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On Multilinear Fourier Multipliers of
Limited Smoothness

Loukas Grafakos, Akihiko Miyachi, and Naohito Tomita

Abstract. In this paper we prove a certain L2-estimate for multilinear Fourier multiplier operators with
multipliers of limited smoothness. As a consequence, we extend the result of Calder6n and Torchinsky
in the linear theory to the multilinear case. The sharpness of our results and some related estimates in
Hardy spaces are also discussed.

1 Introduction

The area of multilinear harmonic analysis originated in the fundamental work of
Coifman and Meyer [446]. This area remained unexplored until about the late
nineties when certain important advances were made. These advances are too nu-
merous all to be included in this introduction, so we only mention the articles of
Bényi and Torres [1I], Grafakos and Torres [12], Kenig and Stein [16], and Lerner,
Ombrosi, Pérez, Torres, and Trujillo-Gonzalez [17]. The results contained in these
and in other known articles in the area concern multilinear operators whose kernels
have an explicit form or satisfy some pointwise estimates (and their derivatives also
satisfy analogous pointwise estimates). In this paper, we shall consider multilinear
Fourier multiplier operators whose multipliers have limited smoothness described in
terms of a function space and not in a pointwise form.

We use the following notations. For Schwartz functions f on R, we define the
Fourier transform by

flor= [ e pwax
R4
and the inverse Fourier transform by
1

T ) = ny /R e de

For functions m on R and j € Z, we define

(1.1) m;(€) = m(2/W(E),
where we fixa U € 8$(R?) such that

(1.2)

suppW¥ C {€ e RY:1/2 < |¢] < 2}, Z\I/(fﬂk) =1forall¢é € R\ {0}.
keZ
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We first recall the linear Fourier multiplier operators. For m € L>°(R"), the linear
Fourier multiplier operator T, is defined by

1
2m)"

T, f(x) = / ¢ Em(E)F(©) de
g

for f € 8(R"). The Mihlin multiplier theorem says that if m satisfies the differential
estimates up to the order “[half of dimension]+1”,

(1.3) 0¢m(€)] < Colé|I*1 forall|a| < [n/2] +1,

then T,, is bounded on L?(R") for all 1 < p < oo. The Hérmander multiplier
theorem [13] states that if s > n/2 and m € L*°(R") satisfies

‘ w(Rr) < OO,

(1.4) sup ||m;|
JEZ

then T, is bounded on LP(R") forall 1 < p < oo, where W*(R") is the Sobolev space
(see Section [Pl for the definition). The Hérmander multiplier theorem improves the
Mihlin multiplier theorem, since condition (T4) with n/2 < s < [n/2]+1 is certainly
weaker than (L.3). Calder6n and Torchinsky [2] extended the Hormander multiplier
theorem to the case p < 1; they proved thatif 0 < p < landif m € L*°(R") satisfies
with s > n(1/p — 1/2), then T, is bounded on the Hardy space H?(R"). The
case p = 1 is due to Fefferman and Stein [8].

Now we shall consider the multilinear case. Let N be an integer strictly bigger than
one. For m € L>°(RN"), the N-linear Fourier multiplier operator T, is defined by

1
(zﬂ-)Nn

Tolfir- s fi)6) = [ e m@ i)l de

RNVI
for fi,..., fv € S(R"), wherex € R", £ = (&1,...,&ny) € R" x --- x R"and d§ =
d¢, - - dén. If F~'m, the inverse Fourier transform of m on RM", is an integrable
function, then this can also be written as

(15) Tm(fh . ,fN)(X) = o St_lm(x— Vigewes X — yN)fl(yl) .. fN(yN) dy

This representation of T, is often valid even when F~!m is not an integrable function
via a principal value integral interpretation.
Coifman and Meyer [5] proved that if m € CL(RN" \ {0}) satisfies

(16) 100" 0¥ m(Er, . )] < Coymsay (16| -+ [Eg]) (el rtlonD

for |ay |+ - -+ |an| < L with L sufficiently large, then T, is bounded from LP! (R") x
<o x LPN(R™) to LP(R") forall 1 < py,...,py < o0and 1 < p < oo satisfying
1/p1+--++1/pn = 1/p. Kenigand Stein [16] and Grafakos and Torres [12]] extended
the result to the range p < 1. Finding the best possible L in these results is an
important question that arises in applications.
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Example It is well known that the Kato—Ponce inequality (see [15]) can be studied
via multilinear analysis. Let DS(f)(£) = f(£)|£]* withs > O0and 1/p = 1/p; +--- +
1/pn. In the study of the N-linear Kato-Ponce type inequality

N
(1.7) ID*(fi-- )l <C Y ID )l 11 . 1 fillrs

P 1<jAi<

via Littlewood-Paley theory, the following N-linear multiplier arises:

m(§) = Z 27 Z O K& + -+ &I 27 Ty (27 URgy)

j=0 kez

where ¥y, ..., ¥y, and © are smooth functions supported in some annulus. It is
straightforward to verify that m satisfies condition (L&) for |ay| + -+ + |an| < s
but not for larger || + - - - + ||, and thus the smoothness of m is “limited”. This
example plays a motivating role in the theory developed hereby, and its connection
with (7)) is discussed in Appendix|[Bl

The L given in [5]] is strictly greater than 2Nn and this seems to be too large com-
pared with the case of linear operators. It will be natural to expect that we can take
L = “[half of dimension]+1”= [N#/2] + 1. In fact, Tomita [21]] recently proved that
if m € L>°(RN") satisfies

(1.8) sup ||m | wsgvn) < 00

JEZ

with s > Nn/2, then T, is bounded from L' (R") x - -+ x LPN(R") to LP(R") for all
1 < p1,...,pN, p < oo satisfying 1/p; + -+ + 1/py = 1/p. Grafakos and Si [11]]
extended the result to the case p < 1 by using the L"-based Sobolev space, 1 < r < 2.

In this paper, we shall consider multipliers that satisfy (I.8) with the product type
Sobolev space W %) (RN™) (for the definition, see Section[) in place of W*(RN™).
We shall prove a basic L?-estimate and give an extension of the Calderén—Torchinsky
multiplier theorem to the multilinear case. We also give extensions and improve-
ments of the results of [L1}21]].

The following is the first main result, which gives the basic L?-estimate.

Theorem 1.1 Assume that m € L>°(RN") satisfies

sup [[m;|[we..on@vn <00 withsy,... sy >n/2.

JEZ

Then T, is bounded from L*(R") x L>®(R") x --- x L°(R") to L*(R").

In the case N = 2, Theorem[LIlwith W 1) (R?") replaced by W*(R?") with s > n
follows from the result of Grafakos and Si [[11]]. But there is a difference between
N = 2and N > 3, and the argument of [11] cannot be applied to the case N >
3 (even if the product type Sobolev norm || - ||y ... gnny is replaced by the usual
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Sobolev norm || - ||ws+-+s r¥n ). In the case N = 2, it follows from duality that the
boundedness of T,, from L? x L™ to L? is equivalent to that of T,,-> from L? x L* to L!,
where m*? is the multiplier of the dual operator with respect to the second variable
(see Section[8)), and, by using m*? instead of m, we do not need to treat L°°. However,
in the case N = 3, the boundedness of T, from L? x L> x L*° to L? is equivalent to
that of Ty, (resp. Tp«) from L2 x L2 x L to L' (resp. from L2 x L*® x L* to L!),
and we cannot remove L>°. Our proof of Theorem [[.Ildoes not use this duality and
can be applied to all N > 2. Notice also that in the framework of Sobolev spaces of
product type, we cannot use the duality argument (see Section[g]).

Using Theorem[LT] we extend the multiplier theorem of Calder6n and Torchinsky
[2] to the multilinear case. The following is the second main result.

Theorem 1.2 Let0 < p < 1. If m € L>°(RN") satisfies

sup ||mj |y <00 withs; >n(1/p—1/2), s5,...,s5x > n/2,
JEZL

then Ty, is bounded from HP (R") x L*°(R") x --- x L>(R") to LP(R").

We shall also prove that the numbers n/2 and n(1/p — 1/2) in Theorems[T.I]and
are sharp; see Propositions[ZI]and[Z.2] In a recent paper [18], Theorems[L.Iland
[[2lare used as key tools to determine the minimal smoothness conditions on bilinear
Fourier multipliers to assure the boundedness of the corresponding operators from
HP' x HP2 to L, 0 < py,py <00, 1/p=1/p1 +1/p>.

From Theorems[I.Tland[[.2} by interpolation, we also obtain the boundedness of
multilinear Fourier multiplier operators in

1 1

1 1
HPUxHP - xHN - L) 0<pj<00,0<p<2, —+—+- b — = —.
P P2 PN P

The results include some extensions and improvements of the results of [11}21]]. For
details, see Theorem[6.1]and Section

It should be mentioned that Grafakos and Kalton [10] considered multilinear
Calderé6n—Zygmund operators, and proved the boundedness of the operators on
Hardy spaces. The definition of Calder6n—Zygmund operators in [[10], however, con-
tains pointwise estimate of kernels, whereas the kernels of the multipliers of our the-
orems do not have pointwise estimates in general. Hence our results do not follow
from the general results in [10]].

We explain some ideas of the proofs of the main theorems. In the proof of The-
orem[I.T] using a partition of unity with respect to £/|£| and using the usual dyadic
decomposition with respect to ||, we reduce the problem to the case when m has
appropriate compact support. One of our main tools is a pointwise estimate of
T f1, f2, - -, fn)(x) for compactly supported m, which will be given in Lemma[3.3]
Another main tool is a modified version of the Carleson measure estimate related to
BMO functions, which will be given in Lemmas [3.T] and After Theorem [L.1lis
established, Theorem[[.2] can be proved by a rather straightforward generalization of
the method used in the case of linear Fourier multiplier operators.
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The paper is organized as follows. Sections2land [3] contain definitions and pre-
liminary lemmas. In Sectionsdland[5l we prove Theorems[L.Iland [ 2 respectively. In
Section[fl we use interpolation to give results on the boundedness from H?' x HP? x
-+ X HPN to LP with p < 1. In Section[Z] sharpness of the conditions of Theorems[L.1]
and[L2lis discussed. In Section[8] we comment on some results for the case p > 1.

2 Preliminaries

Throughout this paper, the letter C will denote a constant that may be different in
each occasion but is independent of the essential variables. The set of all non-negative
integers is denoted by Ny. For 1 < p < oo, p’ is the conjugate exponent of p, that is,
1/p+1/p’ = 1. The symbols S(R") and 8'(R") denote the Schwartz space of rapidly
decreasing smooth functions and the space of tempered distributions, respectively.
As usual, for a function ¢ on R” and ¢ > 0, we write ¢, (x) = t " (x/1).

The Sobolev space W*(R?), s € R, consists of all fesd (R%) such that

|mw=(4ﬁﬁmmwgm<m,

where (€) = (1 + |€]))'/2. We also use the Sobolev space of product type
W) (RNM) (s, syy) € R x -+ x R, which is defined by the norm

where & = (&1,...,&n) €ER" X --- x R"and d§ = d¢; ... dEN. For s € R, we set
we(x) = (x1)° - (xn), x=(x1,...,xnv) ER" x -+« X R".

The weighted Lebesgue space LI(w;) consists of all measurable functions F on RN"
such that

1/q
| Fllzagwy = (/RN IF(x)|q<x1>S-~-<xN>5dx> < 0.

We recall the definition and some properties of Hardy spaces on R” (see [19,
Chapter 3]). Let 0 < p < 00, and let @ € S(R") be such that [, (x)dx # 0.
Then the Hardy space H? (R") consists of all f € 8’(IR") such that

Il = 1| sup [ fll < oc.

0<t<oo
It is known that H? (R") does not depend on the choice of the function ® ([19, Chap-
ter 3, Theorem 1]). If 1 < p < oo, then H?(R") = LP(R") ([I9) Chapter 3, Sec-

tion 1.2]). For 0 < p < 1, a function a on R" is called an H?-atom if there exists a
cube Q = Q, such that

suppa C Q, |||~ < |Q|7YP, / x*a(x)dx =0 for |a| < [n(1/p—1)],
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where |Q| is the Lebesgue measure of Q and [n(1/p — 1)] is the integer part of
n(1/p — 1). Tt is known that every f € HP(R") can be written as an infinite sum
f = >, Xia; convergent in 8'(IR"), where {a;} is a collection of H?-atoms and
{\i} is a sequence of complex numbers with Y% |\;|P < co. Moreover,

1/p

[ 1/p >
C_linf<Z)\ip> < | fllee SCinf<Z|)\i|P> )
i=1 i=1

where the infimum is taken over all representations of f ([I9, Chapter 3, Theorem

2]).
We denote by BMO(RR") the space of all locally integrable functions f on R” that
satisfy

I fllsvio = sup / FG) — fol dx < oo,
1Ql Jo

where fq is the average of f over Q and the supremum is taken over all cubes Q in
R". A positive measure v on R = R" x (0, 00) is said to be a Carleson measure if
there exists a constant A > 0 such that

V(Q X (O,E(Q))) < A|Q| forall cubes Qin R",

where £(Q) is the side length of Q. The infimum of the possible values of the constant
A'is called the Carleson constant of v and is denoted by ||v/||.
We end this section by quoting the following facts, which will be used in the sequel.

Lemma 2.1 Let2 < q < oo, 1 > 0, ands > 0. Then there exists a constant C > 0
such that

for all F € W=9(RN") with supp F C {|x| < r}.

Lemma [2.1]is a simple case of [9, Lemma A.1], but we shall give a proof for the
reader’s convenience in Appendix[Al

Proposition 2.2 Ifs; > n/2 for 1 < j < N, then W1-¥)(RN") is an algebra under
pointwise multiplication.

The proof of Proposition 22]is also given in Appendix [Al for the reader’s conve-
nience.

3 Lemmas
In this section, we prepare the lemmas that will be used in the proof of Theorem[L.1]

Lemma 3.1 Letb € BMO(R"), ((x) = (1+|x|) =" with e > 0, and let ) € S(R")
be such that fRn Y(x) dx = 0. Then the measure v defined by

dxd
dv = (G i+ b)) 52

is a Carleson measure with Carleson constant ||v|| < C||b||3yo-
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Proof Since ||b(- + x0)||smo = ||b(r)||sBMo = ||b||Bmo> and since
tQ) dtd “Q dtdx
/ / (G * I b ) T = // (G o+ [+ x0) ) )
x+Q J 0
and

2r d d
/[ S i« b)) B
—rnr]" JO

dtd
— / " G e+ b))
(=1,1]" Jo

2 dtd
=2‘”|[—nr]“|/[_ll]n/0 (G * [t * [b(r)]P) (x )ﬁ

it is enough to prove

2 dtdx
/[ ]/«t s b0 P < Clblfor
—1,11" Jo

We recall the fact that if i is a Carleson measure, then
(3.1) / |F(x,t)| du(x, t) §C||,u||/ F*(x) dx,
$+l Rn

where F* is the nontangential maximal function of F, which is defined by

F*(x) = sup |F(y,1)]

|[x—y|<t
(see, e.g., [19, Theorem 2, p. 59] or [7, Proof of Theorem 9.5]). On the other hand,

it is well known that |4, * b(x)|2@ is a Carleson measure with Carleson constant
dominated by C||b|3,,0 (see, e.g., [7, Theorem 9.6]). Hence,

2 dtd.
/ / (G i+ b)) 2
(1,1 Jo t

dtd
:/RMX Lozl (%, t>(/ <z<x—y>wt*b(y>|2dy> o

dtd
=/ ( G(xX — Y)X1—1.1)%[02) (X, 1) dX) |1y * b(y) [P —= ! y
R\ JRe

< Clblmo / G* (x) d,
Rﬂ
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where X[—1.1)7x[0,2] is the characteristic function of [—1, 1]" x [0, 2] and G*(x) is the
nontangential maximal function of

Gy, 1) = / G2 = Y)Yt tpreio) (2, 8) dz.
RH

Thus it is sufficient to show that G* is integrable on R”. Note that G(y,t) = 0 for
t > 2,and G(y,t) < ||{||p for y € R” and ¢t < 2. Moreover, since |y — z| > |y|/2
for |y| > 2y/nand z € [—1,1]", we have G(y,t) < 2"t~"(|y|/2t) ="t < C|y|~("+o
for |y| > 2y/nand t < 2. Therefore G*(x) < C(1 + |x|)~"*9, and consequently G*
is integrable on R". The proof is complete. [ ]

Lemma 3.2 Let1 < q<2,((x)=(+|x))~" withe > 0, and let ¢ € §(R") be
such that [, 1 (x) dx = 0. Then

62 [ e swE SR <l

63 [ Gxlbes fiers S <l

[ GG g S < IS gl

65 [ GrIDEG g g S <Ol sl

Proof The inequality is well known and is easily proved by an application of
Plancherel’s theorem; see, e.g., [5) p. 148].
To prove (B3)), observe that Young’s inequality gives

[ Gl 19 0% < (11 o 820) 7 = € [ i S0 .

Integrating over 0 < t < oo and using (3.2)), we obtain (3.3]).
To prove (3.4)), observe that Holder’s inequality gives

(G b gl) G0 < (NG 2(G* I gP)2) T = C(Gox [+ gP) (0.
Thus, by Lemma[3.1] the measure

i = (Gox g+ 1) (155 dxdt

is a Carleson measure with Carleson constant < C||g|3,,0- Hence, by (3.1)), the left-
hand side of (B4)) is majorized by

Cliliwo [ sup (G |fH00) " dz=v

R" |z—x|<t
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But the integrand of the above integral is majorized by CM(| f|9)(z)*? with M de-

noting the Hardy-Littlewood maximal operator (see, e.g., [19, Chapter 1, Section 2.1]
or [7, Chapter 2, Section 8.7]). Hence, since q < 2, the maximal theorem gives

2
U < Cliglmolll F7I134% = Cligliaoll FIIE:

Finally, (33)) follows from (3.4)), since Holder’s inequality gives

(G 1) @7 < (1G9 * [ A1D@Y)* = C(& # | £19) (01,

The proof of Lemma[3.2lis complete. ]

Using the idea given in [21]], we prove the following lemma.

Lemma 3.3 Lets > n/2, max{l,n/s} < q < 2and {(x) = (1 + |x|)~%. Suppose
m € WE=9(RN"), t > 0 and suppm C {|¢| < 2/t}. Then there exists a constant
C > 0 depending only on N, n, s and q such that

forall x € R".
Proof We write m(£/t) = m(§). By (L3) and by Holder’s inequality,

ITw(fr, -, ) ()]
< /an tNF T (e =yt (e — ) /D i) - fv(n)] dy
= /nw(l + e = yil/0 - (U o=yl /71T (e = y1) fts o (e = yw) /1))
XA+ |x—pl/) A+ |x—ynl/O A0 - fu(yn)| dy
= (/an“ ) (1 ) [T 2| dz) o

< ( 1 / A0 - fuGl! dy) 1a

N Jen (L4 [ — y1| /) (14 |x — yn|/0)%

R NT ™ g, G LAIDG (G DG

Since suppm C {|¢] < 2} and 2 < ¢’ < oo, Lemma [2.1] gives H?ilﬁl’l”qu(w‘q,)

C||m||w..»» which, combined with the above inequality, implies the desired estimate.
The proof is complete. u

Lemma 3.4 Lets,...,sy > n/2, and let = S(RN™) be such that supp\ff is
compact and does not contain the origin. Assume that ® € C°°(RN" \ {0}) satisfies

08+ 0N D&, EN| < Cay ey ([0 |+ -+ [ el oD
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forallay, ..., an € Njj. Then there exists a constant C > 0 such that

sup ||m(t)P(E) Y |yyian < Csup |1y
t>0 JEZ

or all m € L (RN") satisfying sup ; mi||we.0 < 00, where m; is defined by
YIng SUp ey, [|M;] j

(DD
Proof We may assume that supp ¥ C {1/27 < |¢| < 27} for some j, € N. Given

t > 0, take j € Z satisfying 2/~ <t < 2/. Then, since 1 < 27/t < 2, by a change of
variables,

Let ¥ € $(RN") be as in ([.2)) with d = Nn, and note that
supp W (- /2) € {27! < J¢] <2¥')
Using supp W(2/¢~ 1) € {1/2*! < |¢| < 270}, we have, by Proposition 2.2}
[m(27 H®QF )W) |y
Jo ' o
< > [Im@1)Q BRI )W /28|y
k=—(jo+1)

k==(jo+1)

Jo
<C Y Mm@y |2 )y

k=—(jo+1)

< C(sup [|mjllyisr.on) (5up [|PE)VT | yyeron) -
JEZ >0

Since |9 ©(t£)| < C. /€|~ and supp ¥ does not contain the origin,

sup [|B () |y <
t>0

cSup< DS ||8g‘...8gy(®(t~)\fl)||p><oo.

t>0
[ [<[s1]+1 Jan|<[sn]+1

The proof is complete. u
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4 The Boundedness from L?> x L>® x --- x L™ to L?

Proof of Theorem[I.1] We shall give a proof in which the case N > 3 and the case
N = 2 are treated in a parallel way (cf. the comments given in the paragraph just
below Theorem [[T)). To provide clarity in the exposition, we give the proof only in
the typical case N = 3. It will be obvious that our argument can be generalized to
every N > 2 with trivial modifications.

If we set s = min{s),s,,s3}, then W25 (R3") < WS9(R3). Hence, in the
proof of Theorem[I.1] it is sufficient to consider the case s; = s, = s3 > n/2. Thus
we assume s > 1/2 and consider m that satisfies sup .y [[m;lwes < 0o. We use
the following notations: A, denotes the set of even functions ¢ € S(R") for which
supp @ is compact; A; denotes the set of even functions ¢ € §(R") for which supp v
isa compact subset of R"\ {0}. Notice that the boundedness of T}, from L2 x L> x L>°
to L? is equivalent to the estimate

< ClliAllell f2lleell 1l ligllz

/R To(fis for f5)(X)g(x)dx

forall f;, g € §. We shall use the following identity:

(4.1) 0 Tu(f1, fo, 5)(x) =

1
(27-‘-)3n

/ eix»(£1+52+fs)§(£l + §2 + 53)7}1(5)}?1(51)};(52)]?3(53) dé-
R3n

We first decompose m into a finite number of multipliers each of which is sup-
ported on a cone in R*. To do this, consider the unit sphere

S={neR"|y =1}

and notice the following simple fact: for each n € 3, at least two of the four
R"-vectors 11, 12, 13, and 11 + 1), + 13 are not equal to 0. Hence there exists a constant
co > such that the compact set X is covered by the following six open subsets:

Vi={neX||ml>co [m+m+nl>c},
Vo={n€X||m|>co. [m+m+n|>c}
Vs={ne€X||n]>c, [m+m+ml>c},
Vi={neX||ml>c, [n|>c},
Vs={neX||m|>co 5] >co},
Ve ={n€X|[ml>co, [m| > c}.

We write

L(vi) = {§ e R\ {0} | £/I¢] € Vi
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We take functions ®;, i = 1,2,...,6, on R such that each ®; is homogeneous of
degree 0, smooth away from the origin, supp ®; C T'(V;), and Z?:1 ®;(&) = 1forall
& # 0. We decompose m as

6
m(&) = m&)P;(&).

i=1
It is sufficient to prove the boundedness of each T,,5,. By Lemma[3.4] we see that

each m®; satisfies

sup [|(m®;) i[|wess < Csup |[mjyes .
jez jez

Thus, in the rest of the proof, writing simply m instead of m®;, we shall assume that
the support of our multiplier m is included in one of I'(V;). By symmetry of the
situation, the cases i = 2 and i = 3 are treated in the same way, and i = 4 and
i = 5 are also treated in the same way. Therefore, we shall only consider the four
casesi =1,2,4,6.

We make another decomposition of m. We take a function © € C*°(R*") such
that supp© C {1/2 < [¢] <2} and

/009(1?5)?:1 forall ¢ e R\ {0},
0

and write m as

me) = [ moee T = [Tme T,

where m,(§) = m(£)O(t). Thus,

/Tm(fl,fz’]g)(x)g(x)dx:/ /Tm,(fl,ﬁaﬁ)(x)g(x)@.
n 0 "

For the operator T, t > 0, we use Lemmas[3.3and 34l to obtain the following
pointwise estimate:

(4.2) | T, (fis fou )] < C(G o |A) V(G | A1) 0Y9( G | f]7) (019,

where g is a number satisfying max{1,n/s} < g < 2 and {(x) = (1 + |x|)~*%. In the
rest of the proof, we shall consider the four cases separately.

The case suppm C T'(Vy): In this case, for (£1,£,&5) € suppmy, we have [& +
&+ &) = |6 = |€] = 1/t. Hence we can find a function v € A; such that

@(t(fl +&+ 53))1Z(t€1) = 1 on the support of m;. Thus, using ([@.1), we can write
T, (f1, f25 f3)()

= (2;)3,1 /]R TSI (46 + & + &) m(©DUE) L) L2 i(E3) dE

= 7/% * Tml (1/% * fla fZa f3)(x)7
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and hence

/}RTm,<f1,fz,ﬁ)(x)g(x)abc=/]R Ton (W % fis fou F2)(0) (s  )(x) dx.

From this expression and from (4.2)), we obtain

/R Ton (i for f5)(x)g(x) dx

s/ T (% fis foo F3) 0|46 % g(0)]
er
<c /R (G [+ ANV * ANV * 1D () V9], + g0 da

< Cll flle~ I folli~ / (G e * IV A]ady 5 g0
Rn

Thus,

ATm(ﬁ,ﬁ,ﬁ)(x)g(x)dx
| tatho s fiwgto &2
0 n
dxdt

<Ol lflls [ [ (Gl A7) 01, gt 8

o0 dxd 1/2
< Cllfsll I il (/0 [ (Gntie 9 (x)z/qxtf)

o dxdi\ '/
x ( | [ wersor )
0 R t

by Schwarz’s inequality. By Lemma[B.2, (B3], and (3.2)), the last quantity is majorized
by Cll fallzoe[[ f5lzo= Il fill 2|l as desired.

The case suppm C T'(V,): In this case, for (£1,&,&3) € suppmy, we have |£; +
&+ &) =~ |&| &~ |€] = 1/t. Hence we can find a ¢ € A, such that ¢(#(& + & +

&))(t&) = 1 on the support of m;. Thus, in the same way as in the first case, we
can write

/Tm,(fl,fz,fa)(x)g(x)dx:/ T (fisthe % fou f5)(0) (s  )(x) dx.
R" R
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From this expression and (4.2]), we obtain

/R Ton (i for f3)(x)g(x) dx

s/ T (ot % for F3)(0) [t g()]

Rn

<c / (G % A1) GVI(C [ # BT V9(G, % 117) (0] # g(x)] dix
Rn

< Cllilum [ (G I 001G = ) 0076 g0

Thus,
’/]R Tnh f2, 5)(0)g(x) dx
- ‘/ / T (i, f @00 22

0 R

e dxd,
scnfsnpo/ / (Goo LI (079G i o) (01 = g0 2
0 Rn

- dxdr | /2
Sc”ﬁ””"(/o [ G ) GG« ) (70 % t)

t
oo dxdi\
x(/ |¢t*g(x>2) .
0 R" t

By Lemma[3.2 (B4), and (B.2), the last quantity is majorized by

Clifsllz=ll 22llmoll Aillz llglle < Cli fsllz [l fllos L Aill 2 llg 22

The case suppm C T'(Vy): In this case, for (£1,&,,&3) € supp m;, we have |£;]| ~
|&| =~ |€| ~ 1/t. Hence we can find functions ¢ € A; and ¢ € Ay such that

o +&+ &))@(t&l)@(t@) = 1 on the support of m;. Thus we can write

T, (f1, 2, 3)(%)

e /R G161 & + ) m(EDEE) FHE (1) F(62) (&) dE

= Q1 * Tmt('lpt * fl,'(/)t * fZafS)(x)’

and hence

/Tm,(ﬁ,fz,fs)(x)g(x)dx:/ T (W % fis iy * oy £3)(0) (1 % £)(x) dx.
R» R»
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From this expression and (4.2]), we obtain

/ T (i, for f3)(X)g(x) dx

s/ T (% fistly # oy )00 01 % ()] dx
Rﬂ
c /R (Gt oo A1) GIVI(Co e AIT) ()V9(G 5 [ 19) (0) V)0, 5 g(x)| dix

SCHfsllLoo/ /R(Ct*h/ft*fllq) V(G * [+ f]1) ()]0 % g(x)] dix.
O n
Thus

’/]R Tl fis f2, 5)(0)g(x) dx
- '/ / T, (f1, fo, 5)(0)g(x) th
0 R
=l / /R (G [ = A1) V(G [ = 1) (0190 # g(x)] @
0 n

- dxdt \ 12
< Clifslle= (/0 /Rn(g x by % fi]9) ()2 th>

%) o
: </ / (G I = fol1) ()P % g()? dxdt) :
0 n t

By Lemma[3.2] (B3)), and (B.9), the last quantity is majorized by
Clifsll=ll fillz | follsmolgllz < Cll fsllee | filliz [ ol g2z

The case suppm C I'(Ve): In this case, for (£1,&,&5) € supp my, we have || =
|&| ~ |€] ~ 1/t. Hence we can find functions ) € A; and ¢ € A such that

P& +& + @))@(tﬁz)@(t&) = 1 on the support of m,. Thus, in the same way as
in the third case, we can write

/Tm,(ﬁ,fz,fa)(x)g(x)dx=/ T st % fouthy # £3)(0) (i %)) .
R" R"

From this expression and (4.2)), we obtain

‘ / T (i for f3)(X)g(x) dx
RH

g/ T it % fo e % S5)00 01 % ()] dix
R}’l

<C /Rn (Ct * |f1|q) (x)l/q(Ct * |9 fZ‘q) (x)l/q(Ct * |9 f3|q) (x)l/q|§0t * g(x)] dx.
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Thus,

/R,, Tu(fi, fo, f5)(x)g(x) dx
/ooo / T (i fo. f)(2)g(x) @
) C/‘)w /R”(Ct * A1) (016w [ fl") (076w e+ fI7) (0o # g0
= C(/ow /R"(cz LRI GO1( G [t foI7) (o0 dedt> )

1/2
- (/ / (Q * |4 *f3|q) (x)z/q‘% ”‘g(x)\2 dedt) .
0 n

By Lemma[3.2] (3.4) and (3.9), the last quantity is majorized by

dxdt
t

Cllfillzll fallsmoll Sllemollgle < Cllfillzll fallzoe [l fll oo [l -

This completes the proof of Theorem[.1] ]

5 The Boundedness from H? x L= x --- x L to L? with p <1

Proof of Theorem[1.2] We shall give the proof for the case N = 3. The general case
N > 2 can be proved in a similar way.

Let p, s1, 52, s3, and m satisty the assumptions of Theorem with N = 3.
Without loss of generality, we may assume sup;cy [|11|yyc05 = 1. We write L =
[n(1/p — 1)]. It is sufficient to consider the case

(5.1) n(l/p—1/2) <sy <L+n/2+1.

We first observe that the desired boundedness of T, follows if we prove the esti-
mate

(5.2) ITw(f1, fos )l < Cll falloe [ f3l

for all f; such that
(5.3)

supp i C{x e R": |x| <r}, | fillr gr*”/f’, / X fix)dx=0 (Jo| <L)

with some r > 0 (where r depends on f). Indeed, since the norms || - ||» and || - ||z
are translation invariant and since the operator T, is also translation invariant in the
sense that

Tm(ﬁ7f23f3)(x+x0) = Tm(fl( +X0),f2(' +X0),f3(' +X0))(X),
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if (5.2)) holds for all f; satisfying (5.3)), then it follows that holds for all H?-atoms
fi. Hence, by considering the linear operator f; — T,(fi, f2, f3) and applying the
usual argument of using the atomic decomposition, we obtain the desired estimate

1T Cfrs fos S)lle < Cll fillell follzoe || flnoe

(Notice that here we benefited from the particular combination of the exponents
(p, 00, 00); the atomic decomposition could not be directly used to prove the H?' —
L? estimate if 1 > p; > p.)

In the rest of the proof, we assume that f; is a function satisfying (5.3)).

We first prove

I Tw(f1, f2, )| <an < Cllfalleoe |l follo= -

Since s; > n(1/p — 1/2) > n/2 and s, s3 > n/2, it follows from Theorem [Tl that
T, is bounded from L*(R") x L>°(R") x L>°(R") to L*(R"). Note that ||fi|> <
Cr—1/p=1/2) Thus, by Holder’s inequality, we obtain

NTw(fi, oo YO i< < CRY PV T £y o )l
<D Al ol | ol
< Cll ollee< | flleos -

Thus, what is left is to prove the estimate

(5.4) ITn(frs fos ) tei>2n < Cll folliee [ follaoe-

To prove this, we take a function W satisfying (I.2]) with d = 3n and decompose m as

oo

m&) = > mEW(E/2)).

j=—o0

We define ‘ '
Kj =5 [m()W(-/2)] =5 m;(- /2))).

If we write E]- = F7'[m;j], then K;(x) = 23j”Ej(21x). The function T,(fi, f, f3)
can be written as

Tu(fi, fo, f3)(x)
=" Tueyeon(fis oo H)®)

JEZ

= [ K px = xR0 RO (3 dy
jez /R

:ZFj(x), say.
JEZ
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By the subadditivity of the p-th power of the L?-norm, p < 1, and by Hoélder’s
inequality, we have

(55) ||Tm(fl,fz,fé)(x)Hfﬁ(|x\>27)
< Z ||Fj(x)||€l’(|x\>27)

JEZL
1-p/2 p/2
= Z(/ |x|_$'/(1/1’_1/2)dx) (/ |x|251|Fj(x)|2dx>
jez N Ix>2r |x|>2r
—s1+tn —n 51 P
= CZ {r n/p=n/2||y] Fj(x)HLZ(\x|>zr)} )
JEL

where we have used the assumption s; > n(1/p — 1/2) to obtain the last equality.
We shall estimate the function F;(x). Writing 97'K;(y1, y2, y3) = 9}, K;(y1, 2, y3)
and using the moment condition on f;, we have

Fj(x) =

/ {Kj(x—}’l,x—}’zax—%)
Rﬁn

_ Z (_;/!1) 8?Kj(x,x—)/2,x—)/3)}ﬁ(}/l)fz(yz)ﬁ(y3)dy

la]<L
=(L+1) Z / / %(17t)Laf‘K]‘(Xftyl’xfybxiys)
|a|=L+1 yERM Jo<t<1 !

x fily1) f2(y2) f5(y3) dtdy

AR /eRs /0<,<1(_y'1)(l—t)Laf‘K;(x—tywz’ys)
y n

la|=L+1 o
X fily)) fo(x — y2) f3(x — y3) dtdy.

Thus using the support condition and the L°°-norm condition on fi, we have

(5.6) |Fj(x)| < Cr2 | folpoe || fo e

8 Z /lyllir /0<t<1 |0V Kj(x — ty1, y2, y3)| dtdy.

la|=L+1" y,,y;€R"

In the same way, without using the moment condition of f;, we obtain

67 IEWI <O Bl Bl [ K=l
72,73 €R"
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We shall estimate the weighted L*-norm ||x[* F;(x)|| (x| >2r) using and (5.7).
First consider the integral appearing in (5.6). Notice that |x|/2 < |x — ty1| < 3|x|/2
for x| > 2r, |y1] < r,and 0 < ¢ < 1. Hence, using Minkowski’s inequality for
integrals, we have

H|x|sl/ / \8;"Kj(x—ty1,y2,y3)|dtdy‘
‘)’||§fn 0<t<l1

y2,3€ER

<C
- /|Y1\§f /0<t<l
y2,73€R"

<or [ s arkn)
y2,y3ER?

L2(|x|>2r)

‘|x7ty1|5‘8?Kj(x7ty1,y2,y3)’ tdy

L2(|x|>2r)

dy,d
(R y2ays3

= (x).

In terms oflzj and 8?1@(21, 2,23) = agﬁj(zl , 2, 23), the last term can be written as
(%) = Cr"/ ] 2j(—sl+3n+|a\)H |2jx|5’ 8{!?}.(2}& 2jy272jy3)HL2(Rn)dy2dy3
y2,y3ER" *

_ Crnzj(—51+n/2+|a|) /

|| |Zl|slai¥Ej(Z1, 22723)H 2R?) dzydzs.
2,z3ER" !

Since s, s3 > 1/2, Schwarz’s inequality gives

() < il ( /

R2n

. 2 1/2
21| (22)% (z3) 00K (21, 22, 23) H sy d22d23)

S Cr”2j(751+”/2+|“‘) <Zl>sl <Zz>s2 <z3>533f‘1%j(21 322, Z3)

[2(R3)
_ Crnzj(—51+n/2+|a\)Hg?mj(gl, &, 52)||W<Slv52-53)-

We shall see that the last || - - - ||}y is majorized by C. In fact, if we take a function
U € §(R*) such that ¥ = 1 on {1/2 < [£| < 2}, then, by Proposition[Z.2]

€7, lworns = 1€ MRIOWE) yoras = 1€ MRIOWET(E) o nss
< CHm(ZJE)‘I’(f)||W<Sl-sz-53> ‘5?@(5)”W<51-52-53> = C||ijW<51-52~53) <C.

Thus we have

H |x|* /\m<r / |07 K (x — tY1,)’27}’3)|dth"
— 0<t<1
y2,y3ER"

< Crn2j(—sl+n/2+|a\)-
L2(|x|>2r) -

Combining this with (5.8]), we obtain

(5.8)  rPTRPUE (0) 2egsan < CRINTIE fol e | f e
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In the same way, using (5.7) in place of (5.6), we obtain
(5.9) TR (0) | g2 < CRID T Sl | fllnoe

Now using (5.35), (5.8), and (5.9), we obtain

||Tm(f17 va f3)H€P(|x\22r)

< C(||f2||L°°f3||L°°)P< D @iz Z(zfr)f’(“”/”>

2ir<1 2ir>1

< CUl Ll fill=)P,

where we have used (5.I). Thus we proved (5.4). The proof of Theorem[T.2]is com-
plete. ]

6 The Boundedness from H?' x HP> x --- x HPN to L? with p <1

In this section, using interpolation, we prove the following theorem.

Theorem 6.1 LetO < py,...,pn <00,0<p<1l,andl/pi+---+1/py=1/p.
If m € L*°(RN") satisfies

. n no .
Sup |1 ||y 1o vy < 00 withs; > —(1—-p)+ -, j=1,...,N,
JEL pj 2

then Ty, is bounded from HP'(R") x --- x HPN(R") to LP(R").

Proof We give the proof for the case N = 3. The argument can be easily extended to
the case N > 2. We shall divide the proof into two steps.

Step 1

Let0 <0 < 1,0 < pj,pjx <oo,andsjr >n/2(j € {0, 1}, k € {1, 2, 3}). Set
l/p =(1- 9)/p0 +9/p1, l/pk =(1-— 9)/P0,k +0/P1,k) and sy = (1 — @)sox +951‘k-
In this step, we prove that if

|| Tm HHPO.I % HP0.2 5 HP0.3 L po S C sup || m;<||w(50_1,50_2,50_3)
Z

ke
and
”Tm”H”‘ XHP2 X HPI3 L S Csup ||mkHw(fl.l=Sl.2=51.3>a
kEZ
then
(6.1) | Tonl| 201 x E1p2 b3 10 < C sup || [y -

keZ

https://doi.org/10.4153/CJM-2012-025-9 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2012-025-9

On Multilinear Fourier Multipliers of Limited Smoothness 319

To do this, we construct a family of multilinear Fourier multipliers #1, as follows:

my(€) = Zmz,j(g/zf)cb(g/zf), ze{zeC:0<Rez<1},

jez

where ® € S§(R’) satisfies ® = 1 on {1/2 < |{| < 2} and supp® C
{1/4 < [¢] <4}, and

mz,j(f) _ <D1>(50.1—51$1)(Z—9)<D2>(So.z—51.z)(z—9) <D3>(503_51‘3)(2_0)”,1]4(5)

— 1 ei(x1'51+x2‘52+x3‘§3)
(27‘1—)3’1 R3n

X <X1 > (s0,1—51,1)(z—0) <x2>(50.2 —s12)(z—0) <x3>(50.3 —s13)(z—0) r/n\](x) dx.

Since my j(§) = m;(§) and & = 1 on supp ¥,

mp(€) = m(©W(E/21)D(¢/2)

jez

=Y m(©W(E/2)) = m(&).

j€z

Then it follows from the interpolation theorem for analytic families of operators ([[14}
20]) that

1-6
(6.2) | Tonll 21 x b102 x 103 510 < (SUP | T | prro1 5 prro02  preos —>LP0)
teR

0
X (sup | Do L1 serzrr2 s *}Ll’l) :
t€R

Using supp ¥ C {1/2 < |¢] < 2} and supp ®(2F77.) € {2/7F=2 < |¢| < 2/7k2),
we have

(mi)(€) = miy (2 W(E)
= (Z mit,j(zk-fg)qxz"—ff)) 1463)

JEZ
k+2

> mi jQIHBRTIOW().

j=k—2
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Recall that sg 1, 502, 50,3 > n/2. Then, by Proposition2.2land a change of variables,

k+2

Mt )k |l Go1502%3) = Mt j . W 0,1:50,2:%,3) . W 0,1:50,2:50,3)
|G )i <C Ym0 o)l
j=k—2

k+2

S c Z ”mitJ||W(50,1~50,2~Sn,3)
j=k—2

<C sup [(D1)**(D2)** (D)™ mjq.j |2
JE
_ Csup ( / |<x1>50A1+(50.1—51.1)(it—9)|2‘<x2>$o,z+(50.2—51.2)(it—9)|2
jcz N Jr
. 1/2
X |<x3>50,3+(So.3—51.3)(lt—6)|2|fn\j(x)|2 dx)
12
_ CS.uIZ) ( /}R3 ()2 <x2>252<x3>253|@(x)|2 dx)
je "

= Csup ||mj]| -
JEZL

Hence, our assumption implies

(6.3) || T, || ros xcrgroz sepgros o0 < C sUp |13k o1 50250 < Csup [ || yyisy spss) -
zZ i€z

ke ]
Similarly we have
(6.4) H Ty ||HP1.1 wH M2 x g s < Csup || (m1+it)k||W(SL1-51.2-51.3)
kEZL
< Csup |1y s -
JEZ
The estimate (&.1) now follows from (6.2)—(6.4)).
Step 2
Let 0 < p < 1and e > 0. By interchanging the role of p; and p, or p3, we have
by Theorem[I.Z]
(65) H Tm ||Hp X Lo® X Lo 5P S C sup Hm] ||W(nu/p—1/2)+(,n/2+(,n/2+r),
JEZL
(6.6) H Tm||L°° X HP XL —LP S C sup Hm] ||W(n/Z*chx(l/pf1/2)+e,n/2+s)7
JEZ
(6.7) | T || Lo scroe e 10 < C sup Hm, [l n2senszeentiso—1/250 -
JEZ
Then, it follows from Step 1 that (&3] and (6.6)) give
(6.8) H Tm”HPl xHP2 x 1o < Csup Hmj ||W(n(l—p)/pl+n/2+r.n(l—p)/p2+n/2+(,n/2+(),

jez
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where p < py, p» < ooand 1/p; + 1/p, = 1/p. Furthermore, and give

H Tm ||Hp1 XHP2 X HP —Lp < C sup Hm] ||W(n(1—p)/p1+n/2+f.n(]—p)/p2+n/2+5.n(l—p)/p3+n/2+6)’
JEZ

where p < py, pa, p3 < ooand 1/p;+1/pr+1/ps = 1/p. The proof of Theorem[6.1]
is complete. ]
7 Sharpness of the Conditions of Theorems 1.7l and

In this section, we consider the sharpness of Theorems[T.1land[1.2]

Proposition 7.1 The estimate

(7.1 NTulhi, for -5 M)l <

Csup [[mjlly oo @ | fill 2y
JEZ

follzso ey - - - [ fvllzoe rmy

holds only if 51,55, ..., 55y > n/2.

Proof We give the proofin the case N = 2. Generalization to N > 3 will be obvious.
We take functions v and ¢ such that

v eSRY), v #0,

supp) C {€ € R" [ 9/10 < [¢] < 11/10},
@ € SR, »(0)#0,

suppp C {£ € R" | [¢] < 1}.

To prove the necessity of the condition s, > 1/2, we set, for sufficiently small
€>0,

(7.2) m(&1, &) = D(ENP(E /e).

For this m, we have

Tu(fi, £)x) = F D AIT B Je) f( )],

where ! denotes the inverse Fourier transform on R”.

To estimate the norm
(|11 (gany> We choose the function ¥ € 8(IR*"), which appeared in the defi-
nition of m;, so that we have

supp W C {€ € R [ 27127 < ¢ <217+,
Y w2 =1 forall¢ #0,

keZ

U =1 if 27V < g <2
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where o > 0 is a sufficiently small number. Then, for sufficiently small € > 0, we

have
suppm C {(€1,62) € R |9/10 <[] < 11/10, || < o}
C{eerr [27Vme < g <20y,
Hence,
(7.3) (€)= mIEU(E) = {;n(é‘) 8;83
and

Sug ||ijW(sl.52)(R2n) = HmHW(Sl.Sz)(Rer) = H¢(§1)$(§2/@||W<51-Sz>(]R2")

j€E
= HQ/J”WSI (R")H@( : /€)||W’2(R”)~

Thus the inequality (ZI) for m of (Z2) is equivalent to
(7.4)

1F D AIEF B /0RO < Cldllwa I3 /) lwa |l fillz | ol -
We have ||1Z| wa = C and
12C-/€)lw=

= |le"p(ex) (x)* 12

1/2
< ¢ (/ (1+ [x)*2 (1 + e|x]) 2N dx) (N >0 large)
RH

1/2
~ e”(/ dx+/ |x| 22 dx+/ |x %2 (e|x]) ~N dx)
|x|<1 1<|x|<1/e 1/e<|x|<o0

~ e,
Hence (Z4) implies
(75) T WAI@T R /O A(DI@ ] < Cem =2 il ]| ollios
We test (Z:3) for fi(x) = 1(x), f5(x) = 1. Then

(the left-hand side of ([Z3)) = ||F ' [¢¥2](x)3(0)|| 2 = C,
(the right-hand side of ([Z3)) = Ce™*"/2||¢)||» = Ce*"/2,

Thus (Z3) holds only if s, > n/2.

https://doi.org/10.4153/CJM-2012-025-9 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2012-025-9

On Multilinear Fourier Multipliers of Limited Smoothness 323

To prove the necessity of the condition s; > 1/2, we set, for sufficiently small
€>0,

(7.6) m(&1, &) = (& /OD(E).

By the same reason as above, we have

sug 171l we oo geny = My ey = 1961/ €)P(E2) lwsr o meny
JE

'I,ZHWSZ &) < C6751+n/2

= [|2C- /&)lwa ey
and the inequality (Z1)) with m of (Z.&)) implies
77) TR /O AON@T DRI < Ce 2 fill || ol

We test (7.7)) for ﬁ(gl) = e_”/zﬁ(&/e), filx) = " "% where we choose 71° so
that ¢)(n°) # 0. Then

(the left-hand side of (Z2)) = [|F~"[e="/23( - /)] |12 |91
= @120 = C.
(the right-hand side of (Z7)) = Ce~*"*"2||F~ e "23(- /)]|| 12
— G B = e,
Thus (Z7) holds only if s; > 1/2. Proposition[Z1lis proved. [ |

Proposition 7.2 Let0 < p < 1. Then the estimate

(78) ||Tm(fl?f2a-~-afN)||LF(R") <

C sup ||m] Hw(sl.sz.....sw)(RNn)
j€Z

IS

Sillae@n || f2llzoe ey - - - [ fvlloe ey

holds only if sy > n(1/p — 1/2) and sy, ..., sy > n/2.

Proof We give the proofin the case N = 2. Generalization to N > 3 will be obvious.
The necessity of the condition s, > #/2 can be proved in the same way as in the first
part of the proof of Proposition[Z11

To prove the necessity of the condition s; > n(1/p—1/2), we take the functions 1
and ¢ as in the proof of Proposition[7.1] and we take a (° € R" such that |(°| = 1/10.
We set

(7.9) m(&1, &) = P& — C°) /(&)

For sufficiently small ¢,

suppm C {(&1,&) € R [ |& — ¢°| <€, 9/10 < |&] < 11/10}
C {6 c RZn ‘ 271/2+a < |£‘ < 21/27a}’
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and hence (Z.3) holds again and we have

sup Hm]”W‘l 2)(R2) = = [|m][ye (R2m)
JEZ

= [ 8((& = ¢)/€) S|y g
= [18(C = ¢/€) [l o g 191

< C€—51+n/2.

w2 (R")

Thus the inequality (Z38) for m of (Z3) implies
(7.10)

E (O SYONAS) <x>&"-1h$f21<x>1\u < C 2 flll e

We test (ZI0) for fi(x) = ¥/(x), fo(x) = "%, where 1)’ and 7)° are chosen
so that 1/1’ € S(R”) suppw’ isa ‘compact subset of R"\ {0}, w (&) =1lina
neighborhood of (°, n° € R", and 1/)(17 ) # 0. Then

(the left-hand side of (ZIQ)) = ||F ' [P((- — Co)/e)](x)|\Lp|{Z;(n°)|
= "0l [h ()] = CemP,
(the right-hand side of (ZI0)) = Ce*""/2||¢)/|| g = Ce5*"/2,
Thus holds only if s; > n/p — n/2. Proposition[Z2lis proved. [ |

8 Related Results and Comments

As a corollary of Theorems [L.1] and we can also prove the boundedness of T,
from L' x LP2 x LP3 to L? for 1 < p < 2 and for m satisfying the product type
estimate. (We treated the case 0 < p < 1 in Theorem[&.]). In fact, by Theorems[L.]
and[1.2}

||T HL2><L°° X L® —12 < Csup ||m]||W (n/2+en/2+en/2+e) 5
JEZ

||T HHIXL‘X’ NI < Csup ||m]||w (n/2+e,n/2+€n/2+€) «
JEZ

Then it follows from Step 1 in Section[@] that

(8.1) || TmHLp xLeox Lo < Csup Hm] ||W(n/2+(.n/2+(,n/2+(),
JEZ

where 1 < p < 2. By interchanging the role of p; and p, or ps, we have

||T ||L°° XLPXLo® —LP < Csup Hm]”W11/2+5n/2+cn/2+e)7
JEZ

|| Tm ||L<>c XL>® X LP—LP S C Sup Hmj ||W(n/2+e.n/2+e.u/2+e) .
JEZL
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Hence, by the same argument as in Section[@ Step 2, we obtain

(82) || Tm ||LI’1 X LP2 X LP3 —LP S C Sup Hm] ||W(n/2+nn/2+cn/2+c) 5

JEZ

where 1/py +1/p, +1/p3s =1/p,1 < p; <oo,and1 < p < 2.

We remark that (8.2) also holds for all 2 < py, p2, p3, p < oo satisfying 1/p; +
1/p2+1/p3 = 1/p (see [9, Theorem 6.2]). But at present, it is unclear to the authors
whether one or more of indices p1, p», p3 can be equal to co in the case 2 < p < o.

We end this section by commenting on duality. For m € L>®(RN") and 1 < k <
N, we set

m*k(g) = m(gla"'agk—h_(fl t--- +§N)7§k+la"'7£N)7

where £ = (&1,...,&n) € R” x --- x R"”. Then

(8.3) /RTm(ﬁ7...,fN)gdx:/RTm*k(fl,...,ﬁc,l,g,ﬁm,...,fN)ﬁcdx

forall fi,..., fn,g € S(R"). The formula ([83) says that the boundedness of T,
from L? x L x L™ to L? is equivalent to that of T, from LP x L>® x L™ to
L?". However, in the framework of Sobolev spaces of product type we cannot use the
duality argument, because Sobolev spaces of product type are not invariant under
the map m — m*!. More precisely, the following inequality does not hold:

(84) Sug“ ﬂ’l( _2](51 + 52 + 53)7 2j§27 2]63) \I/(é-) || W s1:52,53) <
JjE

Csup [[m(27E)W (&)l
JEZ

where £ = (£1,6,&) € R" x R" x R" and W is as in with d = 3n.

It should be pointed out that (84) holds if we replace W(1:52:5) by the (usual)
Sobolev space W* (see [11,21]]). Then, since W3("/2+€) <y W/ 2+en/24en/24) it fo]
lows from (81)) and duality that

LP X Lo° X [o° —LP S C sup || (m*l )]' ||W(n/2+hn/2+f.¥1/2+é)

JEZ

||Tm||LP/ x Lo xLoo —L[p' = ||Tm*‘

< Csup ||(m*l)jHW3(n/2+() < Csup ||mjl|yyswzea,
JEZL JEZ

where (m*l)j(,g) =m*1(2/6)V(¢)and 1 < p < 2. Therefore, ifsupjGZ [|mjllws < oo
with s > 3n/2, then T, is bounded from L? x L> x L* to L? for 2 < p < 0.

A Appendix
We shall give proofs of Lemma[2Z.Iland Proposition 221
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Proof of Lemma[2.1] We only consider the case N = 3; the argument can be imme-
diately extended to the case N > 2. Suppose F € W9(R3") and supp F C {|x| <
r}, where x = (x;,%,%3) € R” x R" x R". Take a ® € §(R*") such that ® = 1 on
{]x| < r} and supp® C {|x| < 2r}. Then F(x) = ®(x)F(x). Hence, by Schwarz’s
inequality and Young’s inequality,

1 o = ﬁ /R (8 6) B FO)|" d

e - q
<c / ( / <§1*n1>5(£zfnz>5<€s7773>5|<1>(£f77)|<m>5<772>5<773>5|F(n)|dﬁ) de
R}n ]R3”

<o s [ 6= mite =~ myle — m 1B~ mlm) () wyFo] do

¢ER3M
A (6= mrte e — myibee = ity o ey ol an)
< c(IHe) (@) ey alallE) ey e Fle)

x (6 (&) (&) Bl e () (&) Bl

= CI{&) (€ (&) Fllf = CIEIl -
The proof is complete. ]

Proof of Proposition[2.2] We only consider the case N = 3; the argument is easily
extended to the case of a general N. Since

(EME) (&) <C({&—m) +(m)™) ((G—m)? +(m)?) ((&—m)" +(n3)?),

we see that
2 1/2
1
dg)

1FGlhwewss = Gy < [ eierier| [ Fe—momn

1
<C Y N Einin * Gamii—ivain | s

i1,i2,i3=0
where
Fli i) (€) = (61) (&) (&) [F(©)],
Gint—ini—in (€) = (€)1 7M(G) 122 (&) 7% G(¢))

It is not difficult to estimate 1?(17171) * (A?(O‘,o’o) and 1/5(01010) * (A?(l_l_l). In fact, since
s1,82,53 > n/2, by Young’s inequality and Schwarz’s inequality, we have

|Gl

IEa1 % Gooolle < IFaanlzlGoooll = [Elwe s

< C||Fllwirssn [1(€2) (€2) (&) G2
= Cl|Ellyyer 2 [| Gllugtorsnss
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and the similar estimate for 1/5(07070) * @(17171).

As an example of the remaining terms, let us consider F( 1,0,1) % @(0,1,0). By Minkow-
ski’s inequality for integrals and Young’s inequality,

/ Fon (& —m, & — 12,6 — 13)Go..0) (1, 72, 13) dipdidns
R3n

2
L§ 16,83

< ' / / ﬁ(m,l)(f] —m, & —m, & — 773)@(0,1,0)(77177727773) dm dmpdns
R2n n L2 LZ
S| €83
< H /2 Hﬁu.o.l)(fuﬁz —m, & — n3)”£§ I G(011,0)(5177727773)HL£ dnadns
R2n 1 1 Lézfg
Repeating this argument, we have
H/ HEl.o.l)(fhfZ —m,& — 773)“ 12 ” 6(0.1,0>(51777277)3)|| Il dnpdns
R2n 1 RS L
SES)
< ‘ / / | Foom (&, & —m, & — )| o || Gono (&, mayms) || 1 dima|| s
R R" & S Léz ng

<[ 1Fwonte e,

‘ H | 5(0.1,@(51,&’63)\!%

L! ‘ 12
& Lé &

By Schwarz’s inequality,

R 1/2 2 1/2
[ / { / ( / Fuon(én 66 ng> dgz} d@]

1/2
<C (/ (&) Fao1)(€1,6,8)* d§1d§2d§3> = C||F|lwersss
R311

and

i 2 1/2
/{/ (/ G<0,1,0)(£17§2’€3)d&> d&} “
" Rr R"

~ 1/2
< C(/R} (&)™ (&) Go1.0)(&1, 6, 6)° dgldgzd@) = C||Glwessren)-

Thus ||F(1.0.1) %Go1.0) |2 < ClIF|lyrse0 || Gllyir iz - We can estimate the other terms
in the same way. ]
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B Appendix

We explain the connection of the Kato—Ponce inequality (I.7) and multilinear mul-
tipliers of limited smoothness.

For matters of simplicity in the presentation we take N = 2 and we work with
Schwartz functions f and g. Introduce a smooth bump ¥ that is supported in the
annulus 6/7 < |£| < 2 and is equal to one on 1 < |£| < 12/7 and such that

Z\If(z*fg) =1
j

for all & # 0. Let A; be the associated Littlewood—Paley operator given by
A(f)(€) = W(277€) f(€). Then we have

fe=Y AiHA),

jik

and this identity holds for every x € R". We introduce the operator S = 3 i<k A;
and we note that it is given by multiplication on the Fourier transform by a function
®(27%¢), which is equal to one on the ball |¢] < 2%,

We write the product fg as a sum of three terms:

L(f.0)= Y A[(NHA),

j<k—1

L(f.e)= Y A[(NA),

k<j—1

L(f,8) = Y Aj(HAK.

li—kI<1

Let s > 0. Then

D(I1.9) ) = G & [ [ e ersttno@mne + e
which equals

D(IL(f,8)(x) =

1 7 5 iX'(E+7])|: P —k+2 W —k ‘§+7’]|5 d d
oo | [ Tz S e ruatt S acn

and the expression inside the square brackets is a bilinear Coifman—Meyer multiplier,
hence boundedness holds. A similar argument applies for II,.
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Now we look at II5. For simplicity let us only consider the term where j = k, i.e.,
STANA[g).
j

Then we write

D) = 3 A (340, ©)

(34
LD {( >Z Aj(NA/(E)
A( ;Z Ai(NAR)
:szk( _Z AjralAjal@))

j'>-2

Z 2_Sjl Zzk(2(j,+k)5Aj’+k(f)Aj’+k(g))
j'>=2 K
S 2 S A A DAlg)

j>-2 k

where

Avf = F ' (fo2kepwe*e)),
ALf =F (o ke k).

The symbol of the preceding bilinear operator is

D29y 027 ¢+ ) B IO w Ty

i>—2 kez

with ©(&) = |£]°P(€) and T, (&) = || P (£). This is a type of multiplier of limited
smoothness, which is studied in this work. The study of the Kato—Ponce inequality
via this approach is motivated by the work of Christ and Weinstein [3]].
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