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1. Introduction. For f ∈ S (i.e., a Schwartz class function) define

Hlocf (x, y, z) = p.v.

∫ 1

−1

∫ 1

−1
f (x − s, y − t, z − P(s, t))

ds dt
st

where P(s, t) is a real-valued polynomial in s and t. Carbery, Wainger and Wright
determined the necessary and sufficient condition on the polynomial P so that Hloc is
Lp bounded for 1 < p < ∞. We state their result.

THEOREM 1.1. For any p, 1 < p < ∞,

‖Hloc f ‖Lp ≤ Ap‖ f ‖Lp

iff for each (m, n) that is a corner point of the Newton diagram corresponding to P, at
least one of m and n is even.

In this paper, we determine a necessary and sufficient condition on P so that the
(global) double Hilbert transform defined by

Hf (x, y, z) = p.v.

∫ ∞

−∞

∫ ∞

−∞
f (x − s, y − t, z − P(s, t))

ds dt
st

is bounded on Lp, 1 < p < ∞. The operator is defined for f ∈ S by integrating where
ε′ ≤ |s| ≤ R′, ε ≤ |t| ≤ R, and then, taking the limits as ε, ε′ → 0 and R, R′ → +∞.
We now state the main result of this paper.

Let P(s, t) = ∑
(m,n)∈� am,nsmtn be a polynomial with real coefficients such that

P(0, 0) = 0, ∇P(0, 0) = 0 and where � is indexing the set of lattice points (m, n) ∈ Z2

such that am,n 
= 0.

Let C be the closed convex hull of � in R2 and

D = {(m, n) ∈ � : (m, n) is a corner point (vertex) of C}.
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THEOREM 1.2 Main Theorem. For any p, 1 < p < ∞,

‖Hf ‖Lp ≤ Ap‖f ‖Lp

if and only if for each (m, n) ∈ D, at least one of m and n is even and furthermore, if any
(extended) edge of C passes through the origin (there are at most two such edges), then
every point of � on that edge must have at least one even coordinate.

We note that the Lp, 1 < p < ∞, boundedness of the maximal functions associated
to H or Hloc is not an issue here. This follows easily (without any condition on P and also
independent of the coefficients of P) from [4, Theorem 7.1] and de Leeuw’s theorem.

We now give the organisation of our paper. In Section 2, we discuss a few known
results about the maximal and singular integral operators and then begin with the
proof of sufficiency part of our main theorem. To do this, we initially assume that
none of the edges of C pass through the origin and later adapt this proof to the other
case. In Section 3, we decompose the operator H by splitting the region of integration
where we can replace P(s, t) by one of the monomials corresponding to a corner point
of the convex hull C, with an error that is bounded on Lp. In Section 4, we define
the approximating operators and obtain a few preliminary estimates. In Section 5, we
prove the Lp boundedness of the difference (error) between H and the approximating
operators using certain results of Duoandikoetxea and Rubio de Francia that we quote
in Section 2. In Section 6, we prove the Lp boundedness of the approximating operators
using a result of Ricci and Stein. In Section 7, we discuss the proof of the sufficiency
part assuming that C has an edge through the origin. In Section 8, we discuss the
proof of the sufficiency part in the particular cases excluded from the outset. Finally
in Section 9, we discuss the necessary part of the hypothesis of the main theorem.

Apart from some technical difficulties in extending the result of [2], the main
difficulty is to tackle the case of an edge through the origin. The method of decomposing
the operator H into finitely many operators and introducing approximating operators
in Sections 3 and 4 is almost the same as in [2]. Our method differs from [2] while
handling the difference between H and the approximating operators in Section 5. In
[2], this has been done using the standard Littlewood–Paley theory that do not seem
to work here.

One may wonder what happens to Theorem 1.2 if P is assumed to be a real-analytic
function? But the assumption that P is a polynomial helps significantly while proving
estimate (12) of Lemma 4.2 and while determining a positive number σ in estimate (13)
of Lemma 5.2. If one can achieve this with a real-analytic P, then the assumption that
P is a polynomial in Theorem 1.2 could possibly be replaced by the assumption that P
is a real-analytic function.

2. A few known results. Here, we shall state two theorems (with a different
formulation) due to J. Duoandikoetxea and J. L. Rubio de Francia [3] and a result
that is due to Ricci and Stein [4]. We shall need these results while proving our main
theorem. We begin with some notation and terminology.
� Let Rn = Rm × Rn−m with 1 ≤ m < n, and write x ∈ Rn in the form x = (x0, x̄), x0 ∈

Rm, x̄ ∈ Rn−m. Then, given a finite measure ω on Rn, we define another measure ω(0)

on Rm as ω(0)(E) = ω(E × Rn−m) for every Borel subset E of Rm; in terms of Fourier
transforms, this means ω̂(0)(ζ 0) = ω̂(ζ 0, 0). Also, if f is a Schwartz function in Rm,
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then

< f, ω(0) >=
∫

f (x0) dω(x0, x̄).

� We use the dilations given by the family of matrices {A(t)}t≥0 satisfying A(st) =
A(s)A(t) and the Rivière condition. That is, for each t > 0, A(t) ∈ GL(n, R), and

‖A(t)A−1(st)‖≤ C/sε (1)

for all s > 1, all t > 0, some ε > 0 and some C ≥ 1. We also assume that the norm
is the l2

n-operator norm. For example,

A(t) =
(

t σ1 0
0 t σ2

)

on R2 are easily seen to satisfy the Rivière condition with ε = min(σ1, σ2) if σ1 and
σ2 are positive. It is not hard to see that (1) holds if and only if A(t) = exp{B log t}
for some real matix B each of whose eigen value has a positive real part.

With these definitions, we have the following two theorems due to J.
Duoandikoetxea and J. L. Rubio de Francia.

THEOREM 2.1. Let {ωk}∞k=−∞ be probability measures in Rn such that

|ω̂k(ζ 0, ζ̄ ) − ω̂k(ζ 0, 0)| ≤ C|A(2−k)ζ̄ |α (2)

|ω̂k(ζ 0, ζ̄ )| ≤ C|A(2−k)ζ̄ |−α (3)

where ζ = (ζ 0, ζ̄ ) ∈ Rn, ζ 0 ∈ Rm, ζ̄ ∈ Rn−m and α > 0. Suppose that M0g(x0) =
supk|ω(0)

k ∗ g(x0)| is a bounded operator on Lp(Rm) for all p > 1. Then, Mf (x) =
supk|ωk ∗ f (x)| is also bounded on Lp(Rn) for all p > 1.

THEOREM 2.2. Let {ρk}∞k=−∞ be measures such that ‖ρk ‖≤ 1 and

|̂ρk(ζ 0, ζ̄ )| ≤ C min(|A(2−k)ζ̄ |, |A(2−k)ζ̄ |−1)α (4)

where ζ = (ζ 0, ζ̄ ) ∈ Rn, ζ 0 ∈ Rm, ζ̄ ∈ Rn−m and α > 0. Suppose that ρ∗f = supk||ρk| ∗ f |
is bounded on Lq(Rn). Then, Tf = ∑∞

−∞ρk ∗ f and g(f ) = (∑
k|ρk ∗ f |2)1/2 are bounded

on Lp(Rn) for | 1
p − 1

2 | < 1
2q .

Moreover, the Lp − Lp norm of the operator M in Theorem 2.1 does not depend
on the family {ωk}∞k=−∞ in the sense that it can be controlled by the constant ‘C’ of (2)
and (3), the constant of Rivière condition and the Lp − Lp norm of the operator M0.
Similarly, the Lp − Lp norm of the operator T and g in Theorem 2.2 can be controlled
by the constant ‘C’ of (4), the constant of Rivière condition and the Lq − Lq norm of
the operator ρ∗.

Next we state a theorem that is a special case of a general result of Ricci and Stein
[4, Theorem 5.1]. For each I = (p, q) ∈ Z2, let μ(I) denote the associated finite measure
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supported in the unit cube of R3. Define the dilated μ
(I)
I of μ(I) by

∫
R3

f dμ
(I)
I =

∫
R3

f (2−px, 2−qy, 2−pm2−qnz)dμ(I)(x, y, z),

where m and n are fixed integers. Then, we have the following result.

THEOREM 2.3 (Ricci and Stein). Suppose

(i) |μ̂(I)(ξ )| ≤ C(1 + |ξ |)−ε for some C, ε > 0;
(ii) |μ(I)| ≤ σ ∈ B(Rn) (finite Borel measure);

(iii) μ̂(I)(λej) = 0 for all λ ∈ R and 1 ≤ j ≤ 3, where {ej} form the canonical basis for
R3. Furthermore, if either n or m is zero, then μ̂(I)(ξ1, 0, ξ3) ≡ 0 or μ̂(I)(0, ξ2, ξ3) ≡
0, respectively.

Then, convolution with the kernel K = ∑
I∈Z2μ

(I)
I is bounded on Lp(R3), 1 < p < ∞.

We shall use the above theorems in the proof of our main theorem that we give
now.

Back to main theorem (Theorem 1.2). We begin with a few remarks about the
statement of our main theorem.
� The constant Ap of Theorem 1.2 depends on p as well as the polynomial P.
� Throughout ‘edge of C’ means an extended edge.
� Throughout the proof of the theorem, ‘C’ denotes a general constant.

We first give the proof of the sufficiency part of the main theorem. That is, we
assume that every corner point of C and also every point of � on an edge of C through
the origin (if it exists) have at least one even coordinate. Under this assumption, we
shall show that H is Lp bounded for 1 < p < ∞. For this, we shall initially assume that
C has at least three corner points so that the interior of C is non-empty. The proof of
the other particular cases will be discussed later.

We initially assume that no edge of C passes through the origin and later adapt
this proof to the other case.

3. Decomposition of the operator H. We choose a C∞ function ψ(s) defined on
the real line that is odd, non-negative for s ≥ 0, supported in 1/2 ≤ |s| ≤ 2 and such
that ∑

p∈Z

2pψ(2ps) = 1/s.

We then define

Hp,q f (x, y, z) = 2p+q
∫ ∫

f (x − s, y − t, z − P(s, t))ψ(2ps)ψ(2qt) ds dt. (5)

Thus,

H =
∑

(p,q)∈Z×Z

Hp,q.
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We next consider the orientation of the boundary of C to be anticlockwise and
assume that it has r (≥3) corner points namely v1, v2, . . . , vr in the anticlockwise order.
We let vj = (mj, nj) for 1 ≤ j ≤ r.

Then, C has r edges that we denote by the vectors vjvj+1 = vj+1 − vj for 1 ≤ j ≤ r,
considering the point vr+1 the same as the corner point v1. For 1 ≤ j ≤ r, let nj = (n1

j , n2
j )

denote the (inward) normal vector to the edge vjvj+1 of C. Also, we choose nj such
that n1

j and n2
j are integers. (Such a choice is not unique but the choice does not matter

here.) Since C is the closed convex hull of �, geometrically it is now easy to see that

(v − vj) · nj−1 ≥ 0 and (v − vj) · nj ≥ 0 for all v ∈ �. (6)

For 1 ≤ j ≤ r, define

T(j) = {(p, q) ∈ Z × Z : (p, q) · (v − vj) > 0 for all v = (m, n) ∈ �\{vj}}
=

⋂
v∈�\{vj}

{(p, q) ∈ Z × Z : (p, q) · (v − vj) > 0}.

In other words, T(j) is the intersection of various half-planes.

LEMMA 3.1. For 1 ≤ j ≤ r,

T(j) = {(p, q) ∈ Z × Z : (p, q) = αnj−1 + βnj for some positive reals α and β}

where n0 is considered to be the same as nr.

Proof. Since vj is one of the corner points of C, the edges vj−1vj and vjvj+1 cannot
be parallel and so the normals nj−1 and nj are linearly independent directions. Thus,
we can write (p, q) ∈ Z × Z as

(p, q) = αnj−1 + βnj for some real numbers α and β.

We need to show that (p, q) ∈ T(j) if and only if α, β > 0.

First suppose that (p, q) ∈ T(j). Then,

(p, q) · (v − vj) > 0 for all v ∈ �\{vj}.

In particular,

(p, q) · (vj+1 − vj) > 0.

Therefore,

(αnj−1 + βnj) · (vj+1 − vj) > 0.

But nj being normal to the edge vjvj+1 = vj+1 − vj,

nj · (vj+1 − vj) = 0.

So we have

α(nj−1 · (vj+1 − vj)) > 0
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which implies α > 0 due to (6). Similarly, choosing v = vj−1 gives β > 0. Conversely,
if α > 0 and β > 0, then for any v ∈ �\{vj},

(p, q) · (v − vj) = α(nj−1 · (v − vj)) + β(nj · (v − vj)).

But by (6),

nj−1 · (v − vj) ≥ 0 and nj · (v − vj) ≥ 0 for all v ∈ �\{vj}.

Also, for a given v, nj−1 · (v − vj) and nj · (v − vj) both cannot be simultaneously
zero as nj and nj−1 are non-parallel. So,

(p, q) · (v − vj) > 0 if α > 0 and β > 0.

This completes the proof of Lemma 3.1.
We next show that these sets are pairwise disjoint.

LEMMA 3.2. T(j)
⋂

T(k) = ∅ for 1 ≤ j < k ≤ r.

Proof. Suppose (p, q) ∈ T(j)
⋂

T(k). Then,

(p, q) · (v − vj) > 0 for all v ∈ �\{vj}

and

(p, q) · (v − vk) > 0 for all v ∈ �\{vk}.

In particular,

(p, q) · (vk − vj) > 0 and (p, q) · (vj − vk) > 0

which is not possible. This concludes Lemma 3.2.
Now Lemma 3.1 asserts that

T(j) = {(p, q) ∈ Z × Z : (p, q) · (v − vj) > 0 for all v ∈ �\{vj}}
= {(p, q) ∈ Z × Z : (p, q) = αnj−1 + βnj for some α > 0 and β > 0}.

The second formulation of T(j) precisely means that T(j) consists of those points
of Z × Z that are within the infinite triangle (or say cone centred at origin) whose
boundaries are the lines (rays) in the direction of nj−1 and nj. Thus, if we define

Z(j) = T(j) ∪ {(p, q) ∈ Z × Z : (p, q) = αnj−1; α > 0}
= {(p, q) ∈ Z × Z : (p, q) = αnj−1 + βnj; α > 0, β ≥ 0}

then it follows from Lemma 3.2 that

Z(j)
⋂

Z(k) = ∅ for 1 ≤ j < k ≤ r

and geometrically, it is easy to see that

r⋃
j=1

Z(j) = Z × Z\{(0, 0)}.
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We note that for (p, q) ∈ Z(j), (p, q) · (v − vj) ≥ 0 for all v ∈ � by (6). Here, the
strict inequality may not be achieved even for v 
= vj.

We now try to determine α and β explicitly for a given (p, q) ∈ Z(j). We have

(
p
q

)
=
(

αn1
j−1 + βn1

j

αn2
j−1 + βn2

j

)
=
(

n1
j−1 n1

j

n2
j−1 n2

j

)(
α

β

)
.

The determinant d of the above matrix on the right is non-zero since nj and nj−1 are
non-parallel. Thus,

(
α

β

)
= 1

d

(
n2

j −n1
j

−n2
j−1 n1

j−1

)(
p
q

)
=

⎛
⎜⎝

pn2
j − qn1

j

d

−pn2
j−1 + qn1

j−1

d

⎞
⎟⎠ .

Since we have chosen the components of nj−1 and nj to be integers, we can write
α = t/d and β = l/d for some integers t, l and d. Also, we know that α > 0 and β ≥ 0
and so t, l and d are all either non-positive or non-negative. But since we have chosen
the orientation of C to be anticlockwise, it is not hard to see that d > 0 and so t, l and
d are all non-negative integers. Thus, we have

Z(j) =
{

(p, q) ∈ Z × Z : (p, q) = t
d

nj−1 + l
d

nj; t ∈ N, l ∈ N
,

where d = n1
j−1n2

j − n2
j−1n1

j

}

and where N
 = N ∪ {0}. We note that d depends on the coordinates of nj−1 and nj,
but for fixed j, d is fixed. Now since we do not want to leave the point (p, q) = (0, 0),
we include it in the set Z(1). Thus,

r⋃
j=1

Z(j) = Z × Z. (7)

We shall use this geometry to split our main operator

H =
∑

(p,q)∈Z×Z

Hp,q.

For 1 ≤ j ≤ r, define

M(j) =
∑

(p,q)∈Z(j)

Hp,q.

Then from (7), it follows that

H =
r∑

j=1

M(j). (8)
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It is now sufficient to prove that M(j) is bounded on Lp(R3) (with bounds allowed
to depend on j) for 1 < p < ∞. For this purpose, we introduce the approximating
operators.

4. The approximating operators and a few preliminary estimates. Set

Sp,q f (x, y, z) = 2p+q
∫ ∫

f (x − s, y − t, z − amj,nj s
mj tnj )ψ(2ps)ψ(2qt) ds dt

for (p, q) in Z(j), and

Q(j) =
∑

(p,q)∈Z(j)

Sp,q.

Let E(j) = M(j) − Q(j). As we shall see, Lp boundedness of Q(j) follows from the result
of Ricci and Stein, and so, our main task is to prove the following proposition.

PROPOSITION 4.1. For 1 < p < ∞,

‖E( j)‖Lp ≤ A(p, j)‖f ‖Lp .

Proof. Let mp,q denote the multiplier corresponding to Hp,q − Sp,q for (p, q) in Z(j).
Then,

mp,q(ξ, η, γ ) = 2p+q
∫ ∫

exp(iξs + iηt) [exp(iγ P(s, t))

− exp
(
iγ amj,nj s

mj tnj
)]

ψ(2ps)ψ(2qt) ds dt

which after the change of variables is the same as

mp,q(ξ, η, γ ) =
∫ ∫

exp(iξ2−ps + iη2−qt)
[
exp(iγ P(2−ps, 2−qt))

− exp(iγ 2−pmj 2−qnj amj,nj s
mj tnj )

]
ψ(s)ψ(t) ds dt.

We write

P(2−ps, 2−qt) =
∑

(m,n)∈�

am,n2−pm2−qnsmtn

= 2−(pmj+qnj)
∑

(m,n)∈�

am,n2−((pm+qn)−(pmj+qnj))smtn

= 2−(p,q)·vj P̃j(s, t)

where

P̃j(s, t) =
∑

v=(m,n)∈�

am,n2−(p,q)·(v−vj)smtn. (9)

(We shall always keep in mind that P̃j depends on the choice of the pair (p, q) ∈ Z(j).
But later we shall also see that P̃j enjoys certain uniformity properties in (p, q) ∈ Z(j)).
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So,

mp,q(ξ, η, γ ) =
∫ ∫

exp(iξ2−ps + iη2−qt)
[

exp(iγ 2−(p,q)·vj P̃j(s, t))

− exp
(
iγ 2−(p,q)·vj amj,nj s

mj tnj
)]

ψ(s)ψ(t) ds dt. (10)

We then have the following estimates for mp,q.

LEMMA 4.2. For (p, q) in Z(j),

|mp,q(ξ, η, γ )| ≤ A|γ |2−(p,q)·vj (11)

and

|mp,q(ξ, η, γ )| ≤ A
(|ξ |2−p + |η|2−q + |γ |2−(p,q)·vj )ε

(12)

for some ε > 0. The constant A is independent of p and q but may depend on vj and P.

Proof. For (p, q) ∈ Z(j), we know that (p, q) · (v − vj) ≥ 0 and so estimate (11)
follows from (9) and (10) and the mean value theorem.

For estimate (12), we treat each term of mp,q individually. Since (p, q) · (v − vj) ≥ 0
for all (p, q) ∈ Z(j),

P̃j(s, t) =
∑

(m,n)∈�

am,n2−(p,q)·(v−vj)smtn =
∑

(m,n)∈�

bm,ns mt n

is uniformly (in terms of (p, q) ∈ Z(j)) in any Ck class† (for |s|, |t| ≤ 2) and satisfies∑ |bm,n| ≥ |amj,nj |. Also since the ‘norms’

∑
|bm,n| and max

1≤|α|≤d0

inf
|s|,|t|≤2

|∂αP̃j(s, t)|

are equivalent on the finite-dimensional vector space of non-constant polynomials of
degree at most d0, we see that some derivative of P̃j is uniformly bounded below. (We
note that the latter is not really a norm because it does not satisfy the triangle inequality
for a norm. However it can be verified that we do not need the triangle inequality for
the latter to show that both are comparable. See for instance, the proof of [1, Corollary
7.3]). Now ∇Pj(0, 0) = 0 (hypothesis) and so if ∂αP̃j is uniformly bounded below, then
|α| ≥ 2. Let mp,q = m1

p,q − m2
p,q where

m1
p,q(ξ, η, γ ) =

∫ ∫
exp(iξ2−ps + iη2−qt + iγ 2−(p,q)·(v−vj)P̃j(s, t))ψ(s)ψ(t) ds dt

=
∫ ∫

exp[iλ(ω · (s, t, P̃j(s, t))]ψ(s)ψ(t) ds dt;

ω = (w1, w2, w3) is the unit vector 1
|(ξ2−p,η2−q,γ 2−(p,q)·(v−vj ))| (ξ2−p, η2−q, γ 2−(p,q)·(v−vj )) and

λ = |(ξ2−p, η2−q, γ 2−(p,q)·(v−vj ))|.

†A function is in the Ck class if all of its mixed derivatives up to the order k are bounded above.
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Next we set �j(s, t) = ω · (s, t, P̃j(s, t)). Then,

∂�j

∂s
= w1 + w3

∂P̃j

∂s

∂�j

∂t
= w2 + w3

∂P̃j

∂t

and

∂α�j = w3∂
αP̃j for |α| ≥ 2.

Since, ω is a unit vector, ∂αP̃j is uniformly bounded below for some α with |α| ≥ 2,
and P̃j is uniformly in any Ck class; it follows that ∂α�j is uniformly bounded below
for some α. Also, P̃j being uniformly in any Ck class, �j is uniformly in any Ck class
and so estimate (12) (with A independent of (p, q) ∈ Z(j)) for m1

p,q follows from van
der Corput’s lemma in higher dimensions [5, Chapter VIII, Proposition 5]. The same
estimate also holds for m2

p,q because it is just the special case of m1
p,q, that is, when P̃j

is a monomial. This completes the proof of Lemma 4.2.
We shall use the estimates of Lemma 4.2 to show that the multiplier of E(j) is an

Lp multiplier on R3, and in particular, it is a bounded function. For this purpose, we
further split our operator E(j) by splitting Z(j) into Z1(j) and Z2(j) where

Z1(j) = {(p, q) ∈ Z(j) : (p, q) = k + N
d

nj−1 + N
d

nj; k ∈ N and N ∈ N
}

Z2(j) = {(p, q) ∈ Z(j) : (p, q) = N
d

nj−1 + k + N
d

nj; N ∈ N and k ∈ N
}.

Since nj−1 and nj are linearly independent, it is clear that Z(j) is the disjoint union of
Z1(j) and Z2(j) . Also when vj = v1, we add the point (0, 0) to either Z1(1) or Z2(1).
We assume it is in Z1(1). We now split E(j) as E(j) = E1(j) + E2(j) where

E1( j) =
∑

(p,q)∈Z1( j)

(Hp,q − Sp,q) = M1( j) − Q1( j)

and

E2( j) =
∑

(p,q)∈Z2(j)

(Hp,q − Sp,q) = M2( j) − Q2( j).

To prove Proposition 4.1, it suffices to prove the next proposition.

PROPOSITION 4.3. For 1 ≤ j ≤ r and 1 < p < ∞,

‖E1(j)f ‖Lp ≤ A(p, j)‖f ‖Lp

and

‖E2(j)f ‖Lp ≤ A(p, j)‖f ‖Lp .

Proof. We give the proof for E1( j). The proof for E2( j) is exactly the same.
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We split Z1( j) as

Z1(j) =
⋃
N≥0

ZN
1 (j)

where

ZN
1 ( j) =

{
(p, q) ∈ Z1(j) : (p, q) = k + N

d
nj−1 + N

d
nj; k ∈ N

}
.

(When j = 1, we add (0, 0) to Z0
1(1).)

Set

EN
j =

∑
(p,q)∈ZN

1 (j)

(Hp,q − Sp,q).

Then,

E1(j) =
∑
N≥0

EN
j .

Proposition 4.3 is now a consequence of the following estimate.

5. The Lp estimates for EN
j .

PROPOSITION 5.1. For 1 ≤ j ≤ r and 1 < p < ∞,∥∥EN
j f

∥∥
Lp ≤ A(j, p)2−δ(j,p)N‖f ‖Lp

for some δ(j, p) > 0.

We first obtain the L2 estimate. For that, we need the following improved estimate
over estimate (11) for (p, q) ∈ ZN

1 (j).

LEMMA 5.2. For (p, q) ∈ ZN
1 (j),

|mp,q(ξ, η, γ )| ≤ A|γ |2−σN2−(p,q)·vj (13)

for some σ > 0.

Proof. If (p, q) ∈ ZN
1 (j), we can write

(p, q) = k + N
d

nj−1 + N
d

nj

= k
d

nj−1 + N
d

(nj−1 + nj)

for some positive integer k. Now it follows from (6) that

(v − vj) · (nj−1 + nj) > 0 for all v ∈ �\{vj}.
So,

(p, q) · (v − vj) =
(

k
d

)
nj−1 · (v − vj) + N

d
(nj−1 + nj) · (v − vj) ≥ σN (14)

for all v ∈ �\{vj} if we choose σ = 1
d minv 
=vj {(nj−1 + nj) · (v − vj)} > 0.
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Estimate (13) is now just a consequence of (9), (10), (14) and the mean value theorem.

Proof of Propositon 5.1. It follows from estimate (12) that

|mp,q(ξ, η, γ )| ≤ A
(|γ |2−(p,q)·vj )ε

. (15)

Taking the convex combination of estimates (13) and (15), we get

|mp,q(ξ, η, γ )| ≤ C2−( σε
1+ε

)N . (16)

Combining estimates (15) and (16), we get

|mp,q(ξ, η, γ )| ≤ C2− 1
2 ( σε

1+ε
)N 1

(|γ |2−(p,q)·vj )
ε
2
. (17)

Now for (p, q) ∈ ZN
1 (j), we have

(p, q) = k
d

nj−1 + N
d

(nj−1 + nj)

for some positive integer k. So,

2−(p,q)·vj = 2−( k
d )(nj−1·vj)2−( N

d (nj−1+nj)·vj).

Let

AN = 2−( N
d (nj−1+nj)·vj) and δ = 1

2

(
σε

1 + ε

)
> 0.

So, estimate (17) is

|mp,q(ξ, η, γ )| ≤ C2−δN 1

(|γ |2−( k
d )(nj−1·vj)AN)

ε
2
. (18)

But σ > δ, and so, it follows from (13) and (18) that

|mp,q(ξ, η, γ )| ≤ C2−δN min

(
|γ |AN2− k

d nj−1·vj ,
1

(|γ |2−( k
d )(nj−1·vj)AN)

ε
2

)
.

Since we have assumed in the beginning that no edge of C passes through the origin,
it is easy to see geometrically that nj−1 · vj 
= 0 and so c0 = (nj−1 · vj)/d is a non-zero
constant. Similarly, when dealing with the part E2(j) of E(j), we require nj · vj 
= 0 that
again requires the assumption that C has no edge through the origin. (We note that
this is the first time we have used the fact that no edge of C passes through the origin).
We have

|mp,q(ξ, η, γ )| ≤ C2−δN min

(
|γ |AN2−kc0 ,

1

(|γ |AN2−kc0 )ε/2

)
.
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So, ∣∣∣∣∣∣
∑

(p,q)∈ZN
1 (j)

mp,q(ξ, η, γ )

∣∣∣∣∣∣
≤

∑
(p,q)∈ZN

1 (j)

|mp,q(ξ, η, γ )|

≤ C2−δN
∑

k:(p,q)= k
d nj−1+ N

d (nj−1+nj)

min

(
|γ |AN2−kc0 ,

1

(|γ |AN2−kc0 )ε/2

)

≤ C2−δN
∑
k≥0

min

(
|γ |AN2−kc0 ,

1

(|γ |AN2−kc0 )ε/2

)

< C2−δN

since the sum in k is an absolute constant independent of γ and AN . Thus, we have
shown that the multiplier of EN

j is bounded above by C2−δN and so∥∥EN
j f

∥∥
L2 ≤ A(j)2−δ(j)N‖f ‖L2 . (19)

For other Lp estimates, we treat M1(j) and Q1(j) separately. For (p, q) = k
d nj−1 +

N
d (nj−1 + nj) ∈ ZN

1 (j) and f ∈ S, we have

Hp,q f (x, y, z) =
∫ ∫

f (x − 2−ps, y − 2−qt, z − 2−(p,q)·vj P̃j(s, t))ψ(s)ψ(t) ds dt

=
∫ ∫

f (x − cN2−σ1ks, y − dN2−σ2kt, z − eN2−σ3kP̃j(s, t))ψ(s)ψ(t) ds dt

where

cN = 2− N
d (n1

j−1+n1
j ) , σ1 = n1

j−1

d

dN = 2− N
d (n2

j−1+n2
j ) , σ2 = n2

j−1

d

eN = 2− N
d ((nj−1+nj)·vj) , σ3 = nj−1 · vj

d
,

recalling that nj = (n1
j , n2

j ), nj−1 = (n1
j−1, n2

j−1) and vj = (mj, nj).

We note that the polynomial P̃j also depends on k, N and j since its definition
involves p, q and vj. Also cN, dN and eN are positive real constants that depend on N
and j while σ1, σ2 and σ3 are arbitrary real constants independent of N but do depend
on j. We see that σ3 
= 0 and σ1 and σ2 being the components of 1

d nj−1 cannot be zero
simultaneously. Moreover, it is clear that if either σ1 or σ2 is zero then the other has
same sign as σ3. So without loss of generality, we may assume that σ2 and σ3 are of the
same sign and that they are positive.
For k ∈ N we now define the measures μ

N,(k)
k , ν

N,(k)
k and νN,(k) by

< f, μN,(k)
k >=

∫ ∫
f
(
cN2−σ1ks, dN2−σ2kt, eN2−σ3kP̃j(s, t)

)
ψ(s)ψ(t) ds dt
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< f, νN,(k)
k >=

∫ ∫
f
(
2−σ1ks, 2−σ2kt, 2−σ3kP̃j(s, t)

)
ψ(s)ψ(t) ds dt

< f, νN,(k) >=
∫ ∫

f (s, t, P̃j(s, t))ψ(s)ψ(t) ds dt

for those k’s for which k
d nj−1 + N

d (nj−1 + nj) = (p, q) ∈ ZN
1 (j) and for all the other k’s,

we define them to be zero distribution. We see that μ
N,(k)
k is just a fixed dilate of ν

N,(k)
k

and also that ν
N,(k)
k ’s are the one parameter dilates of νN,(k). So if we set

MN
j f =

∑
(p,q)∈ZN

1 (j)

Hp,qf =
∑
k>0

μ
N,(k)
k ∗ f

and

LN
j f =

∑
k>0

ν
N,(k)
k ∗ f

then it is clear that ‖MN
j ‖Lp−Lp = ‖LN

j ‖Lp−Lp . Thus, it is enough to get the Lp estimates
for the operator LN

j . For this, we cannot apply the standard Littlewood–Paley theory
because σ1, σ2 and σ3 may not be of the same sign, and so, here our approach differs
from the one in [2]. Our approach shall use Theorems 2.1 and 2.2 that are due to
Duoandikoetxea and Rubio de Francia [3]. For convenience, we drop the superscripts
N and (k) and denote ν

N,(k)
k by νk. We then have the following estimates for νk.

LEMMA 5.3.

|ν̂k(ξ, η, γ )| ≤ C min
(
2−σ2k|η| + 2−σ3k|γ |, (2−σ2k|η| + 2−σ3k|γ |)−1)δ

for some positive constants C and δ independent of N and k.

Proof. Since

ν̂k(ξ, 0, 0) =
∫ ∫

exp
(
iξ2−σ1ks

)
ψ(s)ψ(t) ds dt ≡ 0,

the first (size) estimate for ν̂k follows from the mean value theorem. The second (decay)
estimate is just an application of van der Corput’s lemma using the fact that P̃j(s, t) is
uniformly in any Cm class (for |s|, |t| ≤ 2) and that ∂αP̃j is uniformly bounded below
for some α with |α| ≥ 2. This completes the proof of Lemma 5.3. We now use these
estimates of ν̂k to prove the following important lemma.

LEMMA 5.4. For 1 ≤ j ≤ r and 1 < p < ∞,∥∥MN
j f

∥∥
Lp ≤ A(j, p)‖f ‖Lp .

Proof. Since ‖MN
j f ‖Lp = ‖LN

j f ‖Lp , it suffices to show the above estimate for the
operator

LN
j =

∑
k>0

νk ∗ f.
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We shall use Theorem 2.2 to get the Lp estimates for LN
j . We set ζ 0 = ξ , ζ̄ = (η, γ ) and

A(t) =
[

tσ2 0
0 tσ3

]
.

Then, Lemma 5.3 implies that

|ν̂k(ζ 0, ζ̄ )| ≤ C min
(|A(2−k)ζ̄ |, |A(2−k)ζ̄ |−1)δ . (20)

Moreover, A(st) = A(s)A(t) and A(t) satisfies the Rivière condition since we have
assumed that σ2 and σ3 are positive. Thus, if we can show that ν∗(f ) = supk||νk| ∗ f |
is bounded on Lq(R3) (with Lq − Lq norm independent of N) for all q > 1, then
Lemma 5.4 is just the direct application of Theorem 2.2. We shall apply Theorem 2.1
to {|νk|}k>0 to achieve this where for f ∈ S(R3),

< f, |νk| >=
∫ ∫

f
(
2−σ1ks, 2−σ2kt, 2−σ3kP̃j(s, t)

)|ψ(s)||ψ(t)| ds dt.

It is obvious from the definition of |νk| that the total variation of |νk| is uniformly (in k
and N) bounded above by

∫ ∫ |ψ(s)||ψ(t)|ds dt. If we follow the proof of estimate (20),
then it is easy to see that |νk| do satisfy estimates (2) and (3) of Theorem 2.1. Now

|νk|(0) ∗ g(x) =
∫ ∫

g
(
x − 2−σ1ks

)|ψ(s)||ψ(t)|ds dt = C
∫

g
(
x − 2−σ1ks

)|ψ(s)|ds

and so ν∗
(0)(g) = supk||νk|(0) ∗ g| is bounded on Lq(R1) for all q > 1 . But once we have

the boundedness for ν∗
(0), the boundedness of ν∗ follows from Theorem 2.1 and this

concludes Lemma 5.4.
If we replace P̃j(s, t) in μ

N,(k)
k and ν

N,(k)
k by amj,nj s

mj tnj , then using similar techniques,
we can show that the operator QN

j defined by QN
j = ∑

(p,q)∈ZN
1 ( j)Sp,q is bounded on

Lp(R3), 1 < p < ∞, and also that the norm is independent of N. But EN
j = MN

j − QN
j .

So,

∥∥EN
j f

∥∥
Lp ≤ A(j, p)‖f ‖Lp for 1 < p < ∞. (21)

Proposition 5.1 is now just a consequence of interpolation between the estimates (19)
and (21). This completes the proof of Proposition 5.1 and hence Propositions 4.1
and 4.3 also. Thus, H is bounded on Lp(R3) for 1 < p < ∞ if we prove the following
estimate.

6. The Lp estimates for the approximating operators.

PROPOSITION 6.1. For 1 ≤ j ≤ r and 1 < p < ∞,

‖Q(j)f ‖Lp ≤ A(j, p)‖f ‖Lp

where Q(j) =
∑

(p,q)∈Z(j)

Sp,q.
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Proof. We exploit the Ricci and Stein result to prove the above estimate. For
(p, q) ∈ Z(j),

Sp,qf (x, y, z) =
∫ ∫

f
(
x − 2−ps, y − 2−qt, z − amj,nj 2

−(p,q)·vj smj tnj
)
ψ(s)ψ(t) ds dt.

We define

< f, μ(I) >=
∫ ∫

f
(
s, t, amj,nj s

mj tnj
)
ψ(s)ψ(t) ds dt

if I = (p, q) is in Z(j) and otherwise μ(I) = 0. Thus, the non-zero μ(I)’s are all identical
here. Next we define the dilate μ

(I)
I of μ(I) by

< f, μ(I)
I >=

∫ ∫
f
(
2−ps, 2−qt, amj,nj 2

−(p,q)·vj smj tnj
)
ψ(s)ψ(t) ds dt.

Clearly,

Q(j)f =
∑

I=(p,q)∈Z(j)

Sp,qf =
∑

I=(p,q)∈Z(j)

μ
(I)
I ∗ f.

It is not hard to see that μ(I) satisfies all the conditions of Ricci and Stein theorem
(Theorem 2.3) and so Proposition 6.1 follows. This also concludes the proof of the
sufficiency part of our main theorem in the case when no edge of the convex hull C
passes through the origin.

7. The case of an edge through the origin. We next consider the case when C has
an edge through the origin. It is clear that C can have a maximum two such edges and
also that they cannot be adjacent edges. In this case, the basic idea of the proof is same
as before but we need some modifications. We use the same notation as in the previous
case.

Once again we show that the operator H is bounded on Lp(R3) by showing that
M(j) = ∑

(p,q)∈Z(j)Hp,q is bounded on Lp(R3) for all 1 ≤ j ≤ r.
If vj does not lie on the edge through the origin, then we proceed exactly in the same
manner as in the previous case. So we assume that one of the r corner points of C,
say the corner point v2 = (m2, n2), is on an edge through the origin. Suppose this edge
is v1v2 and so we have n1 · v2 = n1 · v1 = 0. (This of course means that v1 is also on
the edge through the origin and that v2v3 or vrv1 cannot be another edge through the
origin if it exists). The above proof of Lp estimates for M(j) then breaks down for M(1)
and M(2) as the proof of Proposition 4.3 requires that nj−1 · vj and nj · vj are non-zero.
So we give a separate proof for M(1) and M(2) in this case. In fact, we shall give the
proof for M(2) only. The Lp estimates of M(1) can be obtained similarly.
We need to show that M(2) = ∑

(p,q)∈Z(2)Hp,q is bounded on Lp(R3) for 1 < p < ∞. Set

E = {v = (m, n) ∈ � : v = (m, n) lies on the edge v1v2}
and

PE (s, t) =
∑

(m,n)∈E
am,nsmtn.
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For (p, q) ∈ Z(2) and f ∈ S, we define

Sp,qf (x, y, z) = 2p+q
∫ ∫

f (x − s, y − t, z − PE (s, t))ψ(2ps)ψ(2qt) ds dt

and

Q(2) =
∑

(p,q)∈Z(2)

Sp,q.

Let E(2) = M(2) − Q(2). Then, we have the following proposition.

PROPOSITION 7.1. For 1 < p < ∞,

‖E(2)f ‖Lp ≤ A(p)‖f ‖Lp .

Proof. For (p, q) in Z(2), let mp,q denote the multiplier corressponding to Hp,q −
Sp,q. Then,

mp,q(ξ, η, γ ) =
∫ ∫

exp(iξ2−ps + iη2−qt))[exp(iγ P(2−ps, 2−qt)

− exp(iγ PE (2−ps, 2−qt))]ψ(s)ψ(t) ds dt.

We write

P(2−ps, 2−qt) =
∑

v=(m,n)∈�

am,n2−pm2−qnsmtn

= 2−(p,q)·v2 P̃(s, t)

where

P̃(s, t) =
∑

v=(m,n)∈�

am,n2−(p,q)·(v−v2)smtn (22)

and also

PE (2−ps, 2−qt) = 2−(p,q)·v2 P̃E (s, t)

where

P̃E (s, t) =
∑

v=(m,n)∈ E
am,n2−(p,q)·(v−v2)smtn. (23)

Thus,

mp,q(ξ, η, γ ) =
∫ ∫

exp(iξ2−ps + iη2−qt)[exp
(
iγ 2−(p,q)·v2 P̃(s, t)

)
− exp(iγ 2−(p,q)·v2 P̃E (s, t))]ψ(s)ψ(t) ds dt. (24)

We then have the following estimate for mp,q.

LEMMA 7.2. For (p, q) ∈ Z(2),

|mp,q(ξ, η, γ )| ≤ A
(|ξ |2−p + |η|2−q + |γ |2−(p,q)·v2 )ε

for some ε > 0.
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We omit the proof of this lemma as it is similar to that of Lemma 4.2. The lemma
implies that for (p, q) ∈ Z(2),

|mp,q(ξ, η, γ )| ≤ A
(|γ |2−(p,q)·v2 )ε

. (25)

Next we split

Z(2) =
{

(p, q) ∈ Z × Z : (p, q) = k
d

n1 + l
d

n2; k ∈ N, l ∈ N


}

as Z(2) = ⋃
k∈NZk(2) where

Zk(2) =
{

(p, q) ∈ Z(2) : (p, q) = k
d

n1 + l
d

n2; l ∈ N


}
.

Let

Ek
2 =

∑
(p,q)∈Zk(2)

Hp,q − Sp,q.

So,

E(2) =
∑
k∈N

Ek
2 .

Proposition 7.1 is now a consequence of the following estimate.

PROPOSITION 7.3. For 1 < p < ∞,

‖Ek
2‖Lp ≤ A2−δk‖f ‖Lp for some δ > 0.

The constants A and δ are independent of k.

First, we shall get the L2 estimate and for that we need the following estimate.

LEMMA 7.4. For (p, q) ∈ Zk(2),

|mp,q(ξ, η, γ )| ≤ A|γ |2−σk2−(p,q)·v2 for some σ > 0. (26)

Proof. We know that

P̃(s, t) − P̃E (s, t) =
∑

v=(m,n)∈�\E
am,n2−(p,q)·(v−v2)smtn.

Thus if we show that (p, q) · (v − v2) ≥ σk for all (p, q) ∈ Zk(2) and all v ∈ �\E, then
estimate (26) is just a consequence of (24) and the mean value theorem. Now

(p, q) · (v − v2) = k
d

(n1 · (v − v2)) + l
d

(n2 · (v − v2)).

But n1 · (v − v2) ≥ 0 and n2 · (v − v2) ≥ 0 for all v ∈ � and n1 · (v − v2) = 0 if and
only if v − v2 is parallel to v1v2, or in other words, v lies on the edge v1v2 of C. So for
v ∈ �\E , we have the following strict inequality:

n1 · (v − v2) > 0.
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If we now choose

σ = 1
d

min
v∈�\E

{n1 · (v − v2)} > 0

then it is easy to see that (p, q) · (v − v2) ≥ σk for all (p, q) ∈ Zk(2) and for all v ∈ �\E .
This completes the proof of Lemma 7.4.

Proof of Proposition 7.3. The rest of the proof for the L2 estimate of Ek
2 is now

similar to the previous case. Like in the proof of Proposition 5.1, we use the estimates
(25) and (26) repeatedly to get

|mp,q(ξ, η, γ )| ≤ C2−δk min

(
|γ |2−(p,q)·v2 ,

1

(|γ |2−(p,q)·v2 )
ε
2

)
(27)

for some δ > 0. But for (p, q) ∈ Zk(2),

(p, q) · v2 = k
d

(n1 · v2) + l
d

(n2 · v2)

= l
d

(n2 · v2) for some non-negative integer l.

Thus, (27) is the same as

|mp,q(ξ, η, γ )| ≤ C2−δk min

(
|γ |2− l

d (n2·v2),
1

(|γ |2− l
d (n2·v2))

ε
2

)
. (28)

Now n2 · v2 is non-zero since n1 · v2 = 0. Thus, we can use (28) to sum mp,q’s over all
(p, q) ∈ Zk(2) as in the proof of Proposition 5.1 and this gives∣∣∣∣∣∣

∑
(p,q)∈Zk(2)

mp,q(ξ, η, γ )

∣∣∣∣∣∣ ≤ C2−δk.

In other words,

∥∥Ek
2 f
∥∥

L2 ≤ A2−δk‖f ‖L2 .

Moreover, using the techniques of Proposition 5.1, we can also deduce that

∥∥Ek
2 f
∥∥

Lp ≤ A‖f ‖Lp , 1 < p < ∞.

Proposition 7.3 then follows by interpolating the Lp estimate with the L2 estimate. To
conclude that M(2) is bounded on Lp(R3), we now just need to prove the following
proposition.

PROPOSITION 7.5. For 1 < p < ∞,

‖Q(2)f ‖Lp ≤ A‖f ‖Lp
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where

Q(2) =
∑

(p,q)∈Z(2)

Sp,q.

If we define R(2) = ∑
(p,q)∈Z(2)Rp,q where

Rp,qf (x, y, z) =
∫ ∫

f
(
x − 2−ps, y − 2−qt, z − 2−(p,q)·v2 sm2 tn2

)
ψ(s)ψ(t) ds dt

then it follows from the Ricci and Stein result that R(2) is bounded on Lp(R3). So
Proposition 7.5 is a consequence of the following proposition.

PROPOSITION 7.6. For 1 < p < ∞,

‖(Q(2) − R(2))f ‖Lp ≤ A‖f ‖Lp .

Proof. We recall that

E = {v = (m, n) ∈ � : v = (m, n) lies on the edge v1v2 through the origin}.
Since v1v2 is an edge through the origin (and v2 is the corner point of C), it is clear that
for all v = (m, n) ∈ E either

(i) m ≥ m2 and n ≥ n2 or
(ii) m ≤ m2 and n ≤ n2.

So without loss of generality, we assume that (i) holds.
Then, for each v ∈ E\{v2},

v − v2 = αvv2

for some positive real constant αv. But we also know that for (p, q) ∈ Z(2), (p, q) ·
(v − v2) ≥ 0 for any v ∈ �. So in particular for v ∈ E\{v2}, we have

0 ≤ (p, q) · (v − v2) = (p, q) · αvv2 = αv((p, q) · v2).

But αv being positive means that (p, q) · v2 ≥ 0 for all (p, q) ∈ Z(2). In other words, we
can write

Z(2) =
⋃
N≥0

ZN(2)

where

ZN(2) = {(p, q) ∈ Z(2) : (p, q) · v2 = pm2 + qn2 = N}.
This helps to decompose our operator as

Q(2) − R(2) =
∑
N≥0

[QN(2) − RN(2)] where

QN(2) − RN(2) =
∑

(p,q)∈ZN (2)

[Sp,q − Rp,q].

Thus, Propostion 7.6 is just a consequence of the following proposition.
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PROPOSITION 7.7. For 1 < p < ∞,

‖(QN(2) − RN(2))f ‖Lp ≤ Ap2−δN‖f ‖Lp

for some δ > 0.

Proof. We first obtain the L2 estimate with some decay in N. For (p, q) ∈ ZN(2),
let dp,q denote the multiplier of Sp,q − Rp,q. Then for (p, q) ∈ ZN(2), we have

dp,q(ξ, η, γ ) =
∫ ∫

exp(iξ2−ps + iη2−qt)
[

exp(iγ 2−NP̃E (s, t))

− exp(iγ 2−Nam2,n2 sm2 tn2 )
]
ψ(s)ψ(t) ds dt

where

P̃E (s, t) = am2,n2 sm2 tn2 +
∑

v=(m,n)∈E\{v2}
am,n2−αvNsmtn.

If we set α = minv∈E\{v2}αv > 0, then using the mean value theorem and van der
Corput’s lemma, we deduce that

|dp,q(ξ, η, γ )| ≤ C min(2−αN |γ 2−N |, |γ 2−N |−ε) (29)

which implies that

|dp,q(ξ, η, γ )| ≤ C2−θN (30)

for some θ > 0 (independent of p and q). We shall now use the additional assumption
in the hypothesis of our main theorem. According to this assumption since the edge
v1v2 passes through the origin, no point of E can have both coordinates odd. If we use
this assumption along with the fact that for all (m, n) ∈ E the ratio m/n is constant,
then at least one of the following must be true:

(i) for all (m, n) ∈ E, m is even,
(ii) for all (m, n) ∈ E, n is even.

If (i) is true, then P̃E (s, t) is an even function of s and if (ii) is true, then P̃E (s, t) is an
even function of t. We assume without loss of generality that n is even for all (m, n) ∈ E
and so P̃E (s, t) is an even function of t. Thus,∫ ∫

exp(iξ2−ps + iγ 2−NP̃E (s, t))ψ(s)ψ(t) ds dt ≡ 0

and ∫ ∫
exp(iξ2−ps + iγ 2−Nsm2 tn2 )ψ(s)ψ(t) ds dt ≡ 0.

Using these extra cancellation conditions, it is easy to see that

|dp,q(ξ, η, γ )| ≤ C|η2−q|. (31)

Using (30), (31) and van der Corput’s lemma, we deduce that

|dp,q(ξ, η, γ )| ≤ C2−δN min(|η|2−q, (|η|2−q)−1)ε (32)
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for all (p, q) ∈ ZN(2) and some ε, δ > 0. Thus,∣∣∣∣∣∣
∑

(p,q)∈ZN (2)

dp,q(ξ, η, γ )

∣∣∣∣∣∣ ≤
∑

(p,q)∈ZN (2)

|dp,q(ξ, η, γ )|

≤ C
∑
q∈Z

|dp,q(ξ, η, γ )| (assuming m2 
= 0 for time being)

≤ C2−δN
∑
q∈Z

min(|η|2−q, (|η|2−q)−1)ε

≤ C2−δN .

This implies that

‖QN(2) − RN(2)f ‖L2 ≤ C2−δN‖f ‖L2 .

Using interpolation, Proposition 7.7 now follows from the following proposition.

PROPOSITION 7.8. For 1 < p < ∞,

‖(QN(2) − RN(2))f ‖Lp ≤ Ap‖f ‖Lp .

Proof. We shall use Theorems 2.1 and 2.2 (due to J. Duoandikoetxea and J. L.
Rubio de Francia) to achieve this. We do not need the difference anymore and so we
shall prove the above estimate only for QN(2). The proof for RN(2) is similar. Now

QN(2)f =
∑

(p,q)∈ZN (2)

Sp,qf =
∑
q∈Z

ρq ∗ f

where we define

< f, ρq >=
∫ ∫

f (2−ps, 2−qt, 2−NP̃E (s, t))ψ(s)ψ(t) ds dt

if (p = N−qn2
m2

, q) ∈ ZN(2) (assuming m2 
= 0 for time being) else we define it to be the
zero distribution. Then, using the extra cancellation condition∫ ∫

exp(iξ2−ps + iγ 2−NP̃E (s, t))ψ(s)ψ(t) ds dt ≡ 0

and van der Corput’s lemma, we get the following estimate for ρ̂q:

|ρ̂q(ξ, η, γ | ≤ C min(|η2−q|, |η2−q|−1)ε

for some ε > 0. Thus, if we set ζ 0 = (ξ, γ ) and ζ̄ = η, then Proposition 7.8 follows
from Theorem 2.2 once we show that ρ∗f = supq||ρq| ∗ f | is bounded on Lq̃(R3) (with
Lq̃ − Lq̃ norm independent of N) for all q̃ > 1. But {|ρq|}q∈Z satisfy (2) and (3) (with
ζ 0 = (ξ, γ ), ζ̄ = η and A(t) = [t]1×1) and also ‖ρq‖ ≤ C with C uniform in N and q.
So Theorem 2.1 automatically gives the boundedness of ρ∗ if we show that ρ∗

(0)(g) =
supq||ρq|(0) ∗ g| is bounded on Lp(R2) for all p > 1. We shall apply Theorem 2.1 to ρ∗

(0)
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to achieve this. Now ρ∗
(0)(g) = sup

q
||ρq|(0) ∗ g| and using p = N−qn2

m2

< g, |ρq|(0) >=
∫ ∫

g(2−N/m2 2qn2/m2 s, 2−NP̃E (s, t))|ψ(s)||ψ(t)| ds dt.

Now if we define ω∗(g) = supq|ωq ∗ g| where

〈g, ωq〉 =
∫ ∫

g(2qn2/m2 s, P̃E (s, t))|ψ(s)||ψ(t)| ds dt

then it is easy to see that ‖ρ∗
(0)‖Lp−Lp = ‖ω∗‖Lp−Lp for 1 < p < ∞. So without loss of

generality, we may assume that

〈g, |ρq|(0)〉 =
∫ ∫

g(2qn2/m2 s, P̃E (s, t))|ψ(s)||ψ(t)| ds dt

and so

̂|ρq|(0)(ξ, γ ) =
∫ ∫

exp[i(ξ2qn2/m2 s + γ P̃E (s, t))]|ψ(s)||ψ(t)| ds dt.

It is then easy to see that∣∣∣̂|ρq|(0)(ξ, γ ) − ̂|ρq|(0)(0, γ )
∣∣∣ ≤ C|2qn2/m2ξ |α

and ∣∣∣̂|ρq|(0)(ξ, γ )
∣∣∣ ≤ C|2qn2/m2ξ |−α

for some α > 0. Thus, {|ρq|(0)}q∈Z satisfy (2) and (3) (with ζ 0 = γ , ζ̄ = ξ and A(t) =
[tn2/m2 ]1×1) and also ‖ρ(0)

q ‖ ≤ C with C uniform in N and q. So if we show that ρ∗
(00)(h) =

supq

∣∣|ρq|(00) ∗ h
∣∣ is bounded on Lp(R) for all p > 1, where

〈h, |ρq|(00)〉 =
∫ ∫

h(P̃E (s, t)|ψ(s)||ψ(t)| ds dt, h ∈ S(R),

then Theorem 2.1 gives the Lp boundedness of ρ∗
(0) for all p > 1. But |ρq|(00) are

all identical (recall that P̃E (s, t) only depends on N and not on q) with ‖ρ(00)
q ‖ ≤ C

(independent of N). As a consequence, ρ∗
(00)(h) = supq||ρq|(00) ∗ h| is bounded on Lp(R)

for all p > 1 with the operator norm independent of N. So by Theorem 2.1, ρ∗
(0)(g) =

supq||ρq|(0) ∗ g| is bounded on Lp(R2) for all p > 1, which in turn implies that ρ∗ is
bounded on Lq̃(R3) for all q̃ > 1. This concludes the proof of Proposition 7.8.

REMARK. We see that the above proofs of Propositions 7.7 and 7.8 work assuming
that m2 is not zero. However, if it is zero, then P̃E (s, t) is a polynomial in only t and
for all (p, q) ∈ ZN(2), q = N/n2. We can still apply the same techinques as used in
the above proofs but with minor modifications. In fact, in this case using the extra
cancellation condition∫ ∫

exp(iη2−qt + iγ 2−NP̃E (t))ψ(s)ψ(t) ds dt ≡ 0
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we can obtain the estimate like (32) in ξ and p and sum dp,q’s in ‘p’ rather than in ‘q’ as
q = N/n2 is fixed now. In the proof of Proposition 7.8 also, we sum QN(2)f in p taking
q as N/n2 and use similar techniques.
This completes the proof of the sufficiency part of our main theorem apart from the
two particular cases.

8. The particular cases. We need to discuss the case when C consists of just one
corner point, (i.e., P is just a monomial) and the case when it consists of two end points
say v1 and v2. It is clear that if C is just a point, i.e., P(s, t) is a monomial, then the
main theorem is just a direct application of the Ricci and Stein theorem. In the latter
case, we assume that C has two edges v1v2 and v2v1 (same but considered in opposite
directions) and let n1 and n2 (= −n1) denote the normals to these edges, respectively.

Now suppose that C consists of two corner points v1 and v2 but its edge v1v2 (or
v2v1) does not pass through the origin. The basic structure of the proof in this case is
similar to the case where we assumed that C has at least three corner points. The only
difference in this case is that we have to define Z(1) and Z(2) in a slightly different
manner. When C consists of only two corner points v1 and v2, v − v1 denotes the same
direction as v1v2 = v2 − v1 for all v ∈ �. Let n = v − v1. Then, v − v2 = −n for all
v ∈ �. We define

T(1) = {(p, q) ∈ Z × Z : (p, q) · (v − v1) = (p, q) · n > 0}

and

T(2) = {(p, q) ∈ Z × Z : (p, q) · (v − v2) = (p, q) · (−n) > 0}.

Since n1 is normal to the edge v1v2 = n and n2(= −n1) is normal to the edge v2v1, it is
easy to see that

T(1) = {(p, q) ∈ Z × Z : (p, q) = αn1 + βn; α ∈ R, β > 0}

and

T(2) = {(p, q) ∈ Z × Z : (p, q) = αn2 + β(−n); α ∈ R, β > 0}.

Also from the first definition of T(1) and T(2), it is clear that they are disjoint, and
moreover, if we define

Z(1) = T(1) ∪ {αn1; α ∈ R} and Z(2) = T(2)

then,

Z × Z = Z(1) ∪ Z(2).

Once again we have

Z(1) = {(p, q) ∈ Z × Z : (p, q)

= k
d

n1 + l
d

n; k ∈ Z, l ∈ N
, where d is a fixed positive integer} (33)
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and

Z(2) =
{

(p, q) ∈ Z × Z : (p, q) = k
d

n2 + l
d

(−n); k ∈ Z and l ∈ N
}
. (34)

We now use this decomposition of Z × Z to split our operator H as H = M(1) + M(2)
where M(j) = ∑

(p,q)∈Z(j)Hp,q for j = 1, 2. Thus, it is enough to prove that M(j) is
bounded on Lp(R3) for j = 1, 2 and 1 < p < ∞. Since the basic structure of the proof
is same, we discuss it very briefly.

Let vj = (mj, nj) for j = 1, 2. We define Q(j) = ∑
(p,q)∈Z(j)Sp,q where

Sp,qf (x, y, z) = 2p+q
∫ ∫

f (x − s, y − t, z − amj,nj s
mj tnj )ψ(2ps)ψ(2qt) ds dt.

Let E(j) = M(j) − Q(j). We can prove that Q(j) is bounded on Lp(R3) by appealing
to the Ricci and Stein theorem. So we only need to prove the Lp estimates for E(j).
For this purpose, we further split our operator E(j) as E(j) = ∑

l≥0El
j where El

j =∑
(p,q)∈Zl (j)(Hp,q − Sp,q) and

Zl(j) =
{

(p, q) ∈ Z(j) : (p, q) = k
d

nj + l
d

(−1)j+1n; k ∈ Z
}
.

It is then enough to show that

‖El
j f ‖Lp ≤ A(j, p)2−δ(j,p)l‖f ‖Lp for some δ > 0. (35)

We first obtain the above estimate for p = 2.
For (p, q) ∈ Zl(j), let mp,q denote the multiplier of Hp,q − Sp,q. Then,

mp,q(ξ, η, γ ) =
∫ ∫

exp(iξ2−ps + iη2−qt)
[

exp(iγ P(2−ps, 2−qt))

− exp
(
iγ 2−(p,q)·vj amj,nj s

mj tnj
)]

ψ(s)ψ(t) ds dt.

Now for (p, q) ∈ Zl(j) and v ∈ �\{vj}, we have

(p, q) · (v − vj) = (p, q) · ((−1)j+1n) > σ l

for some σ > 0. (In fact we can choose σ = |n|2
d > 0.) Using this fact and van der

Corput’s lemma, we obtain the following estimates for mp,q:

|mp,q(ξ, η, γ )| ≤ A|γ |2−σ l2−(p,q)·vj

and

|mp,q(ξ, η, γ )| ≤ A(|γ |2−(p,q)·vj )
−ε

for some ε > 0.

Using these estimates, we sum mp,q’s over all (p, q) ∈ Zl(j) and get

‖El
j f ‖L2 ≤ A(j)2−δ(j)l‖f ‖L2 for j = 1, 2. (36)
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Also, using the previous techniques and the theorems due to J. Duoandikoetxea an
J. L. Rubio de Francia, we can get the estimate

‖El
j f ‖Lp ≤ A(j, p)‖f ‖Lp for 1 < p < ∞. (37)

Estimate (35) now follows from the estimates (36) and (37) and so we are done in this
particular case.

Now suppose C consists of two corner points v1 and v2 and its edge passes through
the origin. In this case, as we saw earlier (because of the assumption that no point of �

has both coordinates odd on this edge) that the polynomial P will be an even function
of either s or t. We split the region of integration into Z(1) and Z(2) as defined in (33)
and (34). Now for j = 1, 2, define Q(j) = ∑

(p,q)∈Z(j)Sp,q where

Sp,qf (x, y, z) =
∫ ∫

f (x − 2−ps, y − 2−qt, z − 2−(p,q)·vj P̃j(s, t))ψ(s)ψ(t) ds dt

and P̃j(s, t) = 2(p,q)·vj P(2−ps, 2−qt). Once again, it can be verified that Q(j) is bounded
on Lp(R3) for j = 1, 2 and 1 < p < ∞. This can be done exactly in the same manner
as in Proposition 7.5. But in this case,

H =
∑

(p,q)∈Z×Z

Sp,q = Q(1) + Q(2).

Thus, Q(1) and Q(2) bounded implies that H is bounded on Lp(R3) for 1 < p < ∞ and
so we are done in this particular case also.
This completes the proof of the sufficiency part of our main theorem in all the possible
cases. We next prove the necessary part of the theorem. �

9. The proof of the necessary part of the main theorem. First we show that if
any of the corner point of the convex hull C has both coordinates odd, then H is not
bounded on L2. Suppose (k, l) is a corner point of C with both k and l odd. Without
loss of generality, we assume that the coefficient ak,l = 1. Since (k, l) is a corner point,
there are numbers a and b so that ak + bl < am + bn for every (m, n) in �\{(k, l)}.
Now Hf = μ ∗ f , where μ is a tempered distribution defined by

〈φ,μ〉 = p.v.

∫ ∫
φ(s, t, P(s, t))

ds dt
st

, φ ∈ S.

We define the dilate μδ of μ by μδ(φ) = μ(φδ), where

φδ(s, t, u) = φ
(
δ−as, δ−bt, δ−(ak+bl)u

)
.

We then show that μδ → ν (in the sense of distributions) as δ → 0, where

〈φ, ν〉 = p.v.

∫ ∫
φ(s, t, sktl)

ds dt
st

.

Now if f �→ μ ∗ f were bounded on L2(R3), then f �→ μδ ∗ f would be uniformly
bounded on L2(R3), and so f �→ ν ∗ f would be bounded on L2(R3). But we shall see
(Section 9.1), f �→ ν ∗ f is not bounded on L2(R3). Thus to prove our claim, we just
need to show that μδ → ν as δ → 0. But this is shown in [2].

https://doi.org/10.1017/S0017089508004291 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089508004291


DOUBLE HILBERT TRANSFORMS ALONG POLYNOMIAL SURFACES IN R3 421

Finally to conclude Theorem 1.2, we show that if any point of � on an edge of C
through the origin has both coordinates odd, then H is not bounded on L2. To show
this of course, we can now assume that all the corner points of C have at least one even
coordinate otherwise the above proof works. Suppose the edge through the origin is
v1v2. Then, v1 and v2 being the corner points have at least one even coordinate. We
again set

E = {v = (m, n) ∈ � : v = (m, n) lies on the edge v1v2}

and

PE (s, t) =
∑

(m,n)∈E
am,nsmtn.

Now suppose for some v = (m, n) ∈ E , both m and n are odd. Since all the points of
E lie on the edge v1v2, there exist numbers a and b such that am + bn = 0 whenever
(m, n) ∈ E and am + bn > 0 whenever (m, n) ∈ �\E . We define the dilate μδ of μ by
μδ(φ) = μ(φδ), where

φδ(s, t, u) = φ(δ−as, δ−bt, u).

We then show that μδ → σ as δ → 0, where

〈φ, σ 〉 = p.v.

∫ ∫
φ(s, t, PE (s, t))

ds dt
st

.

But f �→ σ ∗ f is not bounded on L2(R3) (see below) and so to conclude that H is not
bounded on L2(R3), it is enough to show that μδ → σ as δ → 0.
After a change of variables, we see that

〈φ,μδ〉 =
∫ ∫

φ(s, t, Pδ(s, t))
ds dt

st

where Pδ(s, t) = PE (s, t) + ∑
(m,n)∈�\Eδ

εm,n am,nsmtn with εm,n = am + bn > 0 for (m, n) ∈
�\E . If α and β are fixed small positive numbers, then

〈φ,μδ − σ 〉 =
∫

|s|≤1/δα

∫
|t|≤1/δβ

[φ(s, t, Pδ(s, t)) − φ(s, t, PE (s, t))]
ds dt

st

+
∫

|s|≥1/δα

φ(s, t, Pδ(s, t))
ds dt

st
+
∫

|s|≤1/δα

|t|≥1/δβ

φ(s, t, Pδ(s, t))
ds dt

st

−
∫

|s|≤1/δα

|t|≥1/δβ

φ(s, t, PE (s, t))
ds dt

st
−
∫

|s|≥1/δα

|t|≤1/δβ

φ(s, t, PE (s, t))
ds dt

st

−
∫

|s|≥1/δα

|t|≥1/δβ

φ(s, t, PE (s, t))
dsdt

st

:= A(δ) + B(δ) + C(δ) − D(δ) − E(δ) − F(δ).
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We can show that A(δ), B(δ), C(δ) and F(δ) tend to zero as δ → 0, as in [2]. So we give
the proof for D(δ) and E(δ) only. We write

D(δ) =
∫

|s|≤1/δα

|t|≥1/δβ

[φ(s, t, PE (s, t)) − φ(s, t, 0)]
ds dt

st

+
∫

|s|≤1/δα

|t|≥1/δβ

[φ(s, t, 0) − φ(0, t, 0)]
ds dt

st

:= G(δ) + H(δ).

It is now easy to see that H(δ) → 0 as δ → 0. We write G(δ) = G1(δ) + G2(δ) where the
integrands in G1 and G2 are same but the region of integration in G1 is |s| ≤ 1, |t| ≥
(1/δ)β and for G2 1 ≤ |s| ≤ (1/δ)α, |t| ≥ (1/δ)β . It is once again easy to see that

|G1(δ)| ≤ C
∫

|s|≤1
|t|≥(1/δ)β

|s|u/2|t|w/2

|t|N/2

ds dt
|s||t|

where u = min {m : (m, n) ∈ E} ≥ 1, w = max {n : (m, n) ∈ �} and N is as big as we
want. This implies that G1(δ) = O(δβ/2(N−w)) and so G1(δ) → 0 as δ → 0 if N is large
enough. The same can be verified for G2(δ). Thus, D(δ) → 0 as δ → 0. Interchanging
the role of s and t, we can prove the same thing for E(δ). Summing up, μδ(φ) → σ (φ)
as δ → 0. This concludes that H is not bounded on L2(R3) in this case also.
Finally, we give the proof of the fact that f �→ σ ∗ f is not bounded on L2(R3).

9.1. Proof that f �→ ν ∗ f and f �→ σ ∗ f not bounded on L2(R3). It suffices to
show that ̂νε,ε′,R,R′ (ξ, η, γ ) and ̂σε,ε′,R,R′ (ξ, η, γ ) are not uniformly (in ε, ε′, R and R′)
bounded functions almost everywhere, where

̂νε,ε′,R,R′ (ξ, η, γ ) =
∫

ε′≤|s|≤R′

∫
ε≤|t|≤R

exp(i(ξs + ηt + γ sktl))
ds dt

st

and

̂σε,ε′,R,R′ (ξ, η, γ ) =
∫

ε′≤|s|≤R′

∫
ε≤|t|≤R

exp[i(ξs + ηt + γ PE (s, t))]
ds dt

st
.

But being continuous functions, it furthermore suffices to show that ̂νε,ε′,R,R′ (0, 0, γ )
and ̂σε,ε′,R,R′ (0, 0, γ ) are not uniformly bounded functions. Now

̂νε,ε′,R,R′ (0, 0, γ ) =
∫

ε′≤|s|≤R′

ds
s

∫
ε≤|t|≤R

exp(iγ sktl)
dt
t

= 2
∫

ε′≤s≤R′

ds
s

∫
ε≤|t|≤R

exp(iγ sktl)
dt
t

= 2
∫

ε′≤s≤R′

ds
s

1
l

∫
skεl≤|u|≤skRl

exp(iγ u)
du
u

= 4i
l

∫
ε′≤s≤R′

ds
s

∫
skεl≤u≤skRl

sin(γ u)
du
u

.

https://doi.org/10.1017/S0017089508004291 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089508004291


DOUBLE HILBERT TRANSFORMS ALONG POLYNOMIAL SURFACES IN R3 423

Then,

lim
ε→0

R→∞
̂νε,ε′,R,R′ (0, 0, γ ) = 4π i

2l
log

R′

ε′

and so ̂νε,ε′,R,R′ is not an uniformly bounded function in ε′ and R′. We now show that

̂σε,ε′,R,R′ (0, 0, γ ) =
∫

ε′≤|s|≤R′

ds
s

∫
ε≤|t|≤R

exp(iγ PE (s, t))
dt
t

=
∫

ε′≤|s|≤R′

ds
s

∫
ε≤|t|≤R

exp

⎛
⎝iγ

∑
(m,n)∈E

am,nsmtn

⎞
⎠ dt

t

is not uniformly bounded. We recall that

E = {v = (m, n) ∈ � : v = (m, n) lies on the edge v1v2 through the origin}

and so for all (m, n) ∈ E , the ratio m/n is the same. Also we have assumed that for
some (m, n) ∈ E, both m and n are odd. These two facts allow us to conclude that for
any (m, n) ∈ E , either both m and n are odd or both are even. In particular, both the
coordinates of v1 and v2 have to be even. It is also clear that there exist odd (positive)
integers p and q that are relatively prime and such that

m = p
q

n for all (m, n) ∈ E .

Also q being relatively prime to p, must divide n and so n/q is always a positive integer.
Furthermore, it is even if n is even and is odd if n is odd. Thus, if v1 = (m1, n1) and
v2 = (m2, n2), then n1/q and n2/q are both even. The change of variable sptq = u in the
t integral of ̂σε,ε′,R,R′ (0, 0, γ ) then gives

̂σε,ε′,R,R′ (0, 0, γ ) = 2
∫

ε′≤s≤R′

ds
s

1
q

∫
spεq≤|u|≤spRq

exp

⎛
⎝iγ

∑
(m,n)∈E

am,nun/q

⎞
⎠ du

u
.

Therefore,

lim
ε→0

R→∞
̂σε,ε′,R,R′ (0, 0, γ ) = 2

q
M(γ ) log

R′

ε′

where

M(γ ) =
∫ ∞

−∞
exp(iγ P(u))

du
u

and P(u) = ∑
(m,n)∈Eam,nun/q is some polynomial in u such that the highest and the

lowest power of u in P(u) is even and also it has at least one monomial with odd power.
But as we shall see, M(γ ) 
≡ 0 and so it follows that ̂σε,ε′,R,R′ is not uniformly bounded
in ε′ and R′. This completes the proof of the necessity part of the main theorem. Thus
to conclude the proof of the main theorem, we just need to show that M(γ ) 
≡ 0. We
show this by developing the asymptotic expansion of M(γ ).
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9.2. Asymptotic expansion of M(γ ). We show that

M(γ ) =
∫ ∞

−∞
exp(iγ P(v))

dv

v

≡ 0

where P(v) is some polynomial in v such that the highest and the lowest power of v in
P(v) is even and also it has at least one monomial with odd power. We shall assume
without loss of generality that all the coefficients of P(v) are equal to 1. It can be
verified that the proof below works in all other cases. From the definition of P(v), it is
clear that the integral M(γ ) can be written as

M(γ ) = 2i
∫ ∞

0
eiγ (vα1 +vα2 +···+vαs ) sin γ

(
vβ1 + vβ2 + · · · + vβt

)dv

v

where αi’s are all positive even integers, βj’s are all positive odd integers with α1 < β1,

αs > βt, αi < αj for 1 ≤ i < j ≤ s and βi < βj for 1 ≤ i < j ≤ t.
The factor 2i in the above integral of M(γ ) is not of much importance and so we shall
ignore it from now.

(In what follows, ‘c’ denotes a general constant that depends on the αi’s and βj’s but
not on γ ).

If we now make a change of variable γ 1/αsv = u, then

M(γ ) =
∫ ∞

0
ei
(
γ

1− α1
αs uα1 +γ

1− α2
αs uα2 +···+uαs

)
sin

(
γ 1− β1

αs uβ1 + γ 1− β2
αs uβ2 + · · · + γ 1− βt

αs uβt
)du

u
.

Now let

φ(u) = γ 1− α1
αs uα1 + γ 1− α2

αs uα2 + · · · + uαs

and

ψ(u) = γ 1− β1
αs uβ1 + γ 1− β2

αs uβ2 + · · · + γ 1− βt
αs uβt .

Then,

M(γ ) =
∫ 1/γ θ

0
eiφ(u) sin(ψ(u))

du
u

+
∫ ∞

1/γ θ

eiφ(u) sin(ψ(u))
du
u

:= A(γ ) + B(γ )

where we choose θ such that

0 <
αs − βt

αs
2

< θ <
αs − βt

αsβt
<

αs − βt

αs
= k < 1.

We claim that for γ sufficiently small,

M(γ ) = cγ k + O(γ l) with c a non-zero constant and l > k.
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In other words, cγ k is the principal term in the asymptotic expansion of M(γ ) when γ

is small enough. It then follows that

M(γ ) 
≡ 0.

We first show that B(γ ) is an error term, i.e., B(γ ) = O(γ l) for l > k. Clearly,

B(γ ) = 1
2i

∫ ∞

1/γ θ

ei(φ(u)+ψ(u)) du
u

− 1
2i

∫ ∞

1/γ θ

ei(φ(u)−ψ(u)) du
u

.

If γ is sufficiently small and τ (u) = φ(u) + ψ(u), we see that for u ≥ 1/γ θ ,

|τ ′(u)| ≥ cuαs−1 and |τ ′′(u)| ≤ cuαs−2.

Now if we integrate by parts and use the above estimates of τ ′ and τ ′′, then it is clear
that B(γ ) = O(γ αsθ ). But αsθ > k and so B(γ ) is an error term. Also

A(γ ) =
∫ 1/γ θ

0

(
eiφ(u) − eiuαs )

sin ψ(u)
du
u

+
∫ 1/γ θ

0
eiuαs

sin ψ(u)
du
u

:= C(γ ) + D(γ ).

But

C(γ ) =
∫ γ 1/αs

0

(
eiφ(u) − eiuαs )

sin ψ(u)
du
u

+
∫ 1/γ θ

γ 1/αs

(
eiφ(u) − eiuαs )

sin ψ(u)
du
u

:= E(γ ) + F(γ )

and

|E(γ )| ≤ γ 1− α1
αs

∫ γ 1/αs

0
uα1

du
u

+ · · · + γ 1− αs−1
αs

∫ γ 1/αs

0
uαs−1

du
u

= O(γ ).

So E(γ ) is also an error term. We now consider F(γ ).
Since sin ψ(u) = O(ψ(u)), we have

sin ψ(u) = O
(
γ 1− β1

αs uβ1
)

for u ≤ γ 1/αs (38)

and

sin ψ(u) = O
(
γ 1− βt

αs uβt
)

for u ≥ γ 1/αs . (39)

Let θ1 = 1
αs

(
αs−αs−1
αs−1+βt

)
. Using (39), we have

|F(γ )| ≤ cγ 1− βt
αs

(
γ 1− α1

αs

∫ 1/γ θ

γ 1/αs

uα1+βt
du
u

+ · · · γ 1− αs−1
αs

∫ 1/γ θ

γ 1/αs

uαs−1+βt
du
u

)

≤ cγ 1− βt
αs

+1− αs−1
αs

[(
γ −θ(α1+βt) + γ

α1+βt
αs

) + · · · (γ −θ(αs−1+βt) + γ
αs−1+βt

αs
)]

≤ cγ 1− βt
αs

+1− αs−1
αs

−θ(αs−1+βt).

https://doi.org/10.1017/S0017089508004291 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089508004291


426 SANJAY PATEL

But

1 − βt

αs
= k

and so if we show that

1 − αs−1

αs
− θ (αs−1 + βt) > 0

then F(γ ) is also an error term. But this is same as showing

αs − αs−1

αs
> θ (αs−1 + βt)

which holds if θ1 > θ . However, if θ1 < θ, we choose θ2 such that 0 < θ2 < θ1 and write
F(γ ) as

F(γ ) =
∫ 1/γ θ2

γ 1/αs

(
eiφ(u) − eiuαs )

sin ψ(u)
du
u

+
∫ 1/γ θ

1/γ θ2

eiφ(u) sin ψ(u)
du
u

−
∫ 1/γ θ

1/γ θ2

eiuαs
sin ψ(u)

du
u

:= G(γ ) + H(γ ) − I(γ ).

Now for G(γ ) if we follow the same steps as for F(γ ) in the previous case (θ1 > θ ), then
we get

|G(γ )| ≤ cγ k+1− αs−1
αs

−θ2(αs−1+βt).

Since θ2 < θ1, we see that G(γ ) is an error term.
We now consider H(γ ). We know that if γ is sufficiently small and u is sufficiently
large, then

φ′(u) ≥ cuαs−1. (40)

Also if �(u) = sin ψ(u), then

� ′(u) = O
(
γ 1− βt

αs uβt−1) for u ≥ γ 1/αs (41)

and so integration by parts implies that H(γ ) = O(γ k+ε) for some ε > 0. In short,
H(γ ) is an error term and exactly the same proof works to show that I(γ ) is an error
term. So we are just left with D(γ ) that will give us the principal term. Now

D(γ ) =
∫ 1/γ θ

0
eiuαs

(sin ψ(u) − ψ(u))
du
u

+
∫ 1/γ θ

0
eiuαs (

γ 1− β1
αs uβ1

)du
u

+
∫ 1/γ θ

0
eiuαs (

γ 1− β2
αs uβ2

)du
u

+ · · · +
∫ 1/γ θ

0
eiuαs (

γ 1− βt
αs uβt

)du
u

:= J(γ ) + K1(γ ) + K2(γ ) + · · · + Kt(γ ).
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We first consider Kt(γ ):

Kt(γ ) = γ k
∫ ∞

0
eiuαs uβt−1du − γ k

∫ ∞

1/γ θ

eiuαs uβt−1du

:= Lt(γ ) − Nt(γ ).

Now for 1 ≤ j ≤ t, define

c(j) =
∫ ∞

0
eiuαs uβj−1du.

We can evaluate this integral explicitly using the techniques from complex analysis. In
fact,

c(j) = 1
αs

e
iπ

2αs
βj �

(
βj

αs

)

= 0

where � denotes the usual Gamma function. We now have Lt(γ ) = c(t)γ k and also it
is easy to see that Nt(γ ) = O(γ k+θ(αs−βt)). Thus,

Kt(γ ) = c(t)γ k + O
(
γ k+θ(αs−βt)

)
.

Similarly, it can be shown that for 1 ≤ j ≤ t − 1,

Kj(γ ) = c(j)γ 1− βj
αs + O

(
γ 1− βj

αs
+θ(αs−βj)

)
.

But 1 − βt−1/αs < 1 − βj/αs for 1 ≤ j < t − 1 and αs − βj > 0 for all j. So we have

D(γ ) = J(γ ) + c(t)γ 1− βt
αs

=k + O
(
γ 1− βt−1

αs
)
.

Thus, we now just need to show that J(γ ) is an error term to prove our claim. For this,
we shall use the following estimates:

sin ψ(u) − ψ(u) = O
(
γ 3(1− β1

αs
)u3β1

)
for u ≤ γ 1/αs (42)

and

sin ψ(u) − ψ(u) = O
(
γ 3(1− βt

αs
)u3βt

)
for u ≥ γ 1/αs . (43)

Now

J(γ ) =
∫ γ 1/αs

0
eiuαs

(sin ψ(u) − ψ(u))
du
u

+
∫ 1/γ θ

γ 1/αs

eiuαs
(sin ψ(u) − ψ(u))

du
u

:= P(γ ) + Q(γ ).

From (42), it follows that P(γ ) = O(γ 3) and so finally we consider Q(γ ). Let �(u) =
sin ψ(u) − ψ(u). Then, (43) is same as

�(u) = O
(
γ 3ku3βt

)
for u ≥ γ 1/αs . (44)
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Also �′(u) = O(γ 3ku3βt−1). If we now integrate by parts and use the estimates of �(u)
and �′(u), then it follows that Q(γ ) is an error term. Thus,

M(γ ) = c(t)γ k + O(γ l) with l > k.

This concludes our claim for M(γ ) and also completes the proof of our main theorem.
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