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1. Introduction. For f € S (i.e., a Schwartz class function) define

dsdt
st

1,1
Hj,f (x,y,z) =p.v. [,1/,1‘/{()6 —s5,y—tz—P(s1)

where P(s, t) is a real-valued polynomial in s and ¢. Carbery, Wainger and Wright
determined the necessary and sufficient condition on the polynomial P so that Hj,, is
L? bounded for 1 < p < co. We state their result.

THEOREM 1.1. Forany p, 1 < p < oo,

1 Hioe Iy < Apll fllr

iff for each (m, n) that is a corner point of the Newton diagram corresponding to P, at
least one of m and n is even.

In this paper, we determine a necessary and sufficient condition on P so that the
(global) double Hilbert transform defined by

dsdt
st

Hf(x,y,z):p.v.[ [ f(x—s,y—1t z— P(s, 1)

is bounded on L”, 1 < p < oo. The operator is defined for / € S by integrating where
€ <|s]| < R, e <|t] <R, and then, taking the limits as €,¢’ — 0 and R, R — +o0.
We now state the main result of this paper.

Let P(s, t) = Z(m,n)e A AmnS"'t" be a polynomial with real coefficients such that
P(0,0) =0, VP(0,0) = 0 and where A is indexing the set of lattice points (m, n) € Z>
such that a,, , # 0.

Let C be the closed convex hull of A in R? and

D = {(m, n) € A : (m, n) is a corner point (vertex) of C}.
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THEOREM 1.2 Main Theorem. Foranyp, 1 < p < oo,

1Hf lr < Apllflle

if and only if for each (m, n) € D, at least one of m and n is even and furthermore, if any
(extended) edge of C passes through the origin (there are at most two such edges), then
every point of A on that edge must have at least one even coordinate.

We note thatthe 17, 1 < p < oo, boundedness of the maximal functions associated
to H or Hj,.is not an issue here. This follows easily (without any condition on P and also
independent of the coefficients of P) from [4, Theorem 7.1] and de Leeuw’s theorem.

We now give the organisation of our paper. In Section 2, we discuss a few known
results about the maximal and singular integral operators and then begin with the
proof of sufficiency part of our main theorem. To do this, we initially assume that
none of the edges of C pass through the origin and later adapt this proof to the other
case. In Section 3, we decompose the operator H by splitting the region of integration
where we can replace P(s, t) by one of the monomials corresponding to a corner point
of the convex hull C, with an error that is bounded on L”. In Section 4, we define
the approximating operators and obtain a few preliminary estimates. In Section 5, we
prove the I/ boundedness of the difference (error) between H and the approximating
operators using certain results of Duoandikoetxea and Rubio de Francia that we quote
in Section 2. In Section 6, we prove the 7 boundedness of the approximating operators
using a result of Ricci and Stein. In Section 7, we discuss the proof of the sufficiency
part assuming that C has an edge through the origin. In Section 8, we discuss the
proof of the sufficiency part in the particular cases excluded from the outset. Finally
in Section 9, we discuss the necessary part of the hypothesis of the main theorem.

Apart from some technical difficulties in extending the result of [2], the main
difficulty is to tackle the case of an edge through the origin. The method of decomposing
the operator H into finitely many operators and introducing approximating operators
in Sections 3 and 4 is almost the same as in [2]. Our method differs from [2] while
handling the difference between H and the approximating operators in Section 5. In
[2], this has been done using the standard Littlewood—Paley theory that do not seem
to work here.

One may wonder what happens to Theorem 1.2 if P is assumed to be a real-analytic
function? But the assumption that P is a polynomial helps significantly while proving
estimate (12) of Lemma 4.2 and while determining a positive number o in estimate (13)
of Lemma 5.2. If one can achieve this with a real-analytic P, then the assumption that
P is a polynomial in Theorem 1.2 could possibly be replaced by the assumption that P
is a real-analytic function.

2. A few known results. Here, we shall state two theorems (with a different
formulation) due to J. Duoandikoetxea and J. L. Rubio de Francia [3] and a result
that is due to Ricci and Stein [4]. We shall need these results while proving our main
theorem. We begin with some notation and terminology.

e LetR” =R" x R"" with 1 <m < n, and write x € R” in the form x = (x°, %), x* €
R”, X € R"™™. Then, given a finite measure w on R”, we define another measure »®
on R” as 0 (E) = w(E x R"™) for every Borel subset £ of R"; in terms of Fourier
transforms, this means w(©@(z%) = &(¢°, 0). Also, if f is a Schwartz function in R”,
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then
<f 0 >= / (X do(x°, X).

e We use the dilations given by the family of matrices {A4(?)};>0 satisfying A(st) =
A(s)A(¢) and the Riviére condition. That is, for each ¢ > 0, A(t) € GL(n, R), and

lA@DA™ (50l < C/s¢ (M

foralls > 1, all t > 0, some € > 0 and some C > 1. We also assume that the norm
is the /2-operator norm. For example,

o ()
()

on R? are easily seen to satisfy the Riviére condition with € = min(oy, 03) if oy and
o, are positive. It is not hard to see that (1) holds if and only if A(¢) = exp{Blogt}
for some real matix B each of whose eigen value has a positive real part.

With these definitions, we have the following two theorems due to I
Duoandikoetxea and J. L. Rubio de Francia.

THEOREM 2.1. Let {wy )32 _ . be probability measures in R" such that

(6%, §) — (¢, 0)] < ClAQR )| ©)
@r(c°, 0 < ClAQR ™ ™ 3)

where ¢ = (% ¢2)eR,¢"eR" ¢ eR"™ and a > 0. Suppose that Mg(x") =
supk|w,(co) x g(x)| is a bounded operator on LP(R™) for all p > 1. Then, Mf(x)=
supy|wk * f(x)| is also bounded on LP(R") for all p > 1.

THEOREM 2.2. Let {p}32 _ ., be measures such that || p ||< 1 and

1P(¢%, DI < Cmin(|AQ2 )¢, 427771 )

where ¢ =(¢°,¢) e R, ¢% e R, ¢ € R"and a > 0. Suppose that p*f = supy,|| px| * f|
is bounded on LY(R"). Then, Tf = Y% pi * f and g(f) = (3 lox * f1?) 12 are bounded
on LP(R") for |117 — %| < %}

Moreover, the I/ — [’ norm of the operator M in Theorem 2.1 does not depend
on the family {w;}72 _ in the sense that it can be controlled by the constant ‘C” of (2)
and (3), the constant of Riviére condition and the I” — L” norm of the operator M°.
Similarly, the 7 — [” norm of the operator T and g in Theorem 2.2 can be controlled
by the constant ‘C’ of (4), the constant of Riviére condition and the LY — L7 norm of
the operator p*.

Next we state a theorem that is a special case of a general result of Ricci and Stein
[4, Theorem 5.1]. For each I = (p, q) € Z?, let 1V denote the associated finite measure
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supported in the unit cube of R3. Define the dilated 11\” of 1 by

/ fdu = / F@7x, 270, 2772~ ) duD(x, y, 2),
R R

where m and n are fixed integers. Then, we have the following result.

THEOREM 2.3 (Ricci and Stein). Suppose
(i) [uD(E) = C(1 + [E])~< for some C, € > 0;
(i1) |//_,L(\I)| < o € B(R") (finite Borel measure),
(iii) u(re;) =0 for all . € Rand 1 < j < 3, where {e;} form the canonical basis for
R3. Furthermore, if either n or m is zero, then u(&,, 0, &) = 0 or uD(0, &, &) =
0, respectively.
Then, convolution with the kernel K =", _, ,u(ll) is bounded on I’ (R%), 1 < p < oc.

We shall use the above theorems in the proof of our main theorem that we give
now.

Back to main theorem (Theorem 1.2). We begin with a few remarks about the
statement of our main theorem.

* The constant 4, of Theorem 1.2 depends on p as well as the polynomial P.
e Throughout ‘edge of C’ means an extended edge.
¢ Throughout the proof of the theorem, ‘C’ denotes a general constant.

We first give the proof of the sufficiency part of the main theorem. That is, we
assume that every corner point of C and also every point of A on an edge of C through
the origin (if it exists) have at least one even coordinate. Under this assumption, we
shall show that H is L” bounded for 1 < p < oo. For this, we shall initially assume that
C has at least three corner points so that the interior of C is non-empty. The proof of
the other particular cases will be discussed later.

We initially assume that no edge of C passes through the origin and later adapt
this proof to the other case.

3. Decomposition of the operator H. We choose a C* function ¥ (s) defined on
the real line that is odd, non-negative for s > 0, supported in 1/2 < |s| < 2 and such
that

> 2y(2rs) = 1/s.

pel

We then define
H,,f(x,y,2)= or+q //f(x —5,y—t,z— P(s, )y (2Ps)y(29¢) ds dr. (5)

Thus,

H= Y Hy,

(P.9)eLXZ
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We next consider the orientation of the boundary of C to be anticlockwise and
assume that it has r (>3) corner points namely vy, v, . .., v, in the anticlockwise order.
Welet v; = (mj, nj) for1 <j<r

Then, C has r edges that we denote by the vectors vjv;.1 = vjy1 —vjfor1 <j <,
considering the point v, the same as the corner pointv;. For 1 <j < r,letn; = (n}, n]?)
denote the (inward) normal vector to the edge v;v;;1 of C. Also, we choose 7; such
that n! and »? are integers. (Such a choice is not unique but the choice does not matter
here.) Since C is the closed convex hull of A, geometrically it is now easy to see that

(v—v)-n-1>0 and (v—v)-7; >0 forallveA. (6)
For 1 <j <r, define

TG)={p.9) €eZLxXZL:(p.q)-(v—v) >0 forallv=(m, n) e A\{v;}}
m . ) e ZLxXZ:(p,q)- (v—rvj) >0}

veA\{v;}

In other words, T'(j) is the intersection of various half-planes.

LEMMA 3.1. For 1 <j <r,
TG)=1{(p,q) € ZxZL: (p, q) = anj_; + Bn; for some positive reals o and B}

where ny is considered to be the same as n,.

Proof. Since v; is one of the corner points of C, the edges v;,_1v; and v;v;4| cannot
be parallel and so the normals 7;_; and #; are linearly independent directions. Thus,
we can write (p, q) € Z x Z as

(p. q) = am;_; + pn; for some real numbers « and B.

We need to show that (p, ¢) € T(j) if and only if &, 8 > 0.
First suppose that (p, ¢) € T(j). Then,

®.q9 - w—v)>0 forall v e A\{v;}.
In particular,
. 9 - (W1 —vy) > 0.
Therefore,
(arj—1 + B1y) - (V1 — ) > 0.
But 7; being normal to the edge vjvj41 = vjir1 — vy,
7+ (Vg1 —v) = 0.
So we have

a1 - (viy1 —v) > 0
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which implies « > 0 due to (6). Similarly, choosing v = v;_; gives B > 0. Conversely,
ifa > 0and B > 0, then for any v € A\{v;},

@, 9 v—v)=a@i_-(v—2v))+ B (v—1))).
But by (6),

ni_1-(v—v)=>0 and n-(v—v)=>0 for all v e A\{v;}.

Also, for a given v, nj_; - (v — v;) and 7; - (v — v;) both cannot be simultaneously
zero as 77; and 77, are non-parallel. So,

P.q-(v—v)>0 ifa >0and 8 > 0.

This completes the proof of Lemma 3.1.
We next show that these sets are pairwise disjoint.

LEMMA32. TGH)NTh) =0 forl <j<k=<r
Proof. Suppose (p, q) € T(j) () T'(k). Then,

®.q9 -w—v)>0 for all v € A\{v;}
and
@, q) - (v—vr)>0 for all v € A\{vg}.
In particular,
@.q) - (k—v)>0 and  (p,q)-(v;—v) >0

which is not possible. This concludes Lemma 3.2.
Now Lemma 3.1 asserts that

TG) ={p.q) € ZxZ:(p,q)-(v—v;) > 0forallve A\{v}}
={p,.q) e ZxZL:(p,q) =ani_ + Bn; for some « > 0 and g > 0}.
The second formulation of 7'(j) precisely means that 7°(j) consists of those points
of Z x Z that are within the infinite triangle (or say cone centred at origin) whose

boundaries are the lines (rays) in the direction of #;_; and 7;. Thus, if we define

ZG)=THU{(p. 9 € ZXZ: (p,q) = anj; a > 0}
={p.9) € ZXZL:(p,q) = anj_ + pnj;a >0, > 0}

then it follows from Lemma 3.2 that
Z()(Zk)y =0  forl<j<k<r

and geometrically, it is easy to see that

Uz =z x 2:(©. 0.
j=1
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We note that for (p, q) € Z(j), (p, q) - (v — v;) > 0 for all v € A by (6). Here, the
strict inequality may not be achieved even for v # v;.

We now try to determine @ and 8 explicitly for a given (p, ¢) € Z(j). We have

(p> _ (et (e (a)

= 2 2=\ ,2 2 :

q an;_ + ,an n_yn; B

The determinant ¢ of the above matrix on the right is non-zero since #; and 7;_; are
non-parallel. Thus,

2 1
pn; —qn;
2 ol J J
(a)_l ol <p)_ d
= 5 | =
/3 d —n];l I’l];l q —pn]{l +qn}71
d

Since we have chosen the components of 7;_; and 7; to be integers, we can write
a = t/d and B = l/d for some integers ¢, / and d. Also, we know that > 0and 8 > 0
and so ¢, / and d are all either non-positive or non-negative. But since we have chosen
the orientation of C to be anticlockwise, it is not hard to see that d > 0 and so ¢, / and
d are all non-negative integers. Thus, we have

t /
Z(j):{(p’Q)GZXZZ(p,Q)ZEﬁj_l—f—gﬁj;lGN,lEN*,

_ 2 2 ]
where d =n;_n; njlnj}

and where N* = N U {0}. We note that d depends on the coordinates of 7;_; and 7;,
but for fixed j, d is fixed. Now since we do not want to leave the point (p, ¢) = (0, 0),
we include it in the set Z(1). Thus,

Uz =zxz. (7

J=1

We shall use this geometry to split our main operator

H= Y Hy,

(P, Q)ELXZL
For 1 <j < r, define
MG)= > Hy,
(. 9)Z())
Then from (7), it follows that
H= ZM(]‘). ®)
j=1
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It is now sufficient to prove that M(j) is bounded on L”(R?) (with bounds allowed
to depend on j) for 1 < p < oco. For this purpose, we introduce the approximating
operators.

4. The approximating operators and a few preliminary estimates. Sect

Sp.af(x,y,z) =24 //f(x — 8, Y = 1,2 = Gy, ST (2P )Y (271) ds di
for (p, ¢) in Z(j), and

Q(])= Z Sp,q'
(P.9)EZ())

Let E(j) = M(j) — Q(j). As we shall see, L” boundedness of Q(j) follows from the result
of Ricci and Stein, and so, our main task is to prove the following proposition.

PrOPOSITION 4.1. For 1 < p < o0,
IEWDIr <A@, HIf -

Proof. Let m,, , denote the multiplier corresponding to H, , — S, , for (p, g) in Z(j).
Then,

mpateon.y) =204 [ [ expties + i) exptiy PG, 0)
— XP (1Y 1) | Y(20 )9 (271) dis dr
which after the change of variables is the same as

M glEa . y) = f / exp(i£2 s + in2 1) [exp(iy P2 75, 271))
—exp(iy 27" 2™ M ay, " 1Y )] Y(s)y(r)dsde.

We write
P27, 279 = Z A2 P2
(m,n)eA
= 2~ mytam) Z am’n2*((pm+qn)7(pm,ﬂ+qn,ﬂ))sm[n
(m,n)eA

= 270D Pys, 1)

where
ﬁj(s’ 0= Z am,nz_(p'q)'(v_vj)smln. )
v=(m,n)eA

(We shall always keep in mind that 13]- depends on the choice of the pair (p, q¢) € Z(j).
But later we shall also see that f’j enjoys certain uniformity properties in (p, ¢) € Z(j)).
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So,

mp (. 0. y) = / / exp(i&277s + in2 1) exp(iy 2 P Pys, 1)
— exp (iy2 """V a,, , ") W (s)w () dsdr. (10)
We then have the following estimates for 1, ;.

LEMMA 4.2. For (p, q) in Z(j),

Imy (&, 1, )| < Aly 2700 (11)

and

A

m ’ ’ S € 12
& V= e e+ o) (12

for some € > 0. The constant A is independent of p and q but may depend on v; and P.

Proof. For (p, q) € Z(j), we know that (p, g) - (v —v;) > 0 and so estimate (11)
follows from (9) and (10) and the mean value theorem.

For estimate (12), we treat each term of m,, , individually. Since (p, ¢) - (v — v;) = 0
for all (p, q) € Z(j),

f)j(s’ [): Z am’nZ*(P:Q)-(va/)smtn: Z bm’nsmtn

(m,n)eA (m,n)eA

is uniformly (in terms of (p, ¢) € Z(j)) in any C* class' (for |s|, |7| < 2) and satisfies
2 1bmnl = l@m; ;|- Also since the ‘norms’

Z|bm,n| and max inf |8"‘13j(s, 1)

I<la|<dy Is],|t]<2

are equivalent on the finite-dimensional vector space of non-constant polynomials of

degree at most dy, we see that some derivative of 15_,» is uniformly bounded below. (We

note that the latter is not really a norm because it does not satisfy the triangle inequality

for a norm. However it can be verified that we do not need the triangle inequality for

the latter to show that both are comparable. See for instance, the proof of [1, Corollary

7.3]). Now VP;(0, 0) = 0 (hypothesis) and so if 8"‘}3/ is uniformly bounded below, then
1 2

la| > 2. Let m 4 = m,, , — m,, , where

my (&0, y) = / / exp(i&277s + in279t 4 iy 2~ PV Pi(s, 1)y (s)y (1) ds de

= // explir(w - (s, t, P,(s, N ()Y (r) dsde;

. . 1 — — — (v—v;
w = (wy, wy, w3) is the unit vector ‘(Sz,p,,727(,,y2—<ﬂ»4>~<v47))‘(52 P 1274, y2 »,9)-(v v,)) and
A= |(E27P, n279, y2- PO v-u)y

A function is in the C* class if all of its mixed derivatives up to the order k are bounded above.

https://doi.org/10.1017/50017089508004291 Published online by Cambridge University Press


https://doi.org/10.1017/S0017089508004291

404 SANJAY PATEL

Next we set @;(s, 1) = w - (s, ¢, Isj(s, 7)). Then,

dD; N dP;
— =w w3 ——
as ! 3 as
dD; N dP;

=w w3 —-
ar 2 o

and
3@, = wyd°P;  for || > 2.

Since, w is a unit vector, 8“}3j is uniformly bounded below for some o with || > 2,
and I5 is uniformly in any C* class; it follows that 3 ®; is uniformly bounded below
for some «. Also, P being uniformly in any C* class, ®; is unlformly in any C* class
and so estimate (12) (with A independent of (p, q) € Z(])) for mp ; follows from van
der Corput’s lemma in hlgher dimensions [5, Chapter VIII, Proposmon 5]. The same
estimate also holds for mp , because it is just the special case of mp that is, when P
is a monomial. This completes the proof of Lemma 4.2.

We shall use the estimates of Lemma 4.2 to show that the multiplier of E(j) is an
L” multiplier on R?, and in particular, it is a bounded function. For this purpose, we
further split our operator E(j) by splitting Z(j) into Z;(j) and Z,(j) where

ZiGH)={wp.9ezZy):(p,q = k+Nnj 1+ Nﬁj;k € Nand N € N*}
k+ N

Z()=1{p.9) € Z() : (p, q) = ”] 1+ p

——n; N e Nand k e N*}.

Since 7;_; and 7; are linearly independent, it is clear that Z(j) is the disjoint union of
Z(j) and Z,(j) . Also when v; = vy, we add the point (0, 0) to either Z(1) or Z»(1).
We assume it is in Z;(1). We now split £(j) as E(j) = Ei(j) + E»>(j) where

E()= > (Hpg—Spg)=M()— 0i(j)
(P.9€Zi())

and

E(j)= Y (Hpg—Spq)=M())— Qa()).
(p.9)eZ2())

To prove Proposition 4.1, it suffices to prove the next proposition.

PrROPOSITION 4.3. For 1 <j <randl < p < o0,

IE:G Ny = A, DIf Nl

and

IE2() N < A DIf Nl

Proof. We give the proof for E|(j). The proof for E,(j) is exactly the same.
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We split Z;(j) as
zi(j) = JZ2¥0)
N>0
where
. k ~|— N_ N_
Z{V(J)={<p ) e Zi(): (p.g) = — 7 1+dn,;keN}.
(When j = 1, we add (0, 0) to Z(l)(l).)
Set
EjN = Z (Hp,q - Sp,q)-
P.9Z] ()
Then,
E()=)_E.
N>0

Proposition 4.3 is now a consequence of the following estimate.

5. The L7 estimates for E.
PROPOSITION 5.1. For 1 <j<randl < p < 00,
1ENF|,, < AG. p2 5PN |If )

for some §(j, p) > 0.

405

We first obtain the L? estimate. For that, we need the following improved estimate

over estimate (11) for (p, q) € Z)()).
LEMMA 5.2. For (p, q) € Z}(j),

M (€, 0, )] < Aly[2oN 2@

for some o > 0.

Proof. If (p, q) € ZY(j), we can write

k+ N_ N
(]7 q) ”] 1 + — d
k_ -
= gl’lj—l + E(nj_l +I’lj)

for some positive integer k. Now it follows from (6) that

(v — Uj) . (f_lj‘_] +ﬁj) >0 forallv e A\{v;}.
So,

k N
.9 v—v)= (E)ﬁj—l (v—v)+ E(ﬁj—] +7)-(v—v)=0oN

for all v € A\{v;} if we choose o = & min, 2, {(71 +7) - (v — v))} > 0.
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Estimate (13) is now just a consequence of (9), (10), (14) and the mean value theorem.

Proof of Propositon 5.1. 1t follows from estimate (12) that

Imy g0, Y| < ———————. 15)
’”’ (ly[2-?ov)
Taking the convex combination of estimates (13) and (15), we get
|mp.,q(§v n, ) < sz(ﬁ)N. (16)
Combining estimates (15) and (16), we get
oe 1
I g(E,m, y)| < C27EEN ————— (17)
(ly[2-rou)?
Now for (p, q) € Z{(j), we have
k_ N _ _
(r.q9) = Enj—l + E(njfl + 7))
for some positive integer k. So,
2= -9y — 2= (§)F-1-v) 9~ (§ (147 1))
Let
N 1 [ oe
A = 2~ G 1+)-v) d §=— 0.
N an 2\T1e >
So, estimate (17) is
—N 1
|mp,(1(§a 77, V)| S C2 (18)

(ly 127 @010 4)?

But o > 8, and so, it follows from (13) and (18) that

. T 1
My (€. . )| < C27°Y min (|V|AN2 o, Ky E) ’
(ly 127 @01 4

Since we have assumed in the beginning that no edge of C passes through the origin,
it is easy to see geometrically that 77;_; - v; # 0 and so ¢y = (j_1 - v;)/d is a non-zero
constant. Similarly, when dealing with the part E>(j) of E(j), we require 7; - v; # 0 that
again requires the assumption that C has no edge through the origin. (We note that
this is the first time we have used the fact that no edge of C passes through the origin).
We have

1
Imy (&, 1, 1)) < C2-%N min ( |y|4y27F0, ——— ).
b (1| Ay2-kao)?
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So,

Z mp,q(g ’ 77’ V)
.z ()

S Z Imp,l]($3 n, V)|
(P.9eZY ()

, 1
<2V > min <|y|AN2’“0 —)
)

’ —keo\€/2
ki(p )=+ (1 47 (| [An27ke)

1
< €27 "min (|y|AN2_k"° —>

’ 2
i~ (Iy | Ay 2Heo)/
< C27WN

since the sum in k is an absolute constant independent of y and Ay. Thus, we have
shown that the multiplier of £ is bounded above by C27°" and so

”E;Vf”Lz < AD27°ON|£ ] 2. (19)

For other L estimates, we treat M;(j) and Q,(j) separately. For (p, q) = gﬁj,1 +
(A1 + 1)) € ZV(j) and f € S, we have

Hy.f(x,y,2) = f / f(x =275,y =279,z = 270DV Pis, 1))y (s)yr(r) dsde

= / / Fx—en27%s, y — dy277 ¢, 2 — en277F Pi(s, 1)y (s)yr () ds dr

where
1
Nl gl n;_y
ey =2 7 +ny) , o] = J
d
2
N n;_
dy = 2*7(”/2—&”}) , 0y = i}
d
N ni_1 v
ey = 2—7\,((11j,1+n/)»v/) , 03 = j—1 J ,
d
: S L, N | 2 _
recalling that 7; = (n;, 7), Rj—1 = (n;_y, n;_) and v; = (m;, ;).

We note that the polynomial 15j also depends on k, N and j since its definition
involves p, ¢ and v;. Also ¢y, dy and ey are positive real constants that depend on N
and j while o1, o and o3 are arbitrary real constants independent of N but do depend
on j. We see that o3 # 0 and o7 and o, being the components of éﬁ_,»_l cannot be zero
simultaneously. Moreover, it is clear that if either o) or o3 is zero then the other has
same sign as o3. So without loss of generality, we may assume that o, and o3 are of the
same sign and that they are positive.

For k € N we now define the measures )", v"® and vV-® by

<four® >= / f f(en270Ks, dy27oFt, en27 Pi(s, 1))y (s)y (1) dsdr
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<fivg® >= / / F(27ks, 2701, 27 Pos, 1) yr(s)y (1) ds it
</, VO S = //f(s, t, f’j(s, DY ()Y (r)dsdet

for those k’s for which ’iﬁj 1+ E(ﬁj 1+71)=(p,q) € ZN (j) and for all the other £s,

() N.(k)

we define them to be zero distribution. We see that ;™ is just a fixed dilate of v,

N-®5 are the one parameter dilates of vV-®). So if we set

MY = 30 Hpdf = S

(P.9eZ () k>0

and also that v,

and

(K
Lff:Zv,iv()*f

k>0

then it is clear that 1M Ml = ||LN lzr—z». Thus, it is enough to get the I estimates

for the operator LN For this, we cannot apply the standard Littlewood—-Paley theory
because o1, 03 and o3 may not be of the same sign, and so, here our approach differs
from the one in [2]. Our approach shall use Theorems 2.1 and 2.2 that are due to
Duoandikoetxea and Rubio de Francia [3]. For convenience, we drop the superscripts
N and (k) and denote v,]cv’(k) by vx. We then have the following estimates for vy.

LEMMA 5.3.
o~ . —o0 —0o —0 —0 N
[0k, 1, )| < Cmin (27| + 277y |, 77 |n| + 27|y )7

for some positive constants C and § independent of N and k.

Proof. Since

U(£,0,0) = //exp (i§27"‘ks)w(s)1ﬂ(t) dsdt=0

the first (size) estimate for vy, follows from the mean value theorem. The second (decay)
estimate is just an application of van der Corput’s lemma using the fact that f’j(s, t)is
uniformly in any C™ class (for |s|, [z| < 2) and that 8“é, is uniformly bounded below
for some « with |a| > 2. This completes the proof of Lemma 5.3. We now use these
estimates of vy to prove the following important lemma.

LEMMA 54. For1 <j<randl < p < oo,
[M1,, = 4GP -

Proof. Since [|Mf |, = ||L/N fllr, it suffices to show the above estimate for the
operator

L]N = ka * f.

k>0
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We shall use Theorem 2.2 to get the L estimates for LY. We set ¢* = £, = (, y) and

awo=17 0]

Then, Lemma 5.3 implies that

5:(¢°, ©)| < Cmin (|AQ )], 1427517 (20)

Moreover, A(st) = A(s)A(t) and A(z) satisfies the Riviére condition since we have
assumed that o, and o3 are positive. Thus, if we can show that v*(f) = sup,||ve| * f|
is bounded on L4(R?) (with LY — LY norm independent of N) for all ¢ > 1, then
Lemma 5.4 is just the direct application of Theorem 2.2. We shall apply Theorem 2.1
to {|vk|}x=0 to achieve this where for / € S(R?),

<[l >= / / F(277%s, 279K 1, 27K Py(s, 1) 1y ()| ()] ds .

It is obvious from the definition of |vi| that the total variation of |vg| is uniformly (in k
and N) bounded above by [ [ |y(s)||¥(2)|ds dz. If we follow the proof of estimate (20),
then it is easy to see that |v| do satisfy estimates (2) and (3) of Theorem 2.1. Now

0l % g(x) = f / 2ok [y ()] [ (Dlds df = / g(x — 2778 [y (s)]ds

and so v, (¢) = supy|[v|® * g| is bounded on LY(R") for all ¢ > 1. But once we have
the boundedness for "(*0)’ the boundedness of v* follows from Theorem 2.1 and this
concludes Lemma 5.4.

If we replace P i(s, 1) in [,L M and vN ® by @, n, v’”/ "%, then using similar techniques,

we can show that the operator QN deﬁned by QO Z(p 0ez( S is bounded on
L’(R%), 1 < p < oo, and also that the norm is 1ndependent of N.But EY = M) — Q.
So,

|EYf |, < AG.pI I forl < p < oo. 1)

Proposition 5.1 is now just a consequence of interpolation between the estimates (19)
and (21). This completes the proof of Proposition 5.1 and hence Propositions 4.1
and 4.3 also. Thus, H is bounded on I”(R?) for 1 < p < oo if we prove the following
estimate.

6. The L7 estimates for the approximating operators.

PROPOSITION 6.1. For 1 <j<randl < p < o0,
1) Nl < AG, PIf

where Q(j) = Z Sp.q-
p.9)eZ()
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Proof. We exploit the Ricci and Stein result to prove the above estimate. For

. 9) € Z(),
Spaf (x,p,2) = f / F(x =275,y — 2790, 2 — @y, 2 POV )Y ()9 () ds dt.
We define
<fon® o= [ [ £ tean ey wew dsar

if I = (p, g) is in Z(j) and otherwise u!) = 0. Thus, the non-zero u")’s are all identical
here. Next we define the dilate ,u(ll) of u) by

<finf) >= / / F(275, 2791, @y, 27 POUS P9 g ()9 (1) ds dit.
Clearly,

o = > Sf= Y. ulxf.

I=(p.9)€Z(j) I=(p.q)eZ(j)

It is not hard to see that u) satisfies all the conditions of Ricci and Stein theorem
(Theorem 2.3) and so Proposition 6.1 follows. This also concludes the proof of the
sufficiency part of our main theorem in the case when no edge of the convex hull C
passes through the origin.

7. The case of an edge through the origin. We next consider the case when C has
an edge through the origin. It is clear that C can have a maximum two such edges and
also that they cannot be adjacent edges. In this case, the basic idea of the proof is same
as before but we need some modifications. We use the same notation as in the previous
case.

Once again we show that the operator H is bounded on L”(R?) by showing that
M) = >, peziyHp.q is bounded on PR3 foralll <j<r.

If v; does not lie on the edge through the origin, then we proceed exactly in the same
manner as in the previous case. So we assume that one of the r corner points of C,
say the corner point vy = (m», 1), is on an edge through the origin. Suppose this edge
is v1v; and so we have 7y - v, = 711y - v = 0. (This of course means that v; is also on
the edge through the origin and that v;v3 or v,v; cannot be another edge through the
origin if it exists). The above proof of L7 estimates for M (j) then breaks down for M(1)
and M (2) as the proof of Proposition 4.3 requires that 7z;_; - v; and 7; - v; are non-zero.
So we give a separate proof for M(1) and M(2) in this case. In fact, we shall give the
proof for M(2) only. The L? estimates of M (1) can be obtained similarly.

We need to show that M(2) = Z(p,q)EZ(z)Hp,q is bounded on I7(R?) for 1 < p < oo. Set

E={v=(m,n) e A:v=(m,n)lies on the edge v vy}
and

Pe(s, 1) = Z Am st

(m,n)e€
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For (p, q) € Z(2) and f € S, we define

Spof (x,,2) =20+ //f(x —85,y—t z— Pe(s, )y(2s)y(29) ds dt
and

0= Y S,
P.9)eZ(2)

Let E(2) = M(2) — Q(2). Then, we have the following proposition.

ProrosITION 7.1. For 1 < p < oo,

IEQS I = AP Nz

Proof. For (p, q) in Z(2), let m, , denote the multiplier corressponding to H, , —

Sp.q- Then,
mpaloney) = [ [ explis2 ™+ in2-o)lexpiy P2 75,2710
— exp(iy Pe(2775, 279) 1w (s)yr(¢) ds dt.
We write
P2 7?s,279%) = Z A 27P27
v=(m,n)eA
= 27D s, 1)
where
Ps,)=" Y @y, 200y (22)
v=(m,n)eA
and also
Pe(27Ps5,2791) = 27 P2 Pe(s, 1)
where
Pe(s.ty=" Y ay 2700y, (23)
v=(m,n)e &
Thus,

my (€, 1, y) = / / exp(i£27"" + in2~t)[exp (iy 2"V P(s, 1))
—exp(iy 2~ P02 Pe(s, £)]yr (s)y (1) dsdt. (24)
We then have the following estimate for 1, ;.
LEMMA 7.2. For (p, q) € Z(2),

A
((Sa 7)» J/)| S -
l (&1277 4 |29 + |y |2~ P-2)v2)

|, for some € > 0.
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We omit the proof of this lemma as it is similar to that of Lemma 4.2. The lemma
implies that for (p, q) € Z(2),

(25)

A
Imy,q(§, m, ¥l = Iy -y

Next we split
k_ 1_ .
Z(2) = (p,q)erZ:(p,q):;an—l—anz;keN,leN
as Z(2) = UpenZ5(2) where

Z2) = {(p, 9 eZ2):(p.g = gﬁl + éﬁz;l € N*}.

Let
k
E;, = Z Hyq—Spq
(P.9)€Z*(2)

So,
EQ) =) E}.

keN
Proposition 7.1 is now a consequence of the following estimate.

ProrosITION 7.3. For 1 < p < o0,
IESIy < A2 \Ifly for some § > 0.

The constants A and § are independent of k.
First, we shall get the L? estimate and for that we need the following estimate.

LEMMA 7.4. For (p, q) € ZX(2),
lmy (&, 0, ¥)| < Aly |27k~ for some o > 0. (26)

Proof. We know that

P(s, 1) — Pe(s, 1) = Z Ay g2~ 0D 70 g gt
v=(m,n)eA\E

Thus if we show that (p, g) - (v — v2) > ok for all (p, ¢) € Z¥(2) and all v € A\E, then
estimate (26) is just a consequence of (24) and the mean value theorem. Now

k _ l _
P @) (v—v2)= 3(!11 “(v—1))+ Zz’(”z (v —12)).
But 77y -(v—v3) >0 and 1, - (v—v3) >0 for all v € A and 7 - (v — v3) = 0 if and
only if v — v; is parallel to vjv,, or in other words, v lies on the edge v1v; of C. So for

v € A\E, we have the following strict inequality:

np-(v—1y) > 0.
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If we now choose

|
o= UrgAu\lg{m (v=1)} >0

then it is easy to see that (p, ¢) - (v — v2) > ok forall (p, g) € Z¥(2)and forallv € A\E.
This completes the proof of Lemma 7.4.

Proof of Proposition 7.3. The rest of the proof for the L? estimate of EX is now

similar to the previous case. Like in the proof of Proposition 5.1, we use the estimates
(25) and (26) repeatedly to get

1
Imy, (&, 1, )| < C27% min ( |y2=¢Pdv> @7)
(ly12-P-are)?

for some § > 0. But for (p, q) € Z*(2),

P.q) vy = g(ﬁl 1) + é(ﬁz - 12)

= c_i(ﬁz 1) for some non-negative integer /.
Thus, (27) is the same as
. 7 1
|mp,q(§a n, V)' =< C275k min |V|27£(n2'l)2)5 - < - (28)
(ly|2- i)’

Now 7, - vy is non-zero since 7 - v = 0. Thus, we can use (28) to sum m1, ;s over all
(p, q9) € Z¥(2) as in the proof of Proposition 5.1 and this gives

Z mp,q(gv n,y)| < Cc27%k,

(».9)eZ*(2)
In other words,
|ESf |2 < A2 11F 1o
Moreover, using the techniques of Proposition 5.1, we can also deduce that
|EXF|,, < Alfl, 1 <p<oo.

Proposition 7.3 then follows by interpolating the L” estimate with the L? estimate. To
conclude that M(2) is bounded on Z”(R?), we now just need to prove the following
proposition.

PROPOSITION 7.5. For 1 < p < oo,

102 Iy = Allfllr
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where

0= > S

(P.9)€Z(2)

If we define R(2) = }_(, ,\c7(2)Rp.q Where

Ry of (x,y,2) = / / f(x =27,y — 2798,z — 27DV )y (5)y (1) ds di

then it follows from the Ricci and Stein result that R(2) is bounded on I”(R?). So
Proposition 7.5 is a consequence of the following proposition.

PROPOSITION 7.6. For 1 < p < oo,

1(Q(2) = RO Iy = Alf Nl
Proof. We recall that
E={v=(m,n) e A :v=(m,n)lies on the edge vyv; through the origin}.

Since v;v; is an edge through the origin (and v; is the corner point of C), it is clear that
for all v = (m, n) € & either

(1) m>myandn > n, or

(i) m <myand n < ny.
So without loss of generality, we assume that (i) holds.

Then, for each v € E\{v,},

V— V) =0Uyy

for some positive real constant «,. But we also know that for (p, ¢) € Z(2), (p, q) -
(v —wvy) > 0forany v € A. So in particular for v € £\{v,}, we have

0=<@.q@-(v—12) =P, q - ayv2 =0,((p, q) - v2).

But «, being positive means that (p, ¢) - v, > 0 for all (p, ¢) € Z(2). In other words, we
can write

z@)=Jz"©

N>0
where
ZN2) ={(p.9) € ZQ): (p. q) - v2 = pm2 + gn> = N}.

This helps to decompose our operator as

0(2) — R2) = > [0"(2) — RY(2)] where

N=0

Q") =R = > [Spy—Rpgl

(P.9)eZV(2)

Thus, Propostion 7.6 is just a consequence of the following proposition.
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ProrosITION 7.7. For 1 < p < oo,

1OV 2) — RYQ)f Il < 427N If
for some § > 0.

Proof. We first obtain the L? estimate with some decay in N. For (p, q) € ZV(2),
let d, , denote the multiplier of S, , — R, ,. Then for (p, ¢) € Z"(2), we have
e v) = [ [ explie2 s+ in2 0 expliy2 ¥ Pets, )
— exp(iy 2Ny ") | ()Y (1) ds dr
where

Pe(s, 1) = Ay, S ™ + Z am,n2’°‘“N s
v=(m,n)e€\{v2}

If we set o = minyeg\(u}oy > 0, then using the mean value theorem and van der
Corput’s lemma, we deduce that

|dp.4(§, n, y)l < Cmin2~*N |y 27|, [y27N]7) (29)
which implies that
|dp,l/(ga 77’ y)l S C279N (30)

for some 6 > 0 (independent of p and ¢). We shall now use the additional assumption
in the hypothesis of our main theorem. According to this assumption since the edge
v, passes through the origin, no point of £ can have both coordinates odd. If we use
this assumption along with the fact that for all (m, n) € £ the ratio m/n is constant,
then at least one of the following must be true:

(1) for all (m, n) € £, mis even,

(i) for all (m, n) € £, nis even.
If (i) is true, then Pg(s, 1) is an even function of s and if (ii) is true, then Pg(s, 7) is an
even function of . We assume without loss of generality that # is even for all (m, n) € £
and so Pg(s, 1) is an even function of ¢. Thus,

// exp(i277s + iy 2N Pe(s, )y (s)y () dsdr = 0
and
/f exp(i&27Ps + iy 2 Ns™ )y (s)y (1) ds dr = 0.

Using these extra cancellation conditions, it is easy to see that

|dy 4. 1. )l = Cln279). (31
Using (30), (31) and van der Corput’s lemma, we deduce that

|dy.q(&, m, y)l < C27°N min(|n|277, (In]279) ") (32)
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for all (p, ¢) € ZV(2) and some €, § > 0. Thus,

Yo dpgEn)| = Y dpgEny)l

(P.9)eZ(2) (P.9)€ZN(2)
< CZWM(S’ n, ¥)| (assuming m, # 0 for time being)
qel
< 27Ny “min(|n|27%, (In)27) )
qeZ
<27,
This implies that

10%(2) = RY@)f Iz = C27° f I -
Using interpolation, Proposition 7.7 now follows from the following proposition.
PROPOSITION 7.8. For 1 < p < oo,
1272 = RY @ Iy < 4|/ 11

Proof. We shall use Theorems 2.1 and 2.2 (due to J. Duoandikoetxea and J. L.
Rubio de Francia) to achieve this. We do not need the difference anymore and so we
shall prove the above estimate only for O"(2). The proof for RV (2) is similar. Now

" = > Spuf =) pgxf

(P.9eZV(2) qeZ

where we define
<fipg >= / / F(27Ps, 27, 27N Pe(s, 0)¥ (s)¥ (1) ds dr

. __ N—gn N . . . .
if (p = Tz,.q) e Z"(2) (gssummg my # 0 for t}me bemg). else we define it to be the
zero distribution. Then, using the extra cancellation condition

// exp(iE27"s + iy2 N Pe(s, D)y (s)y (1) dsdr = 0
and van der Corput’s lemma, we get the following estimate for p,:

15y(&, 0, y| < Cmin(|n279], [n279|7")¢

for some € > 0. Thus, if we set £® = (£, y) and ¢ = 5, then Proposition 7.8 follows
from Theorem 2.2 once we show that p*f = sup,||o,4| * f1 is bounded on Li(R?) (with
L7 — L7 norm independent of N) for all § > 1. But {|p,|}4cz satisfy (2) and (3) (with
¢® = (&, y), ¢ =nand A(?) = [f]1x1) and also ||p,|| < C with C uniform in N and q.
So Theorem 2.1 automatically gives the boundedness of p* if we show that P)(8) =

sup, || 4|”  g| is bounded on L”(R?) for all p > 1. We shall apply Theorem 2.1 to Do)
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N—qn,
my

to achieve this. Now ,oEB)(g) = sup| |,oq|(0) x g| and using p =
q

<2 10y® >= / / (2N magim g 2N B )y (5)| [ ()] ds .

Now if we define w*(g) = sup,|w, * g| where

(g, wg) = / / Q75 Be(s, D) ()Y ()] dsdr

then it is easy to see that oy lr—1r = Nl -1 for 1 < p < co. So without loss of
generality, we may assume that

(8 10, ®) = / / g7, Pe(s, )Y (1w (0)] dsdr

and so
2 0E ) = [ [ explie2m/ms +y Pets DI @I 0] dsdl.
It is then easy to see that

1210, v) = 19|00, )| = Cl27/ ¢ e
and

100 )| = g

for some o > 0. Thus, {|p,|?},cz satisfy (2) and (3) (with (° =y, { = & and A(1) =
[%2/™2]; 1) and also IIp,(,O) | < € with C uniformin N and g. So if we show that p, (h) =
sup, |1p4|®” x h| is bounded on L7(R) for all p > 1, where

h, 10,1®) = / / W(Be(s. OGP dsdr, e SR),

then Theorem 2.1 gives the L’ boundedness of pf; for all p > 1. But l0g|®” are
all identical (recall that Pg(s, r) only depends on N and not on ¢) with || péOO)H <C
(independent of V). As a consequence, p(*oo)(h) = sup,||p, |0 4 h| is bounded on L”(R)
for all p > 1 with the operator norm independent of N. So by Theorem 2.1, p(j))(g) =
sup, ||0y|” * g| is bounded on L#(R?) for all p > 1, which in turn implies that p* is
bounded on LI(R3) for all § > 1. This concludes the proof of Proposition 7.8.

REMARK. We see that the above proofs of Propositions 7.7 and 7.8 work assuming
that m, is not zero. However, if it is zero, then Pg(s, £) is a polynomial in only 7 and
for all (p, q) € ZN(2), q = N/n,. We can still apply the same techinques as used in
the above proofs but with minor modifications. In fact, in this case using the extra
cancellation condition

// exp(in2=t + iy2 N Pe ()Y (s)y (1) dsdr = 0
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we can obtain the estimate like (32) in & and p and sum d,, ,’s in ‘p’ rather than in ‘g’ as
g = N/ny is fixed now. In the proof of Proposition 7.8 also, we sum Q" (2)f in p taking
q as N/n, and use similar techniques.

This completes the proof of the sufficiency part of our main theorem apart from the
two particular cases.

8. The particular cases. We need to discuss the case when C consists of just one
corner point, (i.e., P is just a monomial) and the case when it consists of two end points
say vy and vy. It is clear that if C is just a point, i.e., P(s, f) is a monomial, then the
main theorem is just a direct application of the Ricci and Stein theorem. In the latter
case, we assume that C has two edges v;v, and 7,0 (same but considered in opposite
directions) and let 77; and 77, (= —#;) denote the normals to these edges, respectively.

Now suppose that C consists of two corner points v; and v, but its edge v,v; (or
v,v1) does not pass through the origin. The basic structure of the proof in this case is
similar to the case where we assumed that C has at least three corner points. The only
difference in this case is that we have to define Z(1) and Z(2) in a slightly different
manner. When C consists of only two corner points v; and v, v — vy denotes the same
direction as vjv» = v, — vy for all v € A. Let 7= v — v;. Then, v — v, = —% for all
v € A. We define

T ={p.9)€eZxZ:(p,q)-(v—v1)=(p,q)-1n>0}
and
TQ)={p,9eZxZ:(p,q)-(v—r2)=(p,q) - (—n) > 0}.

Since 77 is normal to the edge v1v; = 77 and (= —7n;) is normal to the edge v7vy, it is
easy to see that

T()={p.9) €ZxZ:(p,q) =an + pn;a €R, > 0}
and
TQ)={p.9) €ZxZ:(p,q) =anm+ p(-n);a € R, p > 0}.

Also from the first definition of 7°(1) and 7'(2), it is clear that they are disjoint, and
moreover, if we define

Z()=T()U{an;;a € R} and Z(2)=T(Q2)
then,
7Zx7Z=Z1)uZ?2).
Once again we have

ZM) ={p.9) € ZXZ:(p.q)

k [
= Eﬁl + Eﬁ; k € Z,1 € N*, where d is a fixed positive integer} (33)
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and
Z(2) = {(p, DELXL:(p,g) = gﬁz + é(—ﬁ);k €Zand! e N}. (34)

We now use this decomposition of Z x Z to split our operator H as H = M (1) + M(2)
where M(j) = Z(p,q)ezg)Hp,q for j =1,2. Thus, it is enough to prove that M(j) is
bounded on L7(R3) forj = 1,2 and 1 < p < oo. Since the basic structure of the proof
is same, we discuss it very briefly.

Letv; = (my, nj) for j = 1, 2. We define O() = 3, ;e 7 Sp.q¢ Where

Sp.of (x,y,z) = 20" //f(x — 8, Y = 1,2 = Gy 0, S )Y (2 s)Y (291) ds dr.

Let E(j) = M(j) — O(j). We can prove that Q(j) is bounded on L?(R?) by appealing
to the Ricci and Stein theorem. So we only need to prove the L” estimates for E(j).
For this purpose, we further split our operator E(j) as E(j) = leoE; where Ejl =

Z(p,q)ezl(j)(Hp,q — Sp,q) and
" . k_ l i+1—
Z() =) € ZG): 0. q) = S+ S (=1 Tk e Zy.
It is then enough to show that

IES lr < AG. P27 PP || || for some § > 0. (35)

We first obtain the above estimate for p = 2.
For (p, q) € Z'(j), let m,, , denote the multiplier of H, , — S, ;. Then,

my (&, n,7) = / / exp(i£27"s + in2~9t)[ exp(iy P2 "s, 271))
— exp (iy2 "V a,, , s 1) |y (s)y (1) dsdr.
Now for (p, q) € Z!(j) and v € A\{v;}, we have
P9 w—v) =g - (-1Y"'n) >0l

for some o > 0. (In fact we can choose o = @ > (.) Using this fact and van der

Corput’s lemma, we obtain the following estimates for m, 4:
My g, m, y)| < Aly 2702700
and
Imy (€, n, ¥) < Ay |27 P0u)~¢ for some € > 0.
Using these estimates, we sum m,, ;s over all (p, ¢) € Z/(j) and get

NES N2 < AGRZVIf N2 forj=1,2. (36)
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Also, using the previous techniques and the theorems due to J. Duoandikoetxea an
J. L. Rubio de Francia, we can get the estimate

IEfIr < AG. pIf I for 1 < p < oo. (37)

Estimate (35) now follows from the estimates (36) and (37) and so we are done in this
particular case.

Now suppose C consists of two corner points v; and v, and its edge passes through
the origin. In this case, as we saw earlier (because of the assumption that no point of A
has both coordinates odd on this edge) that the polynomial P will be an even function
of either s or . We split the region of integration into Z(1) and Z(2) as defined in (33)
and (34). Now for j = 1, 2, define O() = }_, ;e z()Sp.¢ Where

Spaf (X, y,2) = ././f(x — 2775,y =279,z — 27(1”‘1)'”f}~?j(s, MY (s)y(r)dsde

and ﬁj(s, t) = 29V p(27Ps, 274¢). Once again, it can be verified that Q(j) is bounded
on I”(R*) for j=1,2 and 1 < p < oo. This can be done exactly in the same manner
as in Proposition 7.5. But in this case,

H= ) S,=00+00Q)

(. )eZxZ

Thus, O(1) and Q(2) bounded implies that H is bounded on L7(R?*) for 1 < p < oo and
so we are done in this particular case also.

This completes the proof of the sufficiency part of our main theorem in all the possible
cases. We next prove the necessary part of the theorem. O

9. The proof of the necessary part of the main theorem. First we show that if
any of the corner point of the convex hull C has both coordinates odd, then H is not
bounded on L2. Suppose (k, /) is a corner point of C with both k and / odd. Without
loss of generality, we assume that the coefficient a; ; = 1. Since (k, /) is a corner point,
there are numbers a and b so that ak + bl < am + bn for every (m, n) in A\{(k, [)}.
Now Hf = p = f, where u is a tempered distribution defined by

dsd
(¢, n) = p.v. / / o(s, t, P(s, t))i_lt’ ¢ eS.

We define the dilate us of u by us(¢) = wu(gs), where
os(s, t,u) = 4)(8_”5’ 5—’717 5—(ak+bl)u).

We then show that s — v (in the sense of distributions) as § — 0, where

(¢, v) =p.v.//¢(s, t,s"'ll)det

St
Now if f + u*f were bounded on L*(R%), then f > s *f would be uniformly
bounded on L*(R?), and so f — v * f would be bounded on L*(R?). But we shall see
(Section 9.1), f > v * f is not bounded on L*(R?). Thus to prove our claim, we just
need to show that us — v as § — 0. But this is shown in [2].
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Finally to conclude Theorem 1.2, we show that if any point of A on an edge of C
through the origin has both coordinates odd, then H is not bounded on L?. To show
this of course, we can now assume that all the corner points of C have at least one even
coordinate otherwise the above proof works. Suppose the edge through the origin is
v1vs. Then, vy and v, being the corner points have at least one even coordinate. We
again set

={v=(m,n) € A :v=(m,n)lies on the edge v;v,}

and

Pe(s, 1) = Z A st

(m,n)e€
Now suppose for some v = (m, n) € £, both m and n are odd. Since all the points of
& lie on the edge v7v,, there exist numbers ¢ and b such that am + bn = 0 whenever

(m,n) € € and am + bn > 0 whenever (m, n) € A\E. We define the dilate s of u by
ws(@) = p(es), where

bs(s, t,u) = $(87%, 871, u).

We then show that us — o as § — 0, where

dsd
(. 0) =p.v.//¢(s, t, Ps(s, z))i—ll.

But f + o *f is not bounded on L*(R?) (see below) and so to conclude that H is not
bounded on L?(R%), it is enough to show that us — o as § — 0.
After a change of variables, we see that

(. 15) f / #65.1. Pits, )

where Ps(s, t) = Pg(s, 1) + Z(m’n)e A8 i 8™ 1" with €, , = am + bn > 0 for (m, n) €
A\E. If « and B are fixed small positive numbers, then

dsdt
Wons=0) = [ [ st Pt )~ 906 Pels ]
Isl<1/8* Jir<1/88

dt dsdrs

H[ o eenns &, [t
Is|>1/8% St lsl<1/6%
l1=1/8P

dsdt dsdr

— / L P(s, 1, Pe(s, ) —— — / L P(s, 1, Pe(s, 1) ——

Isl<1/8 st Is|=1/8 St
J1]=1/88 111<1/58
dsdt

(s, 1, Pe(s. 1)) ——

Is|=1/8%
11=1/88

:= A(8) + B(d) + C(8) — D(8) — E(8) — F(5).
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We can show that A(8), B(5), C(8) and F(§) tend to zero as § — 0, as in [2]. So we give
the proof for D(§) and E(8) only. We write

dsd
e = /‘S‘fl/«w [¢(s, 2, Pe(s, 1) — ¢(s, 1, 0)]§_tl
111788
dsd
+ /I:,Ism [$(s, 2, 0) — $(0, 7, 0)] it t
[11=1/8P
= G(8) + H().

It is now easy to see that H(§) — 0as 3§ — 0. We write G(8) = G(8) + G»(8) where the
integrands in G| and G, are same but the region of integration in G is |s| < 1, |7] >
(1/8)" and for G» 1 < |s| < (1/8)%, |¢] > (1/8)P. It is once again easy to see that

5|42 |¢|/? ds dt

Isl<1 N/2
BV Ll |s|[7]

G1(d) <= C

where u =min {m: (m,n) € £} > 1, w =max {n: (m,n) € A} and N is as big as we
want. This implies that G;(8) = O(8#/?¥~»)) and so G;(8) — 0 as 8§ — 0 if N is large
enough. The same can be verified for G»(8). Thus, D(§) — 0 as § — 0. Interchanging
the role of s and ¢, we can prove the same thing for E(§). Summing up, us(¢) — o(¢)
as 8 — 0. This concludes that H is not bounded on L?(R?) in this case also.

Finally, we give the proof of the fact that f — o x f is not bounded on L*(R?).

9.1. Proof that f — v xf and f — o  f not bounded on L*(R?). It suffices to
show that v, o gz (&, 71, y) and oo gz (£, 1, ) are not uniformly (in €, €/, R and R)
bounded functions almost everywhere, where

_— . dsdr
vE,E’,R,R’(E’ T’ﬂ V) = / / eXp(l(%'S + T]t + J/Sktl))
e'<|s|<R Je<|t|<R st
and
_— . dsdz
Oce RR(E M, V)= / / expli(Es + nt + y Pe(s, 1) —.
€' <|s|<R Je<|t|<R st

But being continuous functions, it furthermore suffices to show that v o z z(0, 0, )
and o g r(0, 0, y) are not uniformly bounded functions. Now

_— ds ) d¢
Ve 7 (0.0, ) = / ds exp(iyse) L
e<lsi<kR S Je<|f<R t
ds dt
= 2/ — exp(iy s 1) —
€' <s<R N e<|t|<R t

ds1 du

= 2/ —- exp(iyu)—

€<s<R S l skel <|u]<skR! u

4i ds . du
= — — sin(yu)—.
/ e'<s<R S Jskel<u<skR! u
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Then,

lim vee kR w (0,0, y) = = log —

R—o0
and so V¢ g g is not an uniformly bounded function in €’ and R’. We now show that

— ds , dr
om0 = [ S eptype

e<|sl<R § Je<|t|<R

ds
:/ — exp | iy Z A st
€

'<islsR S Je<|t|=R (m,n)e€

is not uniformly bounded. We recall that
E={v=(m,n) e A :v=(m,n)lies on the edge v v, through the origin}

and so for all (m, n) € &, the ratio m/n is the same. Also we have assumed that for
some (m, n) € £, both m and n are odd. These two facts allow us to conclude that for
any (m, n) € &, either both m and n are odd or both are even. In particular, both the
coordinates of v; and v, have to be even. It is also clear that there exist odd (positive)
integers p and ¢ that are relatively prime and such that

m:gn for all (m, n) € £.
q

Also ¢ being relatively prime to p, must divide n and so n/q is always a positive integer.
Furthermore, it is even if # is even and is odd if # is odd. Thus, if v; = (m;, n;) and
vy = (my, ny), then ny /g and ny/q are both even. The change of variable s*#¢ = u in the
tintegral of oo g #(0, 0, y) then gives

_— ds 1 ) du
Ge,e’,R,R’(Ov 0, V) = 2/ - / EXp | ¥ Z am,nun/q —_—.
sPed<|u|<sPRY u

e<s<R S 4 (m,n)e€
Therefore,
. 2 R
{1{1()1 e rp(0,0,y) = 5M(y)log o
R—00
where

o d
M) = [ expliy Py,

]

and P(u) = Z(m,n)eg”m,n“"/ 9 is some polynomial in u such that the highest and the
lowest power of u in P(u) is even and also it has at least one monomial with odd power.
But as we shall see, M(y) # 0 and so it follows that o¢ . g z is not uniformly bounded
in €’ and R’. This completes the proof of the necessity part of the main theorem. Thus
to conclude the proof of the main theorem, we just need to show that M(y) # 0. We
show this by developing the asymptotic expansion of M(y).
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9.2. Asymptotic expansion of M(y). We show that

o d
M) = [ expliy Py #0

o0

where P(v) is some polynomial in v such that the highest and the lowest power of v in
P(v) is even and also it has at least one monomial with odd power. We shall assume
without loss of generality that all the coefficients of P(v) are equal to 1. It can be
verified that the proof below works in all other cases. From the definition of P(v), it is
clear that the integral M(y) can be written as

&y @) dv
M(y) = 2i/ I ) siny (VP 0P 0P ) —
0 v

where «;’s are all positive even integers, B;’s are all positive odd integers with «; < By,
oy > B <ojforl <i<j<sandfi<piforl <i<j<t

The factor 2i in the above integral of M(y) is not of much importance and so we shall
ignore it from now.

(In what follows, ‘¢’ denotes a general constant that depends on the «;’s and ;s but
not on y).

If we now make a change of variable y'/*v = u, then

% (T ey B ) _ha B _n andu
M(V)=/ el(y Sty R )sm()/1 w4y TP o y)! a,\-uﬁr)g.
0
Now let
$w) =y S +y TE U
and
-2 -2 -5 g
YW =y su +y Teu oy Teul
Then,

1/y¢ 00
M) = [ singn i+ [ singny

1/y
== A(y) + B(y)
where we choose 6 such that

as — B a; — B as — B
55— < 0 < <
O agpy Oy

0< =k < 1.

We claim that for y sufficiently small,

M(y) = cy* + 0(y") with ¢ a non-zero constant and / > k.
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In other words, ¢y is the principal term in the asymptotic expansion of M(y) when y
is small enough. It then follows that

M(y) #0.

We first show that B(y) is an error term, i.e., B(y) = O(y') for [ > k. Clearly,

o0 o0
/ dowrp a1 / Siou—-viy 4

1
B(y) = —
(]/) 1/y? u 2i 1/y? u

2i

If y is sufficiently small and 7(u) = ¢(u) + ¥ (1), we see that for u > 1/y?,

17" ()| > cu®~! and 17"(u)| < cu® 2.

Now if we integrate by parts and use the above estimates of ¢/ and t”, then it is clear
that B(y) = O(y*?). But a6 > k and so B(y) is an error term. Also

4o = | "

6 l/yH

™ sin w(u)@
u

. s d
(e — &™) sin 1//(u)7u + /0

= C(y) + D(y).
But
i . o .
Cly) = / (eld?(u) _ em‘”) sin I/I(U)@ +/ (el¢(u) _ elu“:) sin l/f(u)@
0 u yl/as u
= E(y)+F(y)
and

o (Y du wy [V du
EQ) <y / WL RES / = o).
0 u 0 u

So E(y) is also an error term. We now consider F(y).
Since sin ¥ (1) = O(y¥(u)), we have

siny(u) = Oy auf)  foru <y (38)
and
sin ¥ (u) = O(yli%uﬂ’) for u > yl/e. (39)
Let 6, = ai (Z‘:—Ofﬁ") Using (39), we have
; o [V du oy 1V du
|F(y)| < Cyl—fj y - / un P T yl_Tvl / Y18 =
! /as u ! /e u

%51 o +he

CV]—%H— = [(yfmawﬂ,)_,_y - )+.__(yfe(a_\.,ﬁrﬂ,)+yaxjs+m):|

IA

1=2 41— 221 (o, +8)

IA

cy
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But

and so if we show that

1 - "‘;*1 —B(as_1 + B) > 0

5
then F(y) is also an error term. But this is same as showing

oy — O
=S Bl + B
(o2}

which holds if 8; > 8. However, if 6; < 0, we choose 8, such that 0 < 6, < 6; and write
F(y)as

) 1

1/y ) . du 4%
F()/) — f (el¢(u) —el”a’)sinlp(u)g +/
yl/eas

1/y%
1y du
- / " sinyr(u)—
1 u

%
=G(y)+H(y)—1(y).

’ du
€W sin Y (u)—
u

Now for G(y) if we follow the same steps as for F(y) in the previous case (6; > ), then
we get

(G| < eyt e,

Since 6, < 61, we see that G(y) is an error term.
We now consider H(y). We know that if y is sufficiently small and u is sufficiently
large, then
¢'(u) > cu™ . (40)
Also if W(u) = sin ¢ (u), then
W) =0y " =uf)  foruz y'e (41)
and so integration by parts implies that H(y) = O(y**¢) for some € > 0. In short,

H(y) is an error term and exactly the same proof works to show that I(y) is an error
term. So we are just left with D(y) that will give us the principal term. Now

1/y
D(y) = /0
du du

1/y° . 22} L ] il
+/ o (y“wﬂz)—+-~-+/ M (Tl —
0 u 0 u

=JW)+Ki(y)+ Ky)+ -+ Ki(y).

0 [

s du W e du
e (smlp(u)—l/f(u))g—i—/o e (yl o u’g‘)—

u
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We first consider K;(y):

oo

9]
Kz()/) — ,yk/ol eiu‘”u,ﬁr—ldu _ yk‘/l 9 eiuwuﬁl_ldu
8%
= Li(y) — Nu(y).

Now for 1 <j < ¢, define
o
) = / e ubdu.
0

We can evaluate this integral explicitly using the techniques from complex analysis. In
fact,

c(j) = —e%ﬂf[‘ <&> #0
A

1

(o2}
where I" denotes the usual Gamma function. We now have L,(y) = ¢(f)y* and also it
is easy to see that N,(y) = O(y*t?=F)) Thus,

Kiy) = c(t)y" + O(y*7@F).
Similarly, it can be shown that for 1 <j <¢—1,
R 1-5% 40(a,—8)
Ki(y) = c(j)y = + Oy~ =),

Butl —g1/ay <1—g/asforl <j<t—1anda; — g; > 0 forallj. So we have

D(y) = J(r) + ey 57 + 0y 7).

Thus, we now just need to show that J(y) is an error term to prove our claim. For this,
we shall use the following estimates:

sin Y (u) — Y(u) = 0(]/3(17%%1351) foru < yl/"‘f (42)
and
sinyr(u) — y() = O( D) foru >y, (43)
Now
vl du Iy du
J(y) = / ¢ (sin Y () — Y () 2 + f ¢ (sin Y () — ()
0 u yles u

=Py)+ 0y).

From (42), it follows that P(y) = O(y?) and so finally we consider O(y). Let ®(u) =
sin ¥ (1) — ¥ (u). Then, (43) is same as

d(w) = O(y™u?)  foruz=y'. (44)
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Also ®'(u) = O(y*u3P=1). If we now integrate by parts and use the estimates of ®(u)
and ®'(u), then it follows that Q(y) is an error term. Thus,

M(y) =c(y*+ 0"  withl> k.

This concludes our claim for M(y) and also completes the proof of our main theorem.
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