
RESEARCH ARTICLE

Modeling the wall shear stress in large-eddy simulation using
graph neural networks

Dorian Dupuy1,* , Nicolas Odier1, Corentin Lapeyre1 and Dimitrios Papadogiannis2,*
1European Centre for Research and Advanced Training in Scientific Computing, Toulouse F-31057 Cedex 1, France
2Safran Tech, Magny-Les-Hameaux, France
*Corresponding authors. E-mails: lapeyre@cerfacs.fr; dimitrios.papadogiannis@safrangroup.com

Received: 31 August 2022; Revised: 22 January 2023; Accepted: 04 February 2023

Keywords: Computational fluid dynamics; graph neural networks; large-eddy simulation; wall modeling

Abstract

As the Reynolds number increases, the large-eddy simulation (LES) of complex flows becomes increasingly
intractable because near-wall turbulent structures become increasingly small. Wall modeling reduces the computa-
tional requirements of LES by enabling the use of coarser cells at the walls. This paper presents a machine-learning
methodology to develop data-driven wall-shear-stress models that can directly operate, a posteriori, on the unstruc-
tured grid of the simulation. The model architecture is based on graph neural networks. The model is trained on a
database which includes fully developed boundary layers, adverse pressure gradients, separated boundary layers, and
laminar–turbulent transition. The relevance of the trained model is verified a posteriori for the simulation of a channel
flow, a backward-facing step and a linear blade cascade.

Impact Statement

Numerical simulation is an important tool for design optimization in various industries, notably in the transport
and aeronautics market. The development of graph-based machine-learning wall-shear-stress models for large-
eddy simulation could improve the accuracy of practical industrial simulations, paving the way for a reduction in
the energy consumption of aircraft, cars, and ships, resulting in lower emissions and noise.

1. Introduction

This paper investigates the modeling of the wall shear stress (WSS) in large-eddy simulations (LESs)
using a graph neural network (GNN) that directly operates on the mesh of the simulation. In LESs of
turbulent flows, wall modeling enables the use of coarser meshes, that are not able to resolve the velocity
gradients in the inner viscous and buffer regions of the near-wall boundary layers. This ability relieves the
grid-point and time-step requirements of LES as the Reynolds number increases (Yang andGriffin, 2021),
and is key to the LES of complex industrial flows. Indeed, the use of a no-slip boundary condition requires
an accurate resolution of the entire boundary layer, including the viscous sublayer. While LESs do not
require the direct computation of the smaller turbulence length scales, even the most energetic integral
length scales decrease in size near the walls hence preventing further coarsening in the wall-normal
direction and constraining the time step of the simulation. This is often intractable in complex flows and in
flows at high Reynolds number, as the number of grid points required to resolve the near-wall region
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becomes prohibitive. Wall models have been reviewed in Larsson et al. (2016) and Bose and Park (2018).
The most common and classical approach is the algebraic equilibrium wall model, which imposes the
WSS as a Neumann-type boundary condition by enforcing the law of the wall locally (Deardorff, 1970;
Schumann, 1975; Piomelli et al., 1989). This assumption is relevant in fully developed boundary layers,
for which the law of thewall holds in themean, but cannot generally be assumed to hold in complex flows,
notably in the presence of strong adverse pressure gradients, curvature, separated, or transitional boundary
layers.

Several alternative wall models have been proposed in the literature. Bose and Moin (2014) and Bae
et al. (2019) suggested a slip wall model that provides a boundary condition for the wall-parallel velocity.
Chung and Pullin (2009), Inoue and Pullin (2011), Saito et al. (2012), andGao et al. (2019) have coupled a
stretched-vortex subgrid-scale model with a virtual wall model that terminates the LES domain at a finite
distance from the wall. A large class of methods models theWSS using a strategy that combines LES and
Reynolds-average Navier–Stokes (RANS) simulation. This includes zonal methods that solve the RANS
or thin-boundary-layer equations (Cabot, 1995; Balaras et al., 1996; Baurle et al., 2003; Davidson and
Peng, 2003; Temmerman et al., 2005; Piomelli, 2008). This is computationally expensive since the grid
resolution requirements are not necessarily lower than would be in a wall-resolved LES, although the
boundary-layer equations are less expensive to resolve. The integral wall model introduced by Yang et al.
(2015) and extended by Catchirayer et al. (2018) use a parameterized velocity profile to avoid the
numerical integration of the boundary-layer equations. Wall models based on control theory have also
been suggested, in which theWSS is imposed so as to lead to the target mean velocity profile, either given
by the law of the law or a coupled RANS model (Nicoud et al., 2001; Templeton et al., 2006; 2008).
Recently, the usemachine-learningmethodologies tomodel theWSShas finally been proposed by several
authors. Yang et al. (2019) developed a data-driven wall-stress model in a turbulent channel flow. Huang
et al. (2019) compared data-driven and physics-based approaches in a spanwise rotating channel. Zhou
et al. (2021) assessed a data-driven wall model for the turbulent flow over periodic hills. Lozano-Durán
and Bae (2020) applied a self-critical machine-learning wall model to a wing-fuselage juncture flow,
Zangeneh (2021) developed a data-driven wall model for supersonic separated flows. Bhaskaran et al.
(2021) has trained a wall model for a boundary layer in the presence of shock-boundary layer interaction.
Bae and Koumoutsakos (2022) assessed a multi-agent reinforcement learning approach to wall modeling
in a turbulent channel flow. Radhakrishnan et al. (2021) developed a wall model based on gradient
boosted decision trees. Dupuy et al. (2022) investigated the data-driven wall modeling of turbulent
separated flows. These efforts may be seen as part of a broader movement to introduce data-driven
methods to the field of turbulence simulation andmodeling (Duraisamy et al., 2019; Brunton et al., 2020).
This has been motivated by the recent emergence of data-driven approaches with capability beyond those
of handcrafted models in various complex tasks, such as image classification, speech recognition, natural
language processing, short-term weather prediction, or protein structure prediction (LeCun et al., 2015;
Jumper et al., 2021; Ravuri et al., 2021). Supervised machine-learning wall-shear-stress models have
proven capable of discriminating and operating in non-equilibrium flow regions, provided that similar
flow phenomena were encountered in the training dataset (Dupuy et al., 2022).

The studies on machine-learning wall-shear-stress modeling have demonstrated the advantages of
going beyond algebraic formulations and capturing topological flow features to improve the wall friction
prediction. However, a challenge with nonlocal models is defining this topological extraction in a general
manner that applies to any complex geometry. As an example, multipoint stencils might exit the flow
domain in small nooks or sharp concave corners. The present study proposes a general formulation that is
adaptable to any mesh, without any concern for how to implement it geometrically, by exploiting GNNs
that rely on the datamesh itself. This work directly allows the use of data on unstructuredmeshes similarly
to Lozano-Durán and Bae (2020), which is the first study to apply a machine-learning wall-shear-stress
model in an unstructured-grid simulation. In their study, the input data from the flow simulation are
interpolated on a local Cartesian grid to feed the inputs of the wall-shear-stress model, arranged in a
predefined stellated arrangement with uniform spacing. By contrast, the present machine-learning model
is a topologically aware wall-shear-stress model that directly operates on the unstructured mesh of the
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simulation. This is achieved by using a GNNwherein the mesh of the simulation is represented as a graph.
Neural networks operating on graphs were first used by Gori et al. (2005) and have demonstrated their
effectiveness in various tasks, for instance, visual scene understanding, multi-agent systems, relational
reasoning, or graph classification (Scarselli et al., 2008; Bruna et al., 2013; Sukhbaatar et al., 2016;
Bronstein et al., 2017; Gilmer et al., 2017; Raposo et al., 2017; Santoro et al., 2017; Kipf et al., 2018).
GNNs were also used by various authors to learn the dynamics of physical systems, including fluid flows
(Battaglia et al., 2016; Chang et al., 2016; Watters et al., 2017; Sanchez-Gonzalez et al., 2018; Van
Steenkiste et al., 2018; Pfaff et al., 2020; Chen et al., 2021; Gao et al., 2022). A review may be found in
Battaglia et al. (2018) or Zhou et al. (2020). The relevance of GNNs to wall-shear-stress modeling can be
hypothesized from its potential ability to detect geometric features, such as angles and curvature. In
addition, the architecture of GNNs encodes some physical assumptions that are relevant for a wall-shear-
stress model and therefore may ease the training process and increase the generalizability of the model,
such as translational invariance and an inherent bias toward spatial locality.

The ability of a GNN to model the WSS is investigated in this paper using both a priori tests, based on
filtered numerical data, and a posteriori tests, based on LESs implementing such models. A database of
seven direct numerical simulations or high-fidelity wall-resolved LESs is used to train the model and
validate themodel: two channel-flow simulations, the simulation of the flow in a diffuser, two simulations
of flows over backward-facing steps (BFSs) and two simulations of flows in a linear blade cascade. This
provides a variety of flow phenomena, including fully developed boundary layers, adverse pressure
gradients, separated boundary layers, and laminar–turbulent transition. Instantaneous snapshots from
each simulation are filtered onto coarse meshes representative of a LESwith a wall-shear-stress model, of
which only near-wall nodes are used by the model for its prediction. The analysis is restricted to coarse
tetrahedral meshes, for their ubiquity in simulations of complex industrial flows, although the method
could in principle be applied to any type of mesh. An Encode-Process-Decode architecture (Battaglia
et al., 2018) is used for theGNN,with no global features to ensure the spatial locality of the prediction. The
inputs of the model are the displacement vector of the mesh edges and the three components of velocity at
each node, scaled to ensure the Mach number invariance of the model at the incompressible limit, and
augmented by arbitrary rotations and reflections of the coordinate system. The model is implemented a
posteriori by coupling the compressible massively parallel flow solver AVBP (Schönfeld and Rudgyard,
1999 to a code dedicated to inference, using a message passing interface (MPI; Serhani et al., 2022). A
channel flow, a BFS and a linear blade cascade configuration are simulated for these a posteriori tests. In
each case, the simulations are compared to the corresponding simulation using an algebraic model based
on the law of the wall to assess the relevance of the model.

The paper is organized as follows. The dataset and the preparation of the data for the machine-learning
model is presented in Section 2. The architecture of the GNN is described in Section 3. The results are
analyzed and discussed in Section 4.

2. Dataset and Data Preparation

2.1. Dataset

The machine-learning wall-shear-stress model developed in this paper relies on a database of direct
numerical simulations or high-fidelity wall-resolved LESswhich have been produced by various research
groups (Figure 1). Namely, the database includes the simulations of: a fully developed channel flow at
friction Reynolds number Re τ ¼ 180 (CF1), performed at Imperial College London (Agostini and
Vincent, 2020) using the high-order flux reconstruction method of Huynh (2007) in the CFD code PyFR
(Witherden et al., 2014); a fully developed channel flow at friction Reynolds number Re τ ¼ 950 (CF2),
performed at the Polytechnic University of Madrid (Del Álamo and Jiménez, 2003; Lozano-Durán and
Jiménez, 2014; 2015) using a hybrid Fourier–Chebyshev spectral method; a three-dimensional diffuser
(3DD) corresponding to the geometry “Diffuser 1” of Cherry et al. (2008), performed at Barcelona
Supercomputing Center (Ercoftac, 2022) using the low-dissipation finite element scheme of Lehmkuhl
et al. (2019); a BFS, performed at CERFACS (Pouech et al., 2019; Pouech et al., 2021) using a cell-vertex
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finite-element method (Schönfeld and Rudgyard, 1999 with second-order accurate convection and
diffusion schemes (Lax and Wendroff, 1960); a curved BFS based on the geometry of Disotell and
Rumsey (Disotell and Rumsey, 2017; Alaya et al., 2020), hereafter referred to as adverse-pressure-
gradient (APG) simulation and performed at the University of Bergamo (Ercoftac, 2022) using discon-
tinuous Galerkin method and a fifth order linearly implicit Rosenbrock scheme (Bassi et al., 2015; 2016);
and a NACA 65-009 blade cascade (N65) such as studied experimentally by Ma et al. (2011) and
Zambonini et al. (2017), performed using a cell-vertex finite-element method (Schönfeld and Rudgyard,
1999 and a two-step Taylor–Galerkin scheme (Colin and Rudgyard, 2000). The N65 case is subdivided
into two sub-configurations that differ only by the inlet boundary condition: a simulation with an
incidence angle of 4° (N65a) and a simulation with an incidence angle of 7° (N65b). The two simulations
are described in Appendix C. The database is heterogeneous in terms of flow solvers and numerical
methods since the 3DD, BFS, N65a, andN65b simulations were performed using finite-element methods,

(a) Turbulent channel flow (CF1, CF2)

(b) Three-dimensional diffuser (3DD)

(c) Backward-facing step (BFS)

(d) Adverse pressure gradient (APG)

(e) NACA 65-009 blade cascade (N65)

Figure 1. Geometry of the six simulations in the database. The blue regions are separated in the mean.
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the CF1 and APG simulations using high-order methods and the CF2 simulation using a spectral method.
We believe that data-driven modeling approaches should demonstrate their ability to learn from such
heterogeneous databases because heterogeneous databases can more easily scale and cover a large
diversity of flow configurations. The numerical parameters of each simulation are summarized in Table 1.

A wide variety of flow behavior is represented by the dataset. The CF1 and CF2 simulations are
focused on providing data on fully developed boundary layers. The 3DD and BFS simulations include
fully separated flow regions. The APG simulation includes regions of incipient separation, that is with a
backflow probability between 1 and 20% (Simpson, 1989). The N65a and N65b simulations include
transitional boundary layers, through small-scale flow separation, on the blade surface, a light adverse
pressure gradient as well as a large region of unsteady three-dimensional corner separation on the junction
between the endwall and the suction side of the blade. For a given model to produce accurate predictions
in all simulations, an ability to discriminate between these various flow regimes will thus be required.

2.2. Data preparation

The instantaneous fields of the a priori database need to be preprocessed for use by the machine-learning
procedure. Namely, the fields are filtered onto coarse meshes representative of a LES with a wall-shear-
stress model, as is customary in a priori tests for LES (Leonard, 1974; Sagaut, 2006). We focus on
tetrahedral meshes, for their simplicity, their ability to represent arbitrarily complex domains and
widespread use in simulations of complex industrial flows. The preparation of the data for the
machine-learning algorithm is represented in Figure 1 and is as follows:

1. For each simulation, a series of coarse tetrahedral meshes are constructed using themesh adaptation
libraryMMG3D (Dobrzynski and Frey, 2008; Dapogny et al., 2014). All coarse tetrahedral meshes
have a uniform target refinement, although there are local variations of cell sizes resulting from the
meshing algorithm, since regular tetrahedra do not fill space (as may be seen in Figure 2). To select
the refinement level, a particular flow region is used to define the nominalWSS of each simulation.
Those are: the channel walls in the simulations CF1 and CF2, the bottom wall upstream of the
expansion in the 3DD simulation, the boundary layer upstream of the step in the APG and BFS
simulations, and the boundary layer upstream of the blade in the N65a and N65b simulations.
Coarse tetrahedral meshes are produced for 12 different refinement levels for each simulation, with
a nominal edge length in wall units, in the regions listed above, in the range 25 ≤ eþ ≤ 80. This
implies that the trained GNN can only operate on meshes that are within this range of mesh
refinement in terms of scaled edge length.

2. For each coarse tetrahedral mesh, the neighborhood of the target walls is selected, by preserving
only nodes separated from the target wallsW byNH edges or less. The resulting tetrahedral meshes

Table 1. Numerical parameters of the numerical simulation included in the a priori database.

Simulation Numerical method Mesh size

Channel flow Re τ ¼ 180 (CF1) High-order flux reconstruction 0.07 M cells, ℙ5 (�)
Channel flow Re τ ¼ 950 (CF2) Hybrid Fourier–Chebyshev 100 M cells
Three-dimensional diffuser (3DD) Low-dissipation FE scheme 250 M cells
Backward-facing step (BFS) Second-order FE scheme 40 M cells
Adverse pressure gradient (APG) Implicit high-order DG scheme 15 M cells, ℙ3 (þ)

[App. A] NACA 65-009 blade (N65a) Taylor–Galerkin FE scheme 273 M cells
[App. A] NACA 65-009 blade (N65b) Taylor–Galerkin FE scheme 273 M cells

Note. The acronym FE denotes a finite element method, DG a discontinuous Galerkin method, and ℙn indicates the use of nth order polynomials in the
case of high-ordermethods. Note that due to the use of high-order polynomial, the effective number of solution points is (�) 15M in the CF1 simulation
and (þ) 960 M in the APG simulation.
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are conformal and referred to as coarse near-wall meshes hereafter. Unless otherwise specified,
NH ¼ 3 is used.

3. A fine tetrahedral mesh is produced, associated with a nominal edge length eþ ¼ 4. The instant-
aneous fields of the a priori database are interpolated linearly onto this fine mesh. The resulting
fields are used as source data for the filtering operation.

4. The instantaneous data are filtered onto and at the resolution of the coarse near-wall meshes. This
low-pass filtering operation attenuates large frequencies, associated with turbulent scales that
cannot be resolved using the target computational grid. A surface filter is used to filter theWSS and
a volume filter is used to filter the velocity components in the bulk of the domain. We denote (�) the
volume filter associated with the local filter width ~Δp0 ¼ ~V

1=3
p0

and (�S) the surface filter associated
with the local filter width ~Δ

S
p0
¼ ~S

1=2
p0

, with ~Vp0 and
~Sp0 , respectively, the nodal volume of node p0

and the nodal area of p0 on the surface W. The volume and surface filters are truncated Gaussian
filters weighted by the local cell volume or face area,

ϕ p0ð Þ¼
X
p∈wp0

Cp0Vpe
� rp�rp0

2 σp0ð Þ2ϕ pð Þ, (1)

ϕ
S
p0ð Þ¼

X
p∈wS

p0

CS
p0
Spe

� rp�rp0

2 σSp0ð Þ2ϕ pð Þ, (2)

withCp0 andC
S
p0
normalization constants, selected such that a¼ aS ¼ a for any constant a, Vp, and

Sp, respectively, the nodal volume and face area associated with the source fine mesh and σp0 ¼
~Δp0=

ffiffiffiffiffi
12

p
and σSp0 ¼ ~Δ

S
p0
=
ffiffiffiffiffi
12

p
, respectively, the standard deviations of the volume and surface

Gaussian kernels, following Leonard (1974). The volume filter windowwp0 associatedwith a point
p0 of the target coarse near-wall mesh is restricted in the wall-normal direction to avoid biasing the
mean velocity profile:

wp0 ¼ p∈Pf : ∥rp� rp0∥ ≤ ~Δp0∧jDW,p�DW,p0 j ≤
1
2
~Δ1,p0

� �
, (3)

Figure 2. Preprocessing steps required to prepare the data for the training procedure.
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with Pf the set of points of the source mesh, rp the position vector associated with point p, and
DW,p the shortest distance between p and the target walls W. The window wS

p0
¼

p∈Pf : ∥rp� rp0∥≤~Δ
S
p0
∧DW,p ¼ 0

n o
of the surface filter is isotropic.

5. The Gaussian filter defined above leads to a small bias on the velocity profile. In particular, the mean
Gaussian-filtered velocity is slightly lower than mean unfiltered velocity in the case of a fully
developed boundary layer. This bias is compensated for by correcting the filtered velocity as follows:

u∗ ¼ uþ 〈u〉� 〈u〉, (4)

with u∗ the corrected filtered velocity and where 〈u〉 and 〈u〉 are assessed using the time-average
fields from each simulation.

6. The resulting data are partitioned into contiguous chunks of similar size using the graph partitioning
libraryMETIS (Karypis and Kumar, 1998). This helps producingmini-batches of consistent size to
fit in the dynamic memory of the graphics processing unit (GPU) during training. In addition,
subdividing the data into smaller chunks allows for more diversity in each mini-batch, by
aggregating small regions of different simulations, which reduces noise in the optimization process.

3. Graph Neural Network

The wall-shear-stress model developed in this paper is a GNN, and more specifically uses an Encode-
Process-Decode architecture (Battaglia et al., 2018). The GNNs used in the present study are feedforward
deep learning models that aim to exploit the structure of the data in high dimension to predict the shear
stress at the wall. Indeed, GNNs can involve a relatively large number of points in the prediction, which
immerses the learning problem in a high-dimensional space. The high-dimensional nature of the learning
problem may reduce the inherent ambiguities of the WSS prediction, by allowing the model to
discriminate between different types of local flow configurations. For instance, a minimal capacity would
be needed to allow the model to identify that a boundary layer is separated (Dupuy et al., 2022). In
addition, the use of information in a region for the prediction might allow the model to take into account
the space displacement associated with regions of high correlations with the WSS (Boxho et al., 2022).
More specifically, GNNs are used for their ability to work directly with unstructured mesh data, without
requiring the prior interpolation of the data. This ability is important for LESs in complex geometries, with
angles, corners, or curvature. Finally, the architecture of the GNNs is physically well suited to the
modeling of the WSS. First, the model is biased toward spatial locality, such that nearby grid points will
more easily influence the prediction than grid points that are far away. Second, the model is invariant to
translation as the same learned function is applied everywhere in the domain. In addition to the physical
assumptions related to the model architecture, the present learning process ensures the equivariance of the
model to Galilean transformations, orthogonal transformations such as rotations or reflections, and
“changes of scales,” hereafter referred to as Mach number equivariance. We furthermore assume that
the flow is isothermal incompressible and obeys the incompressible Navier–Stokes equations without
external body force. This is consistent with the selection of simulations in the database of Section 2.1,
which involves neither significant temperature variations nor compressibility effects.

3.1. Model architecture

Each sample mesh produced in Section 2.2 is represented as a symmetric directed graph G¼ V,Eð Þ,
where V is the set of nodes and E the set of directed edges. The number of nodes is denoted nv and the
number of edges ne. Let vi ∈ V be the ith node of the graph and ek ¼ vS kð Þ,vR kð Þ

� �
∈E an edge pointing

from vS kð Þ to vR kð Þ. The input of the model is the ordered pair X ¼ V ,Eð Þ, where V ∈ℝnv�dv is the node
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input features, whose ith elementVi ∈ ℝdv represents the input features at node vi, andE∈ℝne�de the edge
input features, whose kth element Ek ∈ ℝde represents the input features at edge ek. The output of the
model is the node vector Y ∈ℝnv�1. With an Encode-Process-Decode architecture (Battaglia et al., 2018),
the output of the GNN may be expressed as

Y ¼ f γ Xð Þ¼ f δ ∘ f Nπ ∘… ∘ f 2π ∘ f 1π ∘ f ε Xð Þ, (5)

where f ε, f
1
π , f

2
π ,…, f Nπ and f δ are the encoder, processor, and decoder, respectively (Figure 3). The

architecture of the model is described below:

3.1.1. Encoder
The input features are encoded into a latent space of size dL ¼ 128 for both nodes and edges,

L0 ¼ bV 0
, bE0

� �
¼ f ε Xð Þ, with bV 0

∈ℝnv�dL and bE0
∈ℝne�dL . The encoding is performed independently

at each node or edge by bV0
i ¼ f Vε Við Þ and bE0

k ¼ f Eε Ekð Þ, where f Vε and f Eε are two multilayer perceptrons.

3.1.2. Processor
The latent space is transformed by the successive application ofN¼ 4message-passing steps, with residual

connections. The latent space after n steps, Ln ¼ bVn
,bEn

� �
¼Ln�1þ f π Ln�1

� �
, is given by bVn

i ¼ bVn�1
i þ

f Vπ bVn�1
i ,

P
k∣R kð Þ¼i

bEn
k

� �
and bEn

k ¼ bEn�1
k þ f Eπ bEn�1

k , bVn�1
S kð Þ, bVn�1

R kð Þ
� �

, where f Vπ and f Eπ are two multilayer

perceptrons.

3.1.3. Decoder
The latent space after the last message-passing step is decoded back to physical space at nodes only,

Yi ¼ f Vδ bVN
i

� �
, with f Vδ a multilayer perceptron.

Figure 3. Graphical representation of the Encode-Process-Decode architecture.
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The same encoding, processing, and decoding functions are learned and applied everywhere in the
graph. Hence, the message-passing steps in the processor will propagate the information through the edge
and nodes to predict the WSS on every wall nodes.

The multilayer perceptrons f Vε , f
E
ε , f

V
π , and f

E
π each have nℓ ¼ 2 layers composed of dL neural units and

followed by layer normalization (Ba et al., 2016). The output of the ith neuron of hidden layerℓ is given by

z ið Þ
ℓ ¼w ið Þ

ℓ

z ið Þ
ℓ � 〈z ið Þ

ℓ 〉Fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
〈 z ið Þ

ℓ � 〈z ið Þ
ℓ 〉F

� �2
〉F

r þb
ið Þ
ℓ , (6)

where 〈�〉F denotes an average across features and with

z ið Þ
ℓ ¼ σ

X
j

w i,jð Þ
ℓ z jð Þ

ℓ�1þb ið Þ
ℓ

 !
, (7)

where the weights and biases w ið Þ
ℓ , w i,jð Þ

ℓ , b
ið Þ
ℓ , and b ið Þ

ℓ are learnable parameters and σ the activation
function, namely a rectified linear unit σ xð Þ¼ max 0,xð Þ in the present work. Themultilayer perceptron f Vδ
has nℓþ1 hidden layers, the first nℓ layers being as described above and the last layer a linear layer with
one neural unit,

znℓ ¼
X
j

w jð Þ
nℓ z

jð Þ
nℓ�1ð Þ þbnℓ : (8)

The weights of the network are initialized using a truncated normal distribution, discarding and
redrawing values beyond two standard deviations, and trained using theAdamoptimizer (Kingma andBa,
2015) with a base learning rate of 0.001. The loss function is the mean squared error (MSE) between the
predicted WSS and the reference WSS,

L¼ 〈χ τSref �Y
� �2

〉A, (9)

where 〈�〉A denotes an average across graph nodes and samples and χ a target boundary mask, with χ¼ 1
on the target wall nodes W and χ¼ 0 elsewhere. The training time is 20 hr using a single NVIDIA A30
GPU unit.

3.2. Feature selection

The input of the GNNWSS model is given by dv ¼ 4 node input features and de ¼ 4 edge input features.
The node input features are the target boundary mask χ and the three components of the scaled velocity
vector ��u∗, defined as

��u∗ ¼ u∗〈∥e∥〉G=〈ν〉G, (10)

where 〈∥e∥〉G is the average edge length of a given graph G and 〈ν〉G the average kinematic viscosity.
Note that the average viscosity is included in the scaling since, although all the flows considered are
incompressible, some of the numerical methods used are based on the compressible Navier–Stokes
equations, which results in negligible but nonzero variations of viscosity. Following Pfaff et al. (2020), the
de ¼ 4 edge input features are the three components of the scaled displacement vector of the edge ě , with
ě¼ e=〈∥e∥〉G, and its magnitude ∥ ě ∥. The edge and node input features are taken on the entire graph of
the neural network. However, only a limited region will influence the prediction of the WSS at a given
node. This region is the receptive field of the model, governed by the number of message-passing stepsN
as represented schematically in Figure 4. In accordance with the scaling of the input velocity (10), the
target WSS is scaled as

τSref ¼ τSref 〈∥e∥〉G=〈ν〉Gð Þ2=〈ρ〉G, (11)
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where 〈ρ〉G is the average density and with τ the norm of the shear stress vector τ¼Σ � en�ðen �Σ � enÞen,
where Σ¼ μ ∇uþ ∇uð ÞT � 2=3ð Þ ∇ �uð ÞId

� �
is the viscous stress tensor and en a unit wall-normal vector.

The equivariance of the model under several transformations is ensured by the selection of input
features, as reported in Table 2. The orthogonal equivariance of the model, that is its equivariance under
rotations and reflections, is ensured by data augmentation: for each sample graph, a random three-
dimensional rotation and reflection is applied onto the input edge displacement vectors and velocity
vectors. To ensure that the predictions of the model do not depend on the coordinate system, the
components of the scaled edge displacement vector ě and scaled velocity vector ��u∗ are expressed in a
basis arbitrarily rotated and reflected for each graph. The Galilean invariance of the model is ensured by
using the wall as an intrinsic velocity reference, that is, by using as input feature, the relative velocity of
the flow with respect to the wall velocity. The Mach number equivariance of the model, or namely
the equivariance of the model to a change of scale of velocity, density, viscosity, or length, is ensured
by the scaling ( �^) of the input and target features. Indeed, the scaled variables tend to a constant as the
Mach number of the flow tends to zero, at constant Reynolds number and mesh resolution (Paolucci,
1982). In other words, for an isothermal incompressible flow without external body force, the scaled
variables depend on the Reynolds number of the flow, which governs the flow physics, but are unaffected
by a change of Mach number, which is not a relevant physical parameter. This scaling is a natural
extension of the scaling used by Dupuy et al. (2022) for a Cartesian grid. It is purely local and only
involves quantities that can be computed in a LES. Enforcing the equivariance of the model under these
transformations increases the sample efficiency of each graph in the numerical dataset and improves the
generalization of the model to different configurations.

4. Results

4.1. A priori tests

This section presents a priori tests of the machine-learning wall-shear-stress model, based solely on the
numerical database described in Section 2.1. The model is trained using the simulations CF1, CF2, 3DD,
and N65a. In each training simulation, a subset of the data is isolated for validation purpose. The split
between training and validation datasets is performed independently for each simulation. In the CF1, CF2,
and 3DD simulations, the snapshots associated with the later time steps are reserved for validation
purpose. The BFS and APG simulations are only used as test simulations, to test the performance of the

(a) N = 1 (b) N = 2 (c) N = 3 (d) N = 4

Figure 4. Effect of the number of message-passing steps N on the receptive field of the graph neural
network (red shaded area) for the prediction of the wall shear stress on a given target node (yellow node).

(a) N¼ 1. (b) N¼ 2. (c) N ¼ 3. (d) N¼ 4.

Table 2. Strategies used to enforce the equivariance of the machine-learning model to various
transformations.

Equivariance Strategy

Orthogonal equivariance Data augmentation
Galilean equivariance Invariant input features
Mach number equivariance Scaling of input features
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model on configurations not seen during training. For the N65 configuration, training is exclusively
performed on the sub-configuration N65a, that is with an incidence angle I¼ 4°, while testing is
exclusively performed on the sub-configuration N65b, that is with an incidence angle I¼ 7°. This is
summarized in Table 3.

In order to assess a priori the relevance of the GNN WSS model, the behavior of the model in each
simulation is first analyzed using uþ yþð Þ graph wherein the predicted local WSS is used to compute the
wall-unit scaling (þ). The results are reported in Figure 5 along with corresponding data based on the
referenceWSS. Agreement or departure of both reference data andmodel prediction from fully developed
equilibrium wall turbulence is emphasized by comparing the instantaneous data points to the analytical
profile of Reichardt (1951),

uþ yþð Þ¼ 1
κ
log 1þκyþð Þþ7:8 1� exp

�yþ

11

	 

� yþ

11
exp

�yþ

3

	 
� �
, (12)

with κ¼ 0:41 the von Kármán constant. It should be emphasized that, except in the case of the channel-
flow simulations, Reichardt’s law is not a reference but rather as a baseline, indicative of what a model
with insufficient capacity would predict. In the two channel-flow simulations (CF1 and CF2), the
reference data points are scattered around the law of the wall, with a large variance associated with
velocity and WSS fluctuations. This behavior is reproduced by the model, but the variance of the data
points around Reichardt’s law is clearly underestimated. In the 3DD simulation, most data points are
scattered below Reichardt’s law in the uþ yþð Þ graph, which is consistent with the presence of separated
regions. The GNNWSSmodel reproduces this behavior, although the predictions are more biased toward
the law of the wall and extreme points well above Reichardt’s law are missing at low yþ. The presence of
data points that deviates from the law of the wall is also correctly predicted by the model in the test BFS
and APG simulations, suggesting reliable generalization to other flow configurations with separation.
Finally, the NACA 65-009 blade simulation (N65b) is most saliently associated with a transitional
boundary layer on the blade surface, and most data points are found above Reichardt’s law on the uþ yþð Þ
graph. This is qualitatively reproduced by the model but with a clearly lower variance. Overall, the model
thus leads to markedly different distributions of uþ yþð Þ in each simulation, indicating an ability to locally
discriminate, to some extent, between the various type of boundary layers, fully developed, separated, or
transitional, present in the numerical database.

Several quantitative measures of the agreement between the predicted WSS and corresponding local
instantaneous referenceWSS are given in Table 4. First, we use the concordance coefficient of Lin (1989)
between the predicted WSS Y and the reference WSS τref , defined as

Cτ ¼ 〈τrefY〉A� 〈τref 〉A〈Y〉A
〈τ2ref 〉A� 〈τref 〉

2
Aþ 〈Y2〉A� 〈Y〉2Aþ 〈τref 〉A� 〈Y〉Að Þ2 : (13)

Table 3. Simulations used for the training and validation of the graph neural network WSS model, for
a priori tests and for a posteriori tests.

Simulation Train/validation A priori test A posteriori test

Channel flow Re τ ¼ 180 (CF1) Yes — —
Channel flow Re τ ¼ 950 (CF2) Yes — Yes
Channel flow Re τ ¼ 2000 — — Yes
Three-dimensional diffuser (3DD) Yes — —
Backward-facing step (BFS) — Yes Yes
Adverse pressure gradient (APG) — Yes —
NACA 65-009 blade, I ¼ 4° (N65a) Yes — —
NACA 65-009 blade, I ¼ 7° (N65b) — Yes Yes
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ModelReference

CF1

CF2

3DD

BFS

APG

N65b

Figure 5. A priori validation: Norm of the scaled tangential velocity uþ as a function of the scaled
distance to the wall yþ in the CF1, CF2, 3DD, BFS, APG, and N65b datasets using the local reference
wall shear stress (left) or the prediction of the graph neural network WSS model (right) to compute the

wall unit scaling (þ). The red line is Reichardt’s law, given by equation (12).
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In addition, the explained varianceR2 is used to compare the variance of the residual of themodel to the
underlying WSS variance:

R2 ¼ 1� 〈 τref �Yð Þ2〉A
〈 τref � 〈τref 〉ð Þ2〉A

: (14)

The Reichardt-residual explained variance similarly compares the model residual to the residual that
would be obtained using Reichardt’s law to compute the WSS,

R2,Reichardt ¼ 1� 〈 τref �Yð Þ2〉A
〈 τref � τReichardtð Þ2〉A

: (15)

The concordance coefficient Cτ is equal to zero if there is no linear correlation between the model and
the reference and equal to 1 if and only if the predicted WSS is equal to the reference WSS for each time
step. The explained varianceR2 is equal to zero if the variance of the residual is equal to the reference shear
stress variance and positive if it is lower. In other words, the coefficient R2 compares the model to a
constant model that always returns the mean value of the data. The Reichardt-residual explained variance
R2,Reichardt instead compares the model to Reichardt’s law (12). Namely, R2,Reichardt is equal to zero is the
variance of the residual is equal to the variance of the residual of a model based on Reichardt’s law,
positive if it is lower, and negative if Reichardt’s law is more accurate than the GNNWSS model. This is
particularly relevant in flows where the analytical profile of Reichardt (1951) is suitable, such as fully
developed turbulent channel flows. As for Cτ, both R2 and R2,Reichardt are equal to 1 for an ideal model.
Note that the values obtained for different datasets can only be compared with great care, since these three
indicators depend not only on the intrinsic performance of the model but also on the underlying
distribution of the data. For instance, the value of Cτ associated with Reichardt’s law is larger in the
3DD and BFS simulations than in the TCF1 and TCF2 simulations, although the model performs worse in
these two simulations. In all simulations, the GNNWSS model agrees well with the reference WSS and
improves by all measures the results compared to Reichardt’s law baseline. Even in the case of a channel
flow (case CF1 or CF2), for which the law of the wall is most well suited, the GNNWSS model reduces
the residual variance of a model based on Reichardt’s law by around a third. Figure 6 shows that this
variance reduction is consistently obtained for a wide range of distances to the wall. In the 3DD, BFS, and
N65b simulations on the other hand, variations of model performance with yþ may be observed. In
particular, very low value of yþ are associated with a very large value of R2,Reichardt because those
corresponds to separated flow regions that are not accurately described by Reichardt’s law.

Finally, the instantaneous agreement between the predicted and reference WSS is reflected in a
improvement of the time- and space-average predicted WSS, as may be seen Figure 7. Note that the

Table 4. A priori validation: Integral measures of the disagreement between the reference wall shear
stress and the prediction of the graph neural network WSS model in the CF1, CF2, 3DD, BFS, APG,

and N65b datasets.

Simulation

Reichardt’s law GNN model

Cτ R2 R2,Reichardt Cτ R2 R2,Reichardt

CF1 0.48 0.01 0.00 0.60 0.37 0.37
CF2 0.56 0.19 0.00 0.67 0.48 0.36
DD 0.73 0.48 0.00 0.81 0.66 0.34
BFS 0.75 0.53 0.00 0.86 0.76 0.50
APG 0.84 0.60 0.00 0.89 0.77 0.42
N65b 0.57 �0.31 0.00 0.72 0.56 0.67
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profiles ofWSS in Figure 7 have not been scaled in order to explicitly show that the model can operate on
flows that have widely different scales, thanks to the scaling used for themodel inputs. In accordance with
the instantaneous results, a law-of-the-wall model based on Reichardt’s law greatly underestimates the
meanWSS in the BFS simulation after x=hs ¼ 2 and overestimates the meanWSS in the N65b simulation
upstream of the blade and near the leading edge. In theAPG simulation, themeanWSS is overestimated in
the region of positive curvature (x=Rmax < 1) and slightly underestimated in the region of negative
curvature (x=Rmax > 1). In each case, the GNN WSS model improves the average WSS prediction and
leads to predictions that are close to the reference value. This demonstrates that the model is able to
leverage the instantaneous spatial information to improve the mean WSS prediction, even when
generalizing to cases that are not seen in the training dataset. A parametric study of the influence of
the number ofmessage-passing stepsN on this ability has been performed. This parameter is related to the
capacity of the GNN since it controls the size of the receptive field of the GNN WSS model (4). The
results, provided in Appendix A, demonstrate that a number of message-passing stepsN ≥ 3 is required to
properly predict theWSS in the various flows included in our dataset. This is intuitively understood by the
fact that the GNNWSSmodel needs to use information in a relatively large region to immerse the learning
problem in the high dimensional space required to reduce the ambiguities associated with the WSS
prediction and discriminate between various flow configurations. The value N¼ 4 used in the present
study is thus suitable.

4.2. A posteriori tests

This section investigates the machine-learning wall-shear-stress model a posteriori, that is, by performing
simulations implementing the GNN. All simulations presented in this section are performed using a
compressible, unstructured and massively parallel flow solver (AVBP; Schönfeld and Rudgyard, 1999),
coupled to a code dedicated to the inference of the GNN. The coupling approach is described in Serhani
et al. (2022), but the computational cost of themodel is also briefly discussed in Appendix B. At each time
step, data are extracted from the fields of the simulation in the vicinity of walls to create near-wall graphs,
sent to the GNN using the MPI. The inference is distributed to a number of GPU according to a specific
data partitioning, independent of the CPU partitioning. The GPU partitions have an overlap correspond-
ing to the number of message-passing steps N of the model, to ensure that each partition contains the
receptive field required for theWSS computation (Figure 7), and accordingly that the model prediction is
independent of the number of partitions. The resulting predictedWSS is then sent back tomain flow solver
to impose the boundary condition. The numerical method used in all simulations is similar and relies on
the resolution of compressible LES equations with the ideal gas equation of state and an explicit time
stepping scheme.

Figure 6. A priori validation: Reichardt-residual explained variance (R2,Reichardt) in the CF1, CF2, 3DD,
BFS, APG, and N65b datasets conditioned on the scaled distance to the wall yþ.
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4.2.1. Governing equations
The governing equations of the LESs are:

∂tρþ∂j ρUj
� �¼ 0, (16)

∂t ρUið Þþ∂j ρUjUi
� �¼�∂iPþ∂jΣij, (17)

∂t ρEð Þþ∂j ρUjH
� �¼�∂jQj�∂j UjP

� �þ∂j UjΣij

� �
, (18)

P¼ rρT , (19)

(a) Backward-facing step (BFS)

(b) Adverse pressure gradient (APG)

(c) NACA 65-009 blade cascade (N65b) (†)

Figure 7. A priori validation: Average prediction of a model based on Reichardt’s law and of the graph
neural network WSS model. The average is performed in both time and spanwise direction in the BFS
simulation (a), the APG simulation (b), and the N65b simulation (c) on the blade surface. (†) On the blade
surface of the N65b simulation, the mean wall shear stress is for clarity reported with positive values for

the suction side of the blade and negative values for the pressure side of the blade.
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with ρ the filtered density, t the time, U the Favre-filtered velocity, x the Cartesian coordinate, P the
filtered pressure, Q the conductive heat flux, E the total energy per unit mass, H¼EþP=ρ the total
enthalpy per unit mass, and r the specific ideal gas constant. Density and temperature, which do not
experience significant variations in our test cases, are hence resolved nonetheless by the numerical
method. The fluid is air. No external body force or heat source are taken into account. Temperature is
computed using tabulated data from Stull and Prophet (1971) based on internal energy e¼E� 1

2UiUi.
The viscous stress tensor and conductive heat flux are computed assuming a Newtonian fluid under
Stokes’ hypothesis and Fourier’s law while subgrid-scale stresses are modeled using an eddy-viscosity
model. The stress tensor Σ is, thus, given by

Σij ¼ μþμsgs
� �

∂Ui

∂xj
þ∂Uj

∂xi
�2
3
∂Uk

∂xk
δij

	 

, (20)

where δij denotes the Kronecker delta.

4.2.2. Channel flow
Several test cases have been selected to verify a posteriori the relevance of the GNNWSS model. First, a
simulation of a fully developed turbulent channel flow at friction Reynolds number Re τ ¼ 950 is
performed. The goal is to ensure that the model is able to match in a channel flow the performance of
classical algebraic wall stress models. The domain is a rectangular channel of size 12:6hc�2hc�6:3hc,
where hc is the half-height of the channel. The mesh is fully tetrahedral and contains 2 million grid points.
It is referred to as the original mesh (O) hereafter. The mean edge length is Δþ ¼ 50 in wall units, and the
mean first off-the-wall grid point height is yþ ¼ 37, which is within the logarithmic layer. A cell-vertex
finite-element method is used to discretize equations (16)–(19). The convective scheme is a two-step
Taylor–Galerkin scheme with third-order spatial and temporal accuracy (Colin and Rudgyard, 2000),
while the diffusive scheme is a centered second-order scheme. The subgrid-scale viscosity is computed
using the Smagorinsky’s model (Smagorinsky, 1963). The profiles of mean streamwise velocity and
standard deviation of streamwise velocity, given in Figure 8, clearly show that a simulation with a GNN
WSS model leads to similar results to an algebraic model based on the law of the wall. For both models,
there is, however, a non-negligible discrepancy between the LESs and the reference profiles of Hoyas and
Jiménez (2008). In particular, there is a mismatch between the logarithmic layers in the velocity profile.
This mismatch is well documented in the literature for shear stress models and is due to numerical and
subgrid-modeling errors in the first few grid points (Larsson et al., 2016; Bose and Park, 2018). In the
context of algebraic wall modeling, Kawai and Larsson (2012) proposed a method to address the issue of
logarithmic-layer mismatch by using as input the velocity farther from the wall, at least three cells within
the large-eddy-simulation grid, rather than the velocity at the first off-the-wall point.

The approach of Kawai and Larsson (2012) can be adapted to the case of a GNN WSS model, by
arguing that since the velocity close to the wall is more affected by numerical and subgrid-scale modeling
errors, only the velocity far from the wall should be considered for the prediction of the GNN. This
hypothesis is tested by training a dedicated GNN WSS model that only uses the grid points three
neighbors away from the wall for its prediction, that is the grid points that are separated from the target
wallsW by exactly three edges. The a posteriori results obtained with this model in the case of a channel
flow are given in Figure 9. The logarithmic-layer mismatch is greatly reduced using the GNNWSSmodel
that ignores the grid points too close to the wall. This explicitly demonstrates that the approach of Kawai
and Larsson (2012), well acknowledged for algebraic wall models, can be readily adapted to the case of a
machine-learning wall-shear-stress model. However, this approach has the significant drawback of
withholding valuable near-wall data from the model, that although not necessary in a channel flow
may be more critical in more complex flows and geometries.

The grid sensitivity of the results is assessed by performing a posteriori LESs of the channel flow for
two additional levels of refinement, namely a finer mesh (F) associated with a mean first off-the-wall grid
point height yþ ¼ 27 and a coarser mesh (C) associated with a mean first off-the-wall grid point height
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yþ ¼ 54. With the Fmesh (finer mesh), the GNNWSSmodel lead to a more accurate velocity profile than
the law-of-the-wall model (Figure 10a). This is likely due to the fact that the majority of first off-the-wall
grid points are located within the buffer layer, thus outside the domain of validity of the logarithmic law of
the wall. With the C mesh (coarser mesh), the GNN WSS model and the law-of-the-wall model lead to
almost identical results (Figure 10b). The logarithmic-layer mismatch observed in the velocity profile can,
as with the original meshO, be removed by applying the approach proposed byKawai and Larsson (2012)
to the GNN WSS model with the mesh C. However, this solution does not lead to a significant
improvement with the mesh F, which exhibits a less pronounced logarithmic-layer mismatch.

Finally, the simulation of a fully developed turbulent channel flow at friction Reynolds number Re τ ¼
2000 is performed to verify that the GNN WSS model can operate for a different Reynolds number,
outside of the range of friction Reynolds numbers seen during training (Re τ ¼ 180 and 950). The
geometry and the numerical method are the same as for the LES at Re τ ¼ 950. The mesh refinement is
similar to the mesh refinement of the original mesh (O) used at Re τ ¼ 950. Namely, the mean first off-the-

Figure 8. A posteriori validation: (a) Mean streamwise velocity and (b) standard deviation of streamwise
velocity in large-eddy simulations of a channel flow at friction Reynolds number Re τ ¼ 950 with an
algebraic wall stress model and a graph neural network WSS model. The unfiltered direct numerical

simulation profile of Hoyas and Jiménez (2008) is given for comparison.

Figure 9. A posteriori validation: (a) Mean streamwise velocity and (b) standard deviation of streamwise
velocity in large-eddy simulations of a channel flow at friction Reynolds number Re τ ¼ 950 with a graph
neural network WSS model without restrictions (GNN model) and a graph neural network WSS model
that only uses the grid points at least three neighbors away from the wall for its prediction (GNN model,
far inputs). The unfiltered direct numerical simulation profile of Hoyas and Jiménez (2008) is given for

comparison.
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wall grid point height is yþ ¼ 37. The profiles of mean streamwise velocity and standard deviation of
streamwise velocity are given in Figure 11. The results demonstrate that theGNNWSSmodel performs as
well as an algebraic model based on the equilibrium law of the wall at Re τ ¼ 2000. As in the simulation at
Re τ ¼ 950, the velocity profile features a logarithmic-layer mismatch in both simulations. The
logarithmic-layer mismatch can be removed by applying the approach proposed by Kawai and Larsson
(2012) to the GNN WSS model (Figure 11), as described above for the case Re τ ¼ 950. For clarity, we
stress that although we did not perform simulations to demonstrate it, the approach of Kawai and Larsson
(2012) could be applied to remove the logarithmic-layer mismatch with an algebraic law-of-the-wall
model, as was proposed and performed in the literature Kawai and Larsson (2012). Overall, the
performance of the present GNN WSS model is thus satisfactory for the a posteriori simulation of a
channel flow at both Re τ ¼ 950 and Re τ ¼ 2000.

4.2.3. Backward-facing step
TheLES of the flow over aBFS using aGNNWSSmodel is addressed in this section. The configuration is
similar to the simulation BFS described in Section 2.1, which was not included in the training dataset. The
expansion ratioER¼ Lyþhs

� �
=Ly of the step, where Ly is the inlet channel height and hs the step height, is

equal to 1.2. The Reynolds number based on hs and the inflow bulk velocity is Reh ¼ 5100. The inlet is
located 10 hs before the step. At the inlet, the mean streamwise velocity profile of the wall-resolved
simulation of Dupuy et al. (2022) is imposed with the characteristic nonreflecting boundary condition of
Poinsot and Lele (1992). In addition, isotropic fluctuations are imposed following the turbulence kinetic

Figure 10. A posteriori validation: Mean streamwise velocity and standard deviation of streamwise
velocity in large-eddy simulations of a channel flow at friction Reynolds number Re τ ¼ 950 with the

(a) meshes F (finer mesh) and (b) C (coarser mesh). The unfiltered direct numerical simulation profile of
Hoyas and Jiménez (2008) is given for comparison.
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energy profile of the wall-resolved simulation using the approach of Kraichnan (1970). At the outlet,
located 20 hs after the step, a constant pressure of 1 bar is imposed. The spanwise length of the domain is
12 hs. Periodic boundary conditions are used on the side walls. A symmetric boundary condition, that is a
zero shear stress and a zero wall-normal velocity, is imposed at the upper boundary of the computational
domain. The convective and diffusive schemes are second-order accurate (Lax andWendroff, 1960). The
subgrid-scale viscosity is computed using the Sigma model (Nicoud et al., 2011). The mesh contains
0.9 million grid points. The mean first off-the-wall grid point height is yþ ¼ 41 in wall units, based on the
WSS of the boundary layer upstream of the step to compute the wall-unit scaling, and in the range
yþ ¼ 20–25 in the separated region downstream of the step. However, a specific refinement is performed
farther from thewall, near the interface between the inlet boundary layer and the separated region. A close-
up view of the mesh around the refined region is given in Figure 12.

Wall-modeled LESs performed using an algebraic shear stress model based on the law of the wall and
GNN WSS models are compared in Figure 13. Simulations are performed with up to N¼ 5 message-
passing steps in order to study a posteriori the influence of the number of steps on the ability of the model
to detect separation. The GNNWSS model is only applied on the bottom wall after the step to guarantee
that all simulations have the same velocity profile upstream of the step. Overall, the mean velocity
downstream of the step is mostly governed by the influence of the shear layer induced by the step. The
influence of the GNN WSS model may nevertheless be observed near the onset of the mean backflow
region (x=hs ¼ 0–2). In particular, the presence of a region of positive streamwise velocity at the bottom
corner of the step is predicted with N ¼ 2 or above, in consistency with the reference high-fidelity
simulation, whereas it is absent in the simulation with an algebraic wall stress model. As may be seen in
Figure 14, the velocity profiles from x=hs ¼ 3 to further downstream are almost identical regardless of the
wall-shear-stress model used.

The profile of meanWSS along the wall is reported in Figure 15. With the algebraic wall stress model,
the predicted WSS is accurate near the step (x=hs < 2) and far from the step (x=hs > 12) but underesti-
mated in the backflow and reattachment regions. The GNNWSS models improve the prediction in these
non-equilibrium regions, by increasing the predicted WSS. The increase in WSS is negligible with N¼ 1
but substantial already with N ¼ 2. The improvements from N ¼ 3 to N¼ 5 are rather small. Even with
N¼ 5, the peak WSS remain underestimated compared to the reference high-fidelity simulation. It is
difficult to disentangle the many possible sources of errors in LESs and determine the contribution of the
wall-shear-stress model, the subgrid-scale model and the numerical scheme to the remaining discrepancy

Figure 11. A posteriori validation: (a) Mean streamwise velocity and (b) standard deviation of stream-
wise velocity in large-eddy simulations of a channel flow at friction Reynolds number Re τ ¼ 2000with an
algebraic wall stress model, a graph neural network WSS model without restrictions (GNN model) and a
graph neural network WSS model that only uses the grid points at least three neighbors away from the
wall for its prediction (GNN model, far inputs). The unfiltered direct numerical simulation profile of

Hoyas and Jiménez (2008) is given for comparison.

Data-Centric Engineering e7-19

https://doi.org/10.1017/dce.2023.2 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2023.2


with the reference simulation. Note in addition that since the present shear-stress modeling paradigm only
considers the magnitude of the WSS, the shear stress vector is assumed to be aligned with the tangential
velocity at the first point above the wall. This assumption is unrealistic near the reattachment point, and
leads to a significant underestimation of the reattachment point location in all LESs (Figure 16). TheMSE
between the shear stress of the LESs and the reference wall-resolved simulation is given in Table 5. The
table summarizes the fact that, for this particular simulation, the model associated with N ¼ 4 message-

Figure 12. Cross-section of the mesh around the refined region in the x–y plane.

Figure 13. A posteriori validation: Mean streamwise velocity in the flow over a backward-facing step
according to (a) the reference wall-resolved simulation, (b) a large-eddy simulation with an algebraic
wall stress model, and (c–g) graph neural network WSS models. The contour lines denote the level

sets�4,�2, 0, 4, 8, 12, and 16m/s. There are no values within the first large-eddy-simulation cell because
the large-eddy simulations do not provide a physical velocity at the wall.
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passing steps leads to more accurate results than the algebraic model based on the law of the wall. Hence,
these a posteriori results are consistent with the a priori tests of Section 4.1 and confirms that a GNNWSS
model can lead to large improvements over a model based on the law of the wall for turbulent separated
flows.

4.2.4. Linear blade cascade
Finally, the simulation of a linear blade cascade has been performed with an algebraic model based on the
law of the wall and a GNNWSS model. The configuration is similar to the simulation N65b described in
Section 2.1 and Appendix A, which was not included in the training dataset. The blade geometry is a
linearly extruded NACA 65-009 airfoil profile (Abbott et al., 1945), of chord c¼ 0:15m, attached to flat
endwalls with turbulent incoming boundary layers. The geometric parameters of the blade and operating
point conditions are reported in Table 6. The Reynolds number of this test case is representative of typical
compressor blades. The flow is subsonic, with a low freestream Mach number. The incidence angle is
I¼ 7°. The computational domain of the simulation is periodic in the pitchwise direction, implying that
each blade is subject to the same flow field. In the spanwise direction, only half a blade has been simulated
with a symmetry condition imposed at mid-span. These assumptions have been checked in the

Figure 14. A posteriori validation: Profile of mean streamwise velocity in the flow over a backward-
facing step at the location x=hs ¼ 1, 3, 7, 9, scaled by the free-stream velocity u0. The horizontal solid line

gives the height of the first point off the wall.

Figure 15.Aposteriori validation:Meanwall shear stress profile in the flow over a backward-facing step.
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experimental campaigns and were shown to be sufficiently valid (Ma et al., 2011). We denote x the axial
direction, y the pitchwise direction, and z the wall-normal direction. The origin of the coordinate system
x,y,zð Þ is placed at the intersection of the leading edge of the blade and the endwall. A curvilinear
coordinate s1 is also defined on the blade surface, where s1 is zero at the leading edge of the blade, positive
on the suction side of the blade and negative on the pressure side of the blade. The inlet plane is located at
xinlet=c¼�3:65 and the outlet plane at xoutlet=c¼ 2:98. The pitchwise length of the domain is s¼ 0:89c.
At the inlet, the experimental velocity profile of Zambonini et al. (2017) is imposed using the charac-
teristic nonreflecting boundary condition of Poinsot and Lele (1992). The nonreflecting boundary
condition of Granet et al. (2010) is used to impose a constant pressure of 1 standard atmosphere at the
outlet. At the top boundary of the domain, located h¼ 1:23c above thewall, there is a symmetric boundary
condition which imposes the normal velocity and the normal gradients of velocity, temperature, and
pressure to zero. A rectangular step of width 0.017 c and height 0.015 c, located 0.085 c after the inlet,
triggers the transition of the inlet endwall boundary layer. A rectangular step is also placed on the suction
side and pressure side of the blade surface, to reproduce the effect of the sandpapers used in the
experiments and trigger turbulence transition. The blade steps are sized similarly to the sandpapers
present in the experiments. However, the inlet step does not correspond to a feature present in the wind
tunnel; the experimental incoming endwall turbulent boundary layer is originating from further upstream
and hence cannot be reproduced numerically without simulating the entire wind tunnel.

Two LESs are performed: a simulation using an algebraic shear stress model based on the law of the
wall and a simulation using the GNNWSS model. In both cases, a second-order accurate scheme is used

Figure 16.A posteriori validation:Mean streamwise component of the wall shear stress vector in the flow
over a backward-facing step. The numerical results of Le et al. (1997) are given for reference.

Table 5. A posteriori validation: Integral measures of the disagreement between the reference wall
shear stress in the flow over a backward-facing step and the wall shear stress predicted by large-eddy

simulations with an algebraic wall stress model and graph neural network WSS models.

Simulation
R 14hs
0 τ� τrefð Þ2dx, N2/m2 R 14hs

0 τx� τxrefð Þ2dx, N2/m2

LES with law-of-the-wall model 0.806 0.686
LES with GNN model, N ¼ 1 0.687 0.585
LES with GNN model, N ¼ 2 0.217 0.311
LES with GNN model, N ¼ 3 0.120 0.302
LES with GNN model, N ¼ 4 0.067 0.308
LES with GNN model, N ¼ 5 0.066 0.367
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for convection (Lax andWendroff, 1960) and diffusion. The subgrid-scale viscosity is computed using the
Sigma model (Nicoud et al., 2011). The mesh of the LESs is fully tetrahedral and contains 15 million grid
points in total. The mesh is more refined around the leading edge in order to resolve the effect of the
tripping steps (Figure 17). Outside this region, the mesh refinement near the blade is uniform. In wall
units, the edge length varies in the range Δþ ¼ 40–Δþ ¼ 90 on the blade surface, and accordingly the first
off-the-wall grid point height on the blade surface varies from yþ ¼ 30 to yþ ¼ 67 due to the spatial
variation of the WSS.

A comparison of the mean static pressure coefficient on the blade surface obtained in the reference
wall-resolved simulation and in the LESs is given in Figure 18. The static pressure coefficient Cp is
defined as

Cp ¼ p�p∞
ps,∞�p∞

, (21)

Table 6. Geometric parameters and operating point conditions of the linear cascade (left)
and schematic representation of the notations used (right).

Figure 17. Cross-section of the mesh around the refined region in the x–z plane.
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where p is the local static pressure and ps,∞ and p∞ the reference inlet stagnation and static pressures,
respectively. The profile of the pressure coefficient on the pressure side of the blade is well reproduced by
the LESs both at z=h¼ 5:4%, near the endwall, and at z=h¼ 46%, near mid-height. At z=h¼ 5:4%, the
plateau of static pressure coefficient in the aft part of the suction side, associated with the presence of a
corner separation region, is shorter in the two LESs, in particular with theGNNWSSmodel. The contours
of mean axial velocity (Figure 19) confirms that the corner separation region on the suction side occurs
closer to the trailing edge in the two LESs than in the reference wall-resolved simulation. The coefficient
of stagnation pressure lossωs ¼ ps,∞�ps

� �
= ps,∞�p∞
� �

downstream of the trailing edge of the two LESs
is compared to that of the reference wall-resolved simulation in Figure 20. In the two LESs, the wake has a
wider footprint and the influence of the corner separation region does not extend as far away from the
endwall.

Figure 18. A posteriori validation: Mean static pressure coefficient on the blade close to the endwall
(a) and at mid-height (b). The upper branch corresponds to the pressure side of the blade and the bottom

branch corresponds to the suction side of the blade.

Figure 19. A posteriori validation: Mean axial velocity on the plane z=h¼ 3% in the flow around the
NACA 65-009 blade according to (a) the reference wall-resolved simulation, (b) a large-eddy simulation

with an algebraic wall stress model, and (c) the graph neural network WSS model.
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The profile ofmeanWSS along the blade is reported inFigure 21. ThemeanWSS is overestimated by the
LES with the algebraic wall stress model on the pressure side and on the suction side in the accelerating
region near the leading edge. TheGNNWSSmodel leads to a lowerWSS amplitude in these regions, which
leads to a clear improvement compared to the baseline algebraicmodel. However, theWSS is overestimated
in the region of corner separation by the LESwith theGNNWSSmodel, while the simulationwith a law-of-
the-wall algebraic model leads to a more accurate prediction in that region. This clearly demonstrates that a
priori improvements do not always materialize into a posteriori improvements in all locations. This can be
attributed to a discrepancy between the fields resulting from the filtering of direct numerical simulation data
and the fields of LESs. It is difficult to assesswhether this discrepancy is the responsibility of thewall-shear-
stress model or other types of numerical or modeling errors. Overall, we thus consider that the generaliz-
ability of the model in the case of compressor blade cascades is still uncertain.

5. Conclusion

A machine-learning wall-shear-stress model has been developed based on reference simulations of the
flow in a smooth channel, in a 3DD and in a linear blade cascade. The model directly operates on the
unstructured mesh of the simulation and is thus directly applicable in LESs of complex industrial flows.
The relevance of the model has been verified a priori using simulations of the flow over a BFS not used

Figure 20. A posteriori validation: Stagnation pressure loss coefficient ωs at 36.3% axial chord
downstream from trailing edge in (a) the reference wall-resolved simulation, (b) a large-eddy simulation
with an algebraic wall stress model, and (c) a large-eddy simulation with the graph neural network WSS

model.

Figure 21. A posteriori validation: Mean wall shear stress profile on the blade surface, averaged in the
spanwise direction.
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during training and the simulation of a linear cascade at a larger incidence angle than used during training.
The model showed a good agreement with the reference WSS and an ability to discriminate between the
fully developed turbulent boundary layers, separated flow regions, and transitional boundary layers. The
ability of themodel to detect separated regions and improve the predictions of a model based on the law of
the wall has been demonstrated in an a posteriori setting for the BFS simulation. Furthermore, the model
was also able tomatch the performance of amodel based on the law of thewall in a channel flow, for which
it is well suited, although it is subject to the same classical issue of logarithmic-layer mismatch. The GNN
WSS model also improves the WSS prediction on the pressure side of a blade in a linear cascade, and on
the suction side of the blade in the region directly after a tripping step. However, the GNNWSS model is
not strictly superior to an algebraic equilibriumwall model in that case, since theWSS is overestimated in
the region of corner separation on the suction side of the blade. Overall, this paper demonstrates that
graph-based models are a promising tool to address the problem of wall-shear-stress modeling. Improve-
ments to the machine-learning methodology would require a better understanding of the transition from a
priori tests to a posteriori tests, and of the relationship between the wall-shear-stress model, the subgrid-
scale model and the numerical scheme. This study shows the value of data-driven efforts toward wall-
shear-stress modeling in realistic solvers. This justifies further efforts to assemble even more compre-
hensive and varied databases, which are critical to produce more accurate and robust models.
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Appendix A. Influence of the Number of Message-Passing Steps
This section studies a priori the influence of the number of message-passing steps N on the model performance. Graph neural
network (GNN) wall-shear-stress models with N from 1 to 5 have been trained. Figure A1 shows the mean wall shear stress (WSS)
prediction in each case. A very low number of message-passing steps (N ¼ 1) is found unable to accurately discriminate separated
regions as in particular theWSS increase in the backflow region of the BFS simulation (x=hs ¼ 2–4) is not reproduced by the model.
Gradual improvements are observed as larger values of N are used. In the case of the backward-facing step (BFS) simulation, the
mean predictedWSS in the separated region is greatly increased fromN¼ 1 toN¼ 3, while the improvements fromN¼ 3 toN¼ 5
are more limited. In the adverse-pressure-gradient (APG) simulation, more accurate results are obtained throughout the domain with
N¼ 4 or 5message-passing steps. In the NACA 65-009 blade simulation (N65b), the meanWSS prediction slowly converges as the
number ofmessage-passing steps is increased, so that almost identical results are obtained withN¼ 3,N¼ 4, orN¼ 5. These results
support the choice of the baseline value N¼ 4 in the present study.

Figure A1. Average prediction of a model based on Reichardt’s law and of graph neural network WSS
models with several numbers of message-passing steps N. The average is performed in both time and
spanwise direction in the BFS simulation (a), the APG simulation (b), and the N65b simulation (c) on the
blade surface. On the blade surface of the N65b simulation, the mean wall shear stress is for clarity

reported with positive values for the suction side of the blade and negative values for the pressure side of
the blade.
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Appendix B. Computational Cost of the Model
The implementation and computational cost of the GNNWSS model has been discussed in Serhani et al. (2022). In particular, we
studied the computational cost of the model for the NACA 65-009 simulation. The simulation has been benchmarked on the Jean–
Zay super-computing cluster with hybrid nodes containing 40 CPU cores (Intel Cascade Lake 6248 2.5 GHz) and 4 GPUs (Nvidia
Tesla V100 SXM2 32GB). TheGNN prediction is executed exclusively on the GPUS, concurrently to parts of the LES schemes.We
define the deep-learning (DL) overhead as

DL overhead¼Cost of  wall� shear� stress prediction

þ cost of  communications

� cost of  overlapped LES computations:

(22)

It represents the additional cost induced by the addition of the GNN WSS model on a given hybrid node. Figure B1 gives the
overhead of the model (DL overhead) for 2–16 hybrid nodes. The deep learning overhead ranges from 0 to 11% of the total iteration
cost in that case. Future works should consider the computational cost in the model development.

Appendix C. Wall-Resolved Simulation of the NACA 65-009 Blade Cascade
This section presents the wall-resolved simulations of the NACA 65-009 blade cascade, used to train the GNNWSSmodel and for a
priori and a posteriori tests. The geometric configuration and operating point conditions of the wall-resolved simulations are the
same as used for the large-eddy simulations (LESs) with a wall-shear-stress model (Section 4.2.4, Table 6). Two wall-resolved LES
have been performed: with an incidence angle I¼ 4° (N65a) and with an incidence angle I ¼ 7° (N65b). In both cases, the
corresponding experimental velocity profiles of Zambonini et al. (2017) are imposed at the inlet, using the characteristic
nonreflecting boundary condition of Poinsot and Lele (1992). At the outlet, a constant pressure of 1 standard atmosphere is
imposed using the nonreflecting boundary condition of Granet et al. (2010). A symmetric boundary condition is used at the top
boundary of the domain and a no-slip boundary condition is used on the blade surface and endwall. The computational domain is
periodic in the pitchwise direction. The governing equations are the compressible LES equations given in Section 4.2.1. These
equations are discretized and advanced in time using a cell-vertex finite-element method with a two-step Taylor–Galerkin scheme of
third-order spatial and temporal accuracy (Colin and Rudgyard, 2000) for convection and a second-order centered scheme for
diffusion. The numerical simulations are performed using the hybrid flow solver AVBP (Schönfeld and Rudgyard, 1999. The same
mesh is used for the two wall-resolved LESs. The mesh is hybrid: the near-wall regions are discretized using triangular prisms and
the rest of the domain using tetrahedra. There are 27 prismatic layers on the blade and endwall surface. The prismatic layers on the
endwall end at x=c¼ 2:4. Pyramidal cells are used to smoothly transition to tetrahedral cells. The number of prisms is 85�106,
the number of pyramids is 1�104 and the number of tetrahedra is 188�106. The total number of cells is 273 million. The height of
the first point off the wall is Δzþ ¼ 0:7 on the incoming endwall boundary layer, and below 1 everywhere except at the leading edge

Figure B1.Overhead of the deep-learning wall-shear-stress model per iteration for 2, 4, 6, and 16 hybrid
nodes.
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of the blade and near the tripping steps, which induce a small separation region. Averaged flow statistics are computed over 10 inlet
flow characteristic times c=Uinlet .

An overview of the flow is given in Figure C1. The case is characterized by a complex boundary-layer dynamics on the surface of
the blade. While the boundary layer is laminar near the leading edge of the blade, transition to turbulence is induced by rectangular
tripping stepswhich aim to reproduce the effect of the experimental sandpapers. There is a three-dimensional separation region in the
corner between the suction side of the blade and the endwall. The size of the corner separation region depends on the incidence angle
of the incoming boundary layer, as investigated byMa et al. (2011). The distribution of themean static pressure coefficientCp on the
blade surface is compared to the reference results of Gao et al. (2015) with I¼ 4° in Figure C2. The present wall-resolved LES
reproduces accurately the expected profiles, both near the endwall and at mid-height. The distribution of Cp with I¼ 7°, also
reported in Figure C2, exhibits a larger plateau in the aft part of the suction side, as the corner separation region is larger in that case.
Figure C3 compares the coefficient of stagnation pressure lossωs downstream of the trailing edge to the reference results ofGao et al.
(2015) with I ¼ 4° and Zambonini et al. (2017) with I¼ 7°. The increase in the extent of losses region at the larger incidence angle
I ¼ 7∘ compared to I¼ 4° is qualitatively reproduced by thewall-resolved LESs. However, the amplitude of the pressure losses is for
both incidence angle lower than in the experimental measurements. Finally, Figure C4 compares the evolution of the tangential
velocity profiles on the suction side of the blade to the numerical results and experimental laser-Doppler anemometry (LDA) and

Figure C1. Overview of the flow in the wall-resolved simulation of the linear blade cascade with an
incidence angle of 7°. The colors are isocontours of Q-criterion. The flow has been duplicated along the
periodic pitchwise direction for clarity.Ⓐ: Rectangular tripping step inducing turbulence transition on
the blade.Ⓑ: Incoming boundary layer.Ⓒ: Region of corner separation on the suction side of the blade.

Ⓓ: Horseshoe vortex at the leading edge of the blade.

Figure C2.Mean static pressure coefficientCp on the blade close to the endwall (a) and at mid-height (b),
compared to the experimental and numerical results of Gao et al. (2015) with an incidence angle of 4°.
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particle image velocimetry (PIV) measurements of Gao et al. (2015), with an incidence angle of 4°. A good agreement is found
between the present wall-resolved LES and the references. At mid-height, the increase in boundary layer thickness from the leading
edge of the blade to the trailing edge is well reproduced by our simulation. The corresponding decrease of the peak tangential
velocity toward the trailing edge of the blade is also consistent between the present simulation and the reference WRLES, PIV, and
LDA results. Close to the endwall, the boundary layer is attached in the accelerating region near the leading edge but is detached in
the corner separation region near the trailing edge. There is a qualitative agreement between the boundary layer profiles in both
regions. However, the onset of the separated region in the present simulation is at s1 ¼ 0:68, which is closer to the trailing edge that in
the wall-resolved simulation of Gao et al. (2015). Accordingly, the peak tangential velocity upstream and downstream of the
separation region is slightly overestimated and underestimated, respectively, compared to this prior simulation. With a larger
incidence angle of 7°, the onset separated region at z=h¼ 1:4% is closer to the leading edge, near the station s1 ¼ 0:5 (Figure C4c),
since the velocity gradient at this location is close to zero. The separated region also extends far from the wall in that case, since at
mid-height the boundary layer close to the trailing edge of the blade is nearly separated (Figure C4f). Overall, the present numerical
simulations recover the blade boundary-layer dynamics reported in the literature and capture accurately the impact of the incidence
angle on the corner separation.

Figure C3. Stagnation pressure loss coefficient ωs at 36.3% axial chord downstream from trailing edge,
compared to the experimental and numerical results of Gao et al. (2015) with an incidence angle of 4° and

to the experimental results of Zambonini et al. (2017) with an incidence angle of 7°.
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FigureC4.Profile of tangential velocity on the suction side of the blade close to the endwall (a, c, e) and at
mid-height (b, d, f), compared to the laser-Doppler anemometry (LDA), particle image velocimetry (PIV),

and numerical WRLES results of Gao et al. (2015) with an incidence angle of 4°.
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