aerofoil at the leading edge, once the kinematics of the
foil r(s, t) is obtained experimentally or numerically. In either case, one may discretize the
aerofoil initial centreline into N segments of length Δs = c/N to follow the time evolutions
of the positions of each segment central point: ri(t) = xi(t) ex + yi(t) ey, i = 1, . . . , N.
Then the terms containing r in (2.8) and (2.9) are approximated by finite differences.
Using, for instance, first-order finite differences and neglecting, as mentioned before, the
structural terms at s = 0, one obtains the following approximate relations between [F r(t),
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M r(t)] and [F (t), M(t)]:

F � −F r +
N∑

i=1

mir̈i, (2.14)

M � −M r +
N∑

i=1

miri ∧ r̈i, (2.15)

where mi = ρsε(Δs) is the mass (per unit span) of each element of the plate.
For a rigid aerofoil, ri = (i − 1/2)(Δs)eα , and one recovers exactly the analytical
expressions (2.12) and (2.13), knowing that m = ∑N

i=1 mi = Nmi and c = N(Δs). The
effect of flexibility on inertia force and moment can be obtained by substituting
ri(t) = (i − 1/2)(Δs) eα(t) + di(t) into (2.14) and (2.15) and subtracting (2.12) and (2.13),
respectively.

Although the approximations made in (2.14) and (2.15) have errors of the order of Δs =
c/N, we will show in § 3 that N need not be very large to get an excellent approximation
of the inertial terms if the bending stiffness is not too low.

3. Numerical method and results

The flow–structure interaction (FSI) problem is solved numerically using the coupled fluid
and solid equations of motion discretized in both the fluid and plate domains separated by
a moving boundary. In addition to (2.5a,b) for the fluid, more general differential structural
equations inside the plate are used instead of the thickness-averaged nonlinear equation of
motion (2.2), as described in Sanmiguel-Rojas & Fernandez-Feria (2021), but now for the
pitching motion (2.1) imposed at the leading edge instead of a heaving motion. For both
fluid and solid, the finite-volume-based solver Ansys Fluent is used, with the well known
k–ω SST turbulence model for the fluid, and the intrinsic FSI algorithm to simulate the
fluid–structure coupling. For the Reynolds numbers considered (approximately 105; see
§ 4), the k–ω SST turbulence model implemented in the solver package Ansys Fluent has
been sufficiently validated experimentally for transitional flows in similar aerodynamic
problems (e.g. Gharali & Johnson 2013). All simulations are started from rest. The
harmonic motion (2.1) is emulated by a user-defined function. Actually, to avoid spurious
initial oscillations, α(t) = [(1 + tanh((t − t0)/t1))/2]α0 sin(2πft) is used in place of (2.1),
with t0 = 0.1/f and t1 = 0.5/f .

The computational domain, which reproduces the dimensions of the wind tunnel test
section described in § 4, together with the different regions into which the computational
domain is decomposed to ease the meshing procedure, is given in figure 2(a). Figure 2(b)
shows the dimensions of the computational domain and the aerofoil (not to scale). With
larger computational domains, the results practically did not change even in the most
demanding cases. The aerofoil, of chord length c = 0.3 m, consists of a steel plate
with thickness ε = 0.4 mm attached to an aluminium head of diameter 12 mm. These
dimensions correspond to the aerofoil used in the experiments described in § 4. The
boundary conditions are: a flat velocity profile at a length 3.5c upstream of the foil;
non-slip walls on the foil and tunnel walls; and an outlet boundary condition with pressure
p = 0 at a length 10c downstream of the aerofoil. Air is used in all the computations
(ρ = 1.225 kg m−3, μ = 1.789 × 10−5 kg m−1 s−1). Details about the mesh and the grid
convergence study are given in the Appendix.
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Foil (head + tail)

Region#1

Region#2

Region#3

Head (φ = 12 mm)

c = 300 mm 10c3.5c

1000 mm

(tunnel width)

Inlet

Wall

Outlet

TELE

Tail (0.4 mm)

Wall

(b)

(a)

Figure 2. (a) Computational domain and mesh grid regions (to scale). (b) Dimensions used in the
computations and the wind tunnel experiments, not to scale. LE, leading edge; TE, trailing edge.

Once the FSI problem is solved numerically for a given aerofoil and given values of
U, α0 and f , the force F (t) and moment M(t) that the fluid exerts on the flexible aerofoil
at each instant t are computed. In addition, the position r(s, t) of the foil centreline is
also recorded at the same instants of time. With this information, one may compute the
reactions at the leading edge F r(t) and M r(t) from (2.14) and (2.15) by discretizing the
aerofoil centreline into N segments and using the time evolution of their central points
ri(t).

Interestingly, it is found that even with a relatively small number of elements, the
approximation made in (2.14) and (2.15) works quite well. This is shown in figure 3, where
the two components of F r(t) and the only component of M r(t) are compared as the number
N of plate elements used in the approximations (2.14) and (2.15) is increased, once F (t)
and M(t) are computed numerically. In particular, the results obtained with N = 3, 6, 11
and 21 plate elements are compared for one of the most unfavourable cases considered in
the experimental measurements reported in § 4, with a flexural deflection at the trailing
edge of approximately 0.15c (see figure 4). The results are practically indistinguishable.
(In figure 3, F (t) and M(t) are also shown, with dotted lines, for reference, showing that
they are quite different from F r(t) and M r(t).) This property makes this method very
suitable for experimentation, for F (t) and M(t) may be computed from (2.14) and (2.15),
measuring F r(t) and M r(t), and simultaneously recording the position of just a few marker
points ri(t) along the flexible plate chord length. It is also checked that the contributions
of the structural terms at s = 0 in (2.8) and (2.9), neglected in (2.14) and (2.15), are very
small, less than 1.2 × 10−3 N and 4.5 × 10−4 N m, respectively, in the case considered in
figure 3.

The method can in principle be applied to any flexural deflection of the plate, with no
maximum deflection limit (or minimum stiffness limit). Obviously, the reactions would
not converge with just a few points if the bending rigidity is small. However, as mentioned
above, the bending rigidity has to be large enough in practical applications for efficient
propulsion. Just for reference sake, the non-dimensional bending stiffness EI/(ρU2c2) of
the case considered in figure 3 is approximately unity, with a flexural deflection at the
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Figure 3. Comparison of F r(t) and M r(t) computed with different numbers N of plate elements for the inertial
terms, as indicated, for a steel plate with c = 0.3 m, ε = 0.4 mm, span 0.31 m, U = 7 m s−1, α0 = 3◦ and
f = 5 Hz. Dotted lines correspond to F (t) and M(t).

0 1 2 3 4 5

t/T
6 7 8 9 10

–0.15
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–0.05

0

0.05
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|yt
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Figure 4. Flexural deflection at the trailing edge |y f
t − yr

t |/c (dashed line) for the same case plotted in figure 3,
where y f

t is the trailing edge position of the flexible foil (blue line), and yr
t is that of an otherwise identical rigid

foil (red line).
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Pitch axis

Aluminium rod 

(φ = 12 mm)

Base mounting

310 mm

1000 mm

Wind direction

Flexible steel plate

(thickness 0.4 mm)

c = 300 mm

F/T sensor
Driven

timing pulley

Driving

timing pulley

Timing belt

Servo motor + encoder

Figure 5. Experimental set-up in the wind tunnel test section.

trailing edge that is not too small, as shown in figure 4. In spite of that, the reactions
converge with only three points.

4. Validation with experimental measurements in a wind tunnel

As mentioned above, to validate this technique for computing F (t) and M(t) when
F r(t) and M r(t) are measured, we proceed in an indirect way, without measuring r(s, t)
simultaneously to F r(t) and M r(t), but solving the problem numerically for F (t), M(t)
and r(t), and applying (2.14) and (2.15) to compute F r(t) and M r(t), which then are
compared with the reaction force and torque at the leading edge measured experimentally
in a wind tunnel.

For the experiments, we use the subsonic, closed-circuit wind tunnel in the
Aero-hydrodynamics Laboratory at the University of Malaga, with a test section of
1 × 1 m2 cross-section that is 4 m long. An aerofoil of chord length c = 0.3 m, consisting
of a thin steel (ρs = 7864 kg m−3, E = 2.1 × 1011 Pa) plate of thickness ε = 0.4 mm,
with its leading edge embedded into an aluminium rod of diameter 12 mm, is mounted
vertically onto the force/torque (F/T) sensor installed on the base of the wind tunnel test
section 2 m from its inlet, with resolution 0.006 N and 0.001 N m. The steel plate span
is 0.31 m, but an endplate on its top, with a gap of 5 mm, ensures the two-dimensionality
of the flow along the major part of the aerofoil, and reduces end effects (see figure 5; the
effective test section is 1 × 0.31 m2).

The inlet velocity U, measured with a hot wire anemometer (KIMO CTV210), ranges
between 0 and 7 m s−1 in the present experimental runs, well below the maximum velocity
provided by the wind tunnel of approximately 40 m s−1. The free stream turbulence
intensity is always less than 3 %. The aerofoil is attached through the aluminium rod
at its leading edge to a rotational servo motor, with position feedback provided by
a high-resolution rotary encoder. The rotation is transmitted from the motor to the
aluminium rod through two pulleys and a timing belt, with transmission relation 10 : 3.
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Thus an accurate harmonic pitching motion α(t) can be transmitted to the aerofoil’s
leading edge, with amplitude ranging between 2 and 6 degrees, and frequency between
3 and 6 Hz in the present experimental runs. The velocity U was varied between 0 and
7 m s−1.

Experimental data of the three force and torque components – pitch angle, and free
stream wind velocity and temperature – are synchronized and recorded in a computer
through a data acquisition card controlled by the software LabVIEW, with sampling
frequency 1000 Hz. Noise from mechanical vibrations and electronic devices is filtered
with a seven-order low-pass Butterworth filter, with cut-off frequency 2f + 2 Hz for Frx,
3f + 3 for Fry, and f + 2 for Mr. Every experimental run, with a measurement duration of
more than 15 s, is repeated at least three times, from which the standard deviation of each
experimental measurement is also recorded.

The aerofoil and F/T sensor rotate together, and an alignment of the sensor coordinates
with the free stream is necessary before each experimental run for given α0 and U. This
is made by measuring the forces on the static aerofoil at different angles between −α0

and +α0 to find the angle at which the modulus of the measured force, Fr =
√

F2
rx + F2

ry,
reaches a minimum. The corresponding angle is then summed to α(t) in the projections of
F r.

Among the many experimental data recorded for different values of α0, U and f in
the ranges mentioned above, figures 6 and 7 show two examples of the forces and torque
measured experimentally through the F/T sensor, Frx(t), Fry(t) and Mr(t), compared with
the results of the numerical simulations under identical conditions of α(t) = α0 sin(2πft)
and U. Note that time is scaled in figures 6 and 7 with the period T = 1/f . The
corresponding Reynolds number and the reduced frequency, defined as Re = ρcU/μ,
k = πfc/U, respectively, are also included in the figure captions for reference. Both ρ

and μ are computed using the instantaneous temperature measurements of the air stream
at the inlet of the wind tunnel test section. Also included in the figures are the force and
moment exerted by the fluid on the aerofoil, Fx(t), Fy(t) and M(t), as they are obtained
numerically. Actually, numerically one obtains F and M by solving the FSI problem as
described in § 3, and then computes F r and M r from (2.14) and (2.15). As mentioned
above, the experimental values of Frx(t), Fry(t) and Mr(t), plotted with black dashed lines
in figures 6 and 7, correspond to the mean values of at least three experimental runs, while
the uncertainty bands are obtained from the standard deviations of these measurements.
The uncertainty bands are noticeable only in figure 6, being almost indistinguishable from
the mean values for the case plotted in figure 7.

Although the components of F and M are quite different from the components of F r and
M r in the two cases shown in figures 6 and 7 (and this is so for all the other experiments
made), indicating that inertial forces are usually very important in wind tunnel force and
torque measurements, the components of F r and M r obtained numerically practically
coincide with those measured experimentally. The agreement remains as good as that
shown in figures 6 and 7 in most of the more than 40 cases investigated in the ranges
of α0, U and f mentioned above. Figure 8 summarizes the comparison between reaction
forces and moments measured experimentally and computed numerically for all the cases
with U = 5 m s−1, which is by far the velocity most used in the wind tunnel experimental
measurements. In particular, we plot the peak-to-peak oscillation amplitudes of the two
reaction force components, denoted by ΔFrx and ΔFry in figures 8(a) and 8(b), and the
reaction torque amplitude, ΔMr in figure 8(c), all of them obtained as an average from
the last ten cycles in each case, measured or computed, for five different pitch amplitudes
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Figure 6. The two components of the reaction force F r and the torque Mr measured experimentally (black
dashed lines, with bands accounting for the experimental uncertainty) compared with numerical results
obtained with mesh #1 and N = 21 (red lines) for α0 = 3◦, U = 7 m s−1 and f = 5 Hz (Re = 1.37 × 105

and k = 0.675). Also shown with continuous blue lines are the components of the force F and the moment M
that the fluid exerts on the plate obtained numerically.
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Figure 7. As in figure 6, but for α0 = 5◦, U = 5 m s−1 and f = 4 Hz (Re = 9.57 × 104 and k = 0.752).
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Figure 8. Comparison between the oscillation amplitudes of the two reaction force components, ΔFrx and
ΔFry, and the reaction moment, ΔMr , measured experimentally (red squares) and computed numerically (blue
circles) for U � 5 m s−1 and different pitch amplitudes versus the frequency f . The different lines connecting
the symbols (continuous for the experimental values and dashed for the numerical ones) correspond to, from
bottom to top, α0 = 2◦, 3◦, 4◦, 5◦ and 6◦.

and for frequencies between 3 and 6 Hz. Notice that all the force and torque amplitudes
show a pronounced peak at approximately f = 4 Hz, roughly corresponding to the first
resonance frequency of the present steel plate in an air current with velocity U = 5 m s−1:
fr � 3.8 Hz from linear potential flow theory (Fernandez-Feria & Alaminos-Quesada
2021), and fr0 � 3.65 Hz in vacuum, a frequency used in some of the plotted data. The
largest discrepancies between measured and computed forces and moments occur near this
resonant frequency for the largest pitch amplitude plotted, α0 = 6◦, especially for ΔMr,
mostly due to limitations in the F/T sensor for these large torques and forces. For α > 6◦,
the measurements near the resonant frequency were out of the sensor range.

5. Conclusion

Novel relations have been derived between the instantaneous force and torque on a flexible
pitching aerofoil as they are measured experimentally with standard F/T sensors with
the force and moment that the fluid exerts on the aerofoil plus the aerofoil’s inertia
and structural tensions at the leading edge. The relations are validated by comparing
high-resolution numerical simulations with direct force and torque measurements in a
wind tunnel. Though in the present paper both fluid and reaction forces and torques
have been computed numerically using the derived relations, and then compared with
experimental measurements, the method may find a more useful application to derive
the force and moment that the fluid exerts on the flexible pitching aerofoil from the
direct force and torque measurements and subtracting the inertia force and torque and
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Region#3

Region#2
Tail

Region#1

Γ

(b)

(a)

(c)

Figure 9. Three views of the mesh used in the computations (mesh #1). Here, Γ corresponds to the square
boundary of the support.

structural tensions at the pivot axis from simultaneous video recording of the time
evolution of a number of Lagrangian points along the aerofoil chord length. In fact, it is
shown numerically that the technique captures accurately the contributions of the flexible
aerofoil’s inertia to the force and torque by taking into account just a few marker points
along the chord length.

As a final remark, it is worth mentioning that the procedure described in § 2 may be
extended easily to a flexible aerofoil undergoing general heaving and pitching motions
about an arbitrary pivot axis, obviously adding new terms on the right-hand side of (2.8)
and (2.9). But the most relevant inertial terms remain the same.
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Appendix. Computational mesh details and mesh convergence study

Details of the mesh used in the computations are shown in figure 9. The boundary distance
diffusion method is used to smooth the dynamic mesh, with diffusion parameter set to
1.75. The algebraic multi-grid with the conjugate gradient for pre-conditioning is used for
stabilizing the dynamic mesh. As can be seen in figure 9(b), inside the head of the aerofoil,
a square support with boundary Γ is included, necessary to impose the harmonic pitching
motion.

To select the grid and time step, a grid convergence study was performed with three
different meshes and time steps, doubling the number of cells and halving the time step. In
particular: mesh #0 (coarse) with 51 465 cells, 283 cells along the profile and a time step

961 A34-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

25
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://orcid.org/0000-0001-9873-1933
https://orcid.org/0000-0001-9873-1933
https://doi.org/10.1017/jfm.2023.258


E. Sanmiguel-Rojas, J.L. Perona and R. Fernandez-Feria

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

t/T

–50

–25

0

25

50

Mesh#0
Mesh#1
Mesh#2

–10

–8

–6

–4

–2

0

2

4

6

8

10

F y 
(N

)
y t (

m
m

)

(b)

(a)

Figure 10. Mesh convergence study in terms of (a) the position of the trailing edge and (b) the lift force
versus time. Here, U = 7 m s−1, α0 = 3◦ and f = 5 Hz.

Δt = 2 × 10−4 seconds; mesh #1 (medium) with 99 298 cells, 400 cells along the profile
and Δt = 10−4 seconds; mesh #2 (fine) with 190 914 cells, 566 cells along the profile and
Δt = 0.5 × 10−4 seconds. Two cells are placed in the thickness of the tail for the three
meshes (see figure 9c). The time step was set to guarantee CFL < 5 in all cases. The
meshes of the fluid region include only quad elements with maximum skewness < 0.58.
In order to capture correctly the boundary layer around the foil, we set an inflation layer
of 8 cells with growth rate 1.2 and the first cell thickness of size 0.1, 0.071 and 0.05 mm
for the meshes #0, #1 and #2, respectively (see figures 9b,c). This first layer thickness
guarantees a maximum y+ < 1 on the foil wall, even for the case with the highest inlet
velocity considered in this work.

The numerical results obtained with the three meshes for one of the most demanding
cases (corresponding to Re = ρUc/μ = 143 760) is shown in figure 10, indicating that
the three meshes are very close to mesh independence. Thus all the results reported were
performed with mesh #1. The results plotted in figure 10 are the position of the trailing
edge yt and the lift force L versus time.
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