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The present work brings to light the vibrations emerging when a circular cylinder,
elastically mounted along a rectilinear path in quiescent fluid, is subjected to a forced
rotation about its axis. These rotation-induced vibrations (RIV) are explored numerically
for ranges of the four governing parameters. The Reynolds number and the reduced
velocity (inverse of the non-dimensional natural frequency of the oscillator), based on
the surface velocity of the rotating body and its diameter, are varied up to 100 and 250,
respectively, and the structural damping ratio up to 50 %. The structure to displaced fluid
mass ratio ranges from 0.1 to 1000. Vibrations are found to occur over a vast region
of the parameter space, including the four orders of magnitude of the mass ratio under
study, and high levels of structural damping. The amplitude of RIV may exceed 30 body
diameters, while their frequency varies and deviates from the oscillator natural frequency,
even though it is always lower. Despite its simplicity and the steady nature of the actuation,
the system exhibits a considerable diversity of behaviours. Three distinct RIV regimes
are encountered: two periodic regimes whose responses differ by their spectral contents,
i.e. sinusoidal versus multi-harmonic, and an aperiodic regime. These regimes are all
closely connected to flow unsteadiness, in particular via the interplay of the cylinder with
previously formed vortices, which persist in the vicinity of the body.

Key words: flow-structure interactions, vortex shedding

1. Introduction

A circular cylinder mounted on an elastic support and placed in a cross-current represents
a paradigm to study vortex-induced vibrations (VIV), a phenomenon ubiquitous in nature
and with direct impact on the fatigue life of engineering structures (Williamson &
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Govardhan 2004). Such vibrations are driven by a synchronisation of cylinder motion
and flow unsteadiness associated with vortex formation in the wake. They exhibit peak
amplitudes of the order of one body diameter in the cross-flow direction. A forced rotation
applied to the elastically mounted cylinder breaks the symmetry of the system and may
substantially alter its behaviour (Stansby & Rainey 2001; Yogeswaran & Mittal 2011;
Bourguet & Lo Jacono 2014; Zhao, Cheng & Lu 2014; Seyed-Aghazadeh & Modarres-
Sadeghi 2015; Wong et al. 2017; Bourguet 2020, 2023). Among other aspects, the rotation
was found to enhance body oscillations and trigger a transition to another form of
responses, referred to as galloping-like, whose magnitude, in contrast to VIV, increases
unboundedly with the reduced velocity, i.e. the inverse of the oscillator natural frequency
non-dimensionalised by the cylinder diameter and the current velocity.

Considering the influence of the forced rotation on VIV, in particular their amplification,
the question that arises is whether a cross-current is actually required for the rotating
cylinder to vibrate. In other words, can the rotation lead to structural oscillations for a body
placed in quiescent fluid? The observations reported in a recent work concerning a rotating
cylinder free to translate along a rectilinear trajectory, without structural restoring force,
suggest that this is indeed the case (Bourguet 2025): irregular oscillations of amplitudes
exceeding ten diameters, named saccades, were detected when the cylinder drifts at the
current velocity, and the relative flow seen by the body thus vanishes. The vibrations
developing in quiescent fluid under the effect of a forced rotation remain to be investigated
for an elastically mounted cylinder. These ‘rotation-induced vibrations’ (RIV) are the
object of the present study.

This work examines a novel facet of the interactions encountered in quiescent fluid,
due to an actuation of the body. Beyond the fundamental aspects addressed hereafter,
it could have implications for applications (e.g. mixing). In prior studies, the actuation
often consisted in a forced oscillation of the cylinder, which relates to the problem
of flexible structures exposed to oscillatory flows or waves (Sumer & Fredsge 1988;
Anagnostopoulos & Iliadis 1998; Fernandes, Mirzaeisefat & Cascao 2014; Dorogi,
Baranyi & Konstantinidis 2023). Here, the actuation of the cylinder, elastically mounted
along a rectilinear path, is a steady rotation. The surface velocity of the body is used,
together with its diameter, to define the Reynolds number and the reduced velocity. The
two other governing parameters are the structure to displaced fluid mass ratio and the
structural damping ratio. The parameter space is explored on the basis of numerical
simulations, in order to propose a first global vision of the fluid—body system behaviour,
and shed some light on the physical mechanisms involved in the development of RIV.

2. Formulation and numerical method

A sketch of the physical system is presented in figure 1(a). The circular cylinder of
diameter D and mass per unit length M, is parallel to the z axis. It is mounted on an
elastic support of structural stiffness per unit length k, and damping per unit length d, and
is free to translate along the y axis within a quiescent fluid of density p s and viscosity .
The cylinder is subjected to a forced, anticlockwise, steady rotation of angular velocity §2,
about its axis. All the physical variables are non-dimensionalised by p s, D, and the body
surface velocity U = £2D/2. The cylinder displacement, non-dimensionalised by D, is
denoted by ¢. The tangential force coefficient is defined as C =2F/(ps DU 2), where F
is the dimensional fluid force per unit length aligned with the direction of motion (y axis).
The dynamics of the cylinder is governed by the equation

2
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Figure 1. (a) Sketch of the physical system. (b) Peak value of the tangential force coefficient exerted on a non-
rotating cylinder forced to oscillate in quiescent fluid, for different values of Re and KC. (c) Phase-averaged
amplitude of the displacement of an elastically mounted, non-rotating cylinder, subjected to an oscillatory flow
/ a forced oscillation in the perpendicular direction, for (Re, m*, U*) = (150, 2, 5) and KC € {125, 500}. For
the validation cases, the peak velocity attained during the forced oscillation is used to normalise fluid force, and
to define Re, KC and U*. The present results are compared to those reported by Elston, Blackburn & Sheridan
(2006) and Koehler et al. (2015) in (b), and Dorogi et al. (2023) in (c).

where ° designates the non-dimensional time derivative. The structure to displaced
fluid mass ratio, structural damping ratio, non-dimensional natural frequency and
associated reduced velocity are defined as m* = 4MC/(rc,ofD2), E=d/2VkM,), f,=
[D/Q2nU)]/k/M, and U* = 1/f,, respectively.

The mass ratio ranges from 0.1 to 1000, and the reduced velocity is varied up to 250.
Structural damping is introduced in specified cases, and set to zero otherwise. The
Reynolds number Re = pyU D/ is kept below or equal to 100, which ensures that the
flow remains two-dimensional over most of the parameter space. The three-dimensional
transition is found to occur in the higher-Re range, typically above Re = 75. In the present
work, as a first step, the flow dynamics is predicted by the two-dimensional Navier—Stokes
equations throughout the parameter space. Three-dimensional simulation results indicate
that the principal features of the system behaviour described hereafter persist beyond the
transition.

The numerical method is the same as in previous studies concerning comparable
systems (Bourguet 2020, 2023, 2025). It is briefly summarised, and some additional
validation results are presented. The coupled flow—structure equations are solved by the
parallelised code Nektar, which is based on the spectral/hp element method (Karniadakis
& Sherwin 1999). The cylinder is placed at the centre of a large square computational
domain (side length 600D), which is discretised into 3975 spectral elements. A no-slip
condition is applied on the cylinder surface, and a Neumann-type boundary condition
is used on the external boundaries. Convergence studies were carried out to set the
polynomial order to 4 and the non-dimensional time step to 0.005.

In order to validate the method in physical configurations close to the present one,
comparisons with prior results concerning a non-rotating cylinder, either forced to oscillate
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in quiescent fluid (Elston et al. 2006; Koehler et al. 2015), or elastically mounted in the
direction normal to an oscillatory flow (Dorogi et al. 2023), are proposed in figure 1(b,c).
In the latter configuration, the oscillatory flow is emulated by a forced oscillation of
the cylinder along the x axis, while the body is free to move along the y axis. For
these validation cases, the peak velocity attained during the sinusoidal oscillation is
used as reference to normalise fluid force and to define the Reynolds number, Keulegan—
Carpenter number (KC) and reduced velocity. The prescribed non-dimensional amplitude
and frequency are equal to KC/(2m) and 1/KC, respectively. The peak value of the
tangential force coefficient and the phase-averaged amplitude of the displacement match
those reported in previous studies, which confirms the validity of the present numerical
method.

Each simulation is initialised with the established flow past a rigidly mounted, rotating
cylinder. Then the body is released with an initial velocity ¢ = 0.1. The analysis is based
on long time series collected after the initial transient dies out.

3. Fluid-body system behaviour

The rotating cylinder is found to vibrate over a wide region of the parameter space.
Typical examples of RIV are visualised in figure 2, via time series of the displacement and
associated frequency spectra. The selected cases, which are representative of the different
regimes of the system, as shown in the following, depict a variety of behaviours in terms
of regularity, amplitude and frequency content.

The properties of RIV are examined in the (Re, U*) domain for m* =1 in figure 3; it
is recalled that no structural damping is considered (§ =0), unless stated otherwise. In
each plot, the region where the body vibrates is delineated by a solid line. It extends down
to Re~4 and U* ~ 7, and up to the largest values under study, Re = 100 and U* = 250.
The vibration region is composed of two distinct zones of periodic responses (delimited
by dashed lines and coloured in yellow in figure 3a), a first one (I) along the frontier
of the vibration region, and a second one (II) that emerges further inside, and a vast
area of aperiodic responses (coloured in grey). The same colour code is used in the
spectra of figure 2 to specify the periodic/aperiodic nature of the responses. The cases
selected in this figure are indicated by blue stars in figure 3(a). More generally, beyond
vibration regularity, figure 3(a) maps the areas of periodic and aperiodic behaviours of the
fluid—body system. This can be assessed by monitoring fluid velocity or force signals, as
illustrated in figure 2(a), where C time series are also represented.

The time-averaged value of the displacement vanishes in all cases. The vibration
amplitude is quantified by the averaged top 10 % of ¢ (denoted by ¢1g). It tends to regularly
increase with U™ (figure 3b). Some fluctuations can be noted as Re is varied, but the
amplitudes reached in the higher-U™* range, of the order of 30D, are much larger than VIV
amplitudes (Williamson & Govardhan 2004), and are comparable to those reported for
the saccades observed without structural restoring force (Bourguet 2025). The vibration
frequency (f;) refers to the frequency of the dominant component of the ¢ spectrum,
which is also its fundamental component in all periodic response cases. As shown in
figure 3(c), the vibration frequency remains lower than the oscillator natural frequency
throughout the vibration region, and the ratio f;/f, may attain very low values. To
visualise this deviation, f, is indicated in the spectra of figure 2 (green dash-dotted
line). Such low frequency ratios also contrast with VIV typical trends. In the absence
of structural damping and for the periodic responses, the condition f; < f, implies that
the components of C and ¢ at f; are in phase. This phasing state is found to persist in the
aperiodic response cases (figure 2a).
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Figure 2. (a) Selected time series of the cylinder displacement and tangential force coefficient, and
(b) frequency spectrum of the displacement, for (i) (Re, m*, U*) = (100, 1, 20) (periodic regime I), (ii)
(Re, m*, U*) = (25, 1, 70) (periodic regime II), (iii) (Re, m*, U*) = (50, 1, 33) (aperiodic regime, transition
region), and (iv) (Re, m*, U*) = (32, 1, 240) (aperiodic regime). In (b), the spectral amplitude is normalised by
its maximum value; blue dashed lines denote the vibration frequency and its odd harmonics, and a green dash-
dotted line represents the oscillator natural frequency. In (b-iii), the incommensurable component associated
with the low-frequency modulation of the displacement is indicated by a red dotted line. The spectra are
coloured according to the periodic (yellow) or aperiodic (grey) nature of the response.
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Figure 3. (a) Fluid-body system regime, (b) vibration amplitude, (c) vibration frequency normalised by the
oscillator natural frequency, and (d) sinusoidal motion criterion (AR), as functions of the Reynolds number
and reduced velocity, for m* = 1. The vibration region and, within this region, the zones where the system
behaviour is periodic, are delimited by solid and dashed lines, respectively. The dotted area denotes the region
of aperiodic behaviour where the response remains close to sinusoidal, with a slight low-frequency modulation.
In (a), periodic and aperiodic behaviour regions are identified by yellow and grey background colours. Blue
stars indicate the cases examined in figure 2.

The departure of the displacement signal from a harmonic oscillation is measured
via the unsigned relative difference of the ratio R = ¢109/¢rps With respect to the value
expected for a sinusoidal response, denoted by A R, where ¢rys designates the root mean
square value of ¢. The departure from harmonic evolution is particularly pronounced in
the aperiodic response region (figure 3d). This criterion also highlights the distinct shapes
of the vibrations occurring in each periodic response region: close to sinusoidal with
higher harmonic contributions lower than 5 % of the fundamental component amplitude in
region I, versus multi-harmonic with substantial higher harmonic contributions, typically
third harmonic contributions larger than 25 % of the fundamental component amplitude,
in region II. The examples in figure 2(a—i,a—ii,b—i,b—ii) depict these two forms of
periodic responses. In all cases, only odd harmonic components (blue dashed lines in the
spectra) contribute to the periodic responses. This symmetry of the oscillation betrays the
symmetry of the organisation of the flow, which is discussed hereafter.

The strong sinusoidal nature of the vibrations in the periodic response region I persists
beyond the edge of the aperiodic response region, in a transition zone denoted by a
dotted area in the plots: the oscillation, still dominated by a single spectral component,
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is modulated by a low-frequency, incommensurable component (red dotted line in
figure 2b—iii). Beyond this transition zone, additional components progressively appear
in the response spectrum, and the oscillation becomes increasingly erratic. Even though
it is less clearly defined, a narrow zone of modulation can also be identified during the
transition between the second periodic response region (II) and the aperiodic response
region.

To recapitulate, RIV are found to develop through three regimes: two periodic regimes
whose responses differ by their spectral contents, i.e. sinusoidal (periodic I) versus multi-
harmonic (periodic II), and an aperiodic regime.

When the rotating cylinder does not vibrate, the flow surrounding it is steady. Body
oscillation and flow unsteadiness arise simultaneously. The vibrations reflect the unstable
nature of the fluid—body system, and the existence of oscillatory states where the
equilibrium of the energy transfer between the fluid and the body is reached over each
cycle (1/f;, periodic regimes), or over a longer time interval (aperiodic regime). The
increasing trend of the amplitude with U™ is reminiscent of the quasi-steady mechanism
driving, for example, the galloping oscillations of non-axisymmetric bodies (Modarres-
Sadeghi 2022). In this case, the time scales of the flow and moving body are decoupled,
and each step of body oscillation is seen as a steady configuration. As also observed for
the galloping-like responses of a rotating cylinder in cross-current (Bourguet 2020, 2023),
a quasi-steady modelling of fluid forcing, i.e. C replaced by its quasi-steady model in
(2.1), fails to predict the present vibrations. This suggests that the interplay of the rotating
cylinder and flow unsteadiness is important for the emergence of RIV.

The radial and azimuthal velocity components of the axisymmetric steady flow

surrounding the non-vibrating cylinder are 0 and D/(2y/x%+ y2), respectively, i.e.
circular Couette flow. Typical flows encountered in the different oscillatory regimes are
visualised in figure 4 via series of snapshots of instantaneous spanwise vorticity. Flow
dynamics essentially consists of an undulation, synchronised with body motion, of the
vorticity layers wrapped around the cylinder. As the body oscillates, elongated zones of
vorticity form in its wake, with the detachment of distinct vortices. The size of the vortical
structures tends to increase as Re is decreased, of the order of D at Re = 100 (figure 4a),
and one order of magnitude larger at Re = 25 (figure 4b).

In the absence of cross-current, the vortices are not convected away. They remain in the
vicinity of the body until their diffusion, and may thus interact/collide with it during its
subsequent oscillation cycles. The interaction with previously formed vortices may explain
the development of irregular responses (aperiodic regime; figure 4c). This phenomenon
was reported in oscillatory flow studies (Anagnostopoulos & Iliadis 1998; Dorogi et al.
2023). Despite the above-mentioned interaction, body motion and flow organisation can
combine in such a way that the system dynamics is periodic. The number of vortices
present close to the cylinder, and their arrangement, are expected to be important factors
for the appearance of such dynamics. The periodic regimes exhibit persistent patterns: a
single positive vortex is shed per half-cycle in the periodic regime I, versus two positive
vortices of unequal sizes and magnitudes in the periodic regime II. The successively
formed vortices are numbered in figure 4(a,b). The symmetry of these patterns during
each half-cycle coincides with the symmetry of the cylinder displacement (odd harmonics
only in the ¢ spectrum).

To generalise the analysis, in figure 5, the behaviour of the system is examined over
a range of mass ratios, at Re = 50. The distribution of the regimes previously identified
for m* = 1, and the evolution of the vibration amplitude, across the (m*, U*) domain, are
plotted in figure 5(a,b). The vibration region reaches the upper limit of the U* range until
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Figure 4. Selected time series of the cylinder displacement and instantaneous iso-contours of spanwise
vorticity for (a) (Re, m*, U*) = (100, 1, 20) (periodic regime I, w, € [—0.075, 0.075]), (b) (Re, m*, U*) =
(25, 1,70) (periodic regime II, w, € [—0.01, 0.01]) and (¢) (Re, m*, U*) = (32, 1, 240) (aperiodic regime,
w; €[—0.02, 0.02]). Positive/negative vorticity values are plotted in red/blue. The successive instants
visualised in the snapshots are indicated by red lines in the time series. In (a,b), the positive vortices are
numbered in their order of formation; number 1 corresponds to the first vortex formed during the sampling
period.
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Figure 5. (a) Fluid-body system regime and () vibration amplitude, as functions of the mass ratio and reduced
velocity, at Re =50. The vibration region and, within this region, the zones where the system behaviour is
periodic, are delimited by solid and dashed lines, respectively. The dotted area denotes the region of aperiodic
behaviour where the response remains close to sinusoidal, with a slight low-frequency modulation. In (a),
periodic and aperiodic behaviour regions are identified by yellow and grey background colours. (¢) Vibration
amplitude as a function of the vibration period (1/f;), for selected mass ratios (Re = 50). A range of reduced
velocities is considered for each m*. The symbols are coloured according to the periodic or aperiodic nature
of the system behaviour. The two forms of periodic behaviours (I and II) are specified in the plot. The
results examined to study the impact of structural damping for m* =1 are represented by red dots/circles
(& €{0 %, 10 %, 50 %}); the selected values of U* are indicated in red.

m* ~ 10. It tends to shrink beyond, and the periodic regime II vanishes. The aperiodic
regime, which dominates the U* range for low m*, is observed until m* ~ 40. For higher
m* values, RIV develop for U* € [20, 130], through the periodic regime 1. The peak
amplitude versus U* (close to 5D) and, overall, the system behaviour, do not substantially
vary with m* any more. From a general perspective, low-m* RIV are aperiodic and grow
regularly with U*, while high-m* RIV are mainly sinusoids of bounded magnitude. The
vibration frequency (not plotted) remains lower than f,, but tends towards it as m* is
increased, e.g. fr/fu €10.99, 1[ for m* = 1000.

A complementary visualisation of the response domain visited by the system is proposed
in figure 5(c), which represents the vibration amplitude as a function of the vibration
period (1/f¢), over a range of U* values, for selected mass ratios. The results obtained over
four orders of magnitude of m* follow comparable increasing trends, and tend to collapse

1019 R3-9


https://doi.org/10.1017/jfm.2025.10594

https://doi.org/10.1017/jfm.2025.10594 Published online by Cambridge University Press

R. Bourguet

over a broad response range. The responses are particularly indiscernible in the periodic
regime I, where body motion is close to sinusoidal. Such a coincidence is expected since
under a sinusoidal oscillation assumption, a solution of the dynamics equation (2.1) for
(m*, U™) is also a solution of this equation for any other mass ratio, via an adjustment of
the reduced velocity (Bourguet 2025).

To further extend the investigation, structural damping is introduced for m* =1 and
selected reduced velocities (red circles in figure S¢). An increase of the damping ratio from
0% to 10 % and 50 % causes a reduction of the vibration amplitude. This reduction can
be accompanied by a transition of regime, e.g. from the periodic regime II to the aperiodic
regime for U* = 50, and the inverse for U* = 80. Yet the three regimes are found to persist
for damped systems, and the trend of the responses in the amplitude/frequency domain
remains globally the same as in the undamped cases.

The above observations illustrate the robustness of the phenomena uncovered in this
work: RIV, and the distinct regimes through which they occur, exist over wide ranges of
the different physical parameters.

4. Conclusions

In order to explore the emergence and underlying mechanisms of rotation-induced
vibrations (RIV), the behaviour of the system composed of a circular cylinder, elastically
mounted along a rectilinear path and forced to rotate about its axis, within a quiescent
fluid, has been examined numerically, for ranges of the four governing parameters, i.e.
Re and U™ up to 100 and 250, based on the body surface velocity, m* € [0.1, 1000] and
& €{0%, 10 %, 50 %}.

Under the effect of the forced rotation, an oscillation of the cylinder arises,
simultaneously with flow unsteadiness, over a vast region of the parameter space. This
region encompasses the four orders of magnitude of the mass ratio considered in this
work, and includes substantially damped systems. The amplitude of RIV may exceed 30
body diameters in the present parameter space. The vibration frequency varies and deviates
from the oscillator natural frequency, but remains always lower than this frequency.
Three regimes of RIV have been identified and mapped in the parameter space: two
periodic regimes whose vibrations differ by their spectral contents, i.e. sinusoidal versus
multi-harmonic, and an aperiodic regime. As an example, at Re = 50, low-m* RIV are
principally aperiodic and their amplitude increases regularly with U*, while high-m* RIV
are essentially sinusoids of bounded magnitude, occurring over a narrower interval of U*.

The vibrations are not predicted by a quasi-steady approach, which substantiates the
importance of the interplay of the cylinder with flow unsteadiness in their development.
Flow dynamics mainly consists of an undulation, synchronised with body motion,
of the vorticity layers wrapped around the cylinder, with the formation of elongated
zones of vorticity in its wake, and the detachment of distinct vortices. The size of
the vortical structures depends on Re, but flow organisation exhibits persistent features.
Each periodic regime is associated with a specific flow pattern, which matches body
oscillation symmetry. The appearance of irregular responses (aperiodic regime) relates
to the interaction of the cylinder with previously shed vortices.

To summarise, this work shows that a forced rotation applied to a cylinder, elastically
mounted in quiescent fluid, can cause the body to vibrate. Two general aspects can be
emphasised: (i) the robustness of RIV, as they are found to occur over broad ranges of
the physical parameters; and (ii) the diversity of the behaviours of the fluid—structure
system in the different RIV regimes, despite its simplicity and the steady nature of
the actuation.
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