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Abstract

In this paper, we propose an enhanced version of the vanilla transformer for data-to-text generation and
then use it as the generator of a conditional generative adversarial model to improve the semantic quality
and diversity of output sentences. Specifically, by adding a diagonal mask matrix to the attention scores
of the encoder and using the history of the attention weights in the decoder, this enhanced version of the
vanilla transformer prevents semantic defects in the output text. Also, using this enhanced transformer
along with a triplet network, respectively, as the generator and discriminator of conditional generative
adversarial network, diversity and semantic quality of sentences are guaranteed. To prove the effectiveness
of the proposed model, called conditional generative adversarial with enhanced transformer (CGA-ET),
we performed experiments on three different datasets and observed that our proposed model is able to
achieve better results than the baselines models in terms of BLEU, METEOR, NIST, ROUGE-L, CIDEr,
BERTScore, and SER automatic evaluation metrics as well as human evaluation.
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1. Introduction

Data-to-text (D2T) generation, the task of automatically generating text from structured non-
linguistic data or meaning representation (MR), is an important research problem for various
NLP applications such as task-oriented dialog, question answering, machine translation, image
captioning, selective generation systems, and search engines (Reiter 2007). Examples of MRs
and their corresponding texts are shown in Fig. 1. In addition to being fluent and coherent, the
generated text should cover all and only the information provided in the MRs (Rebuffel et al.
2022). Traditional approaches for solving this problem have used rule-based (Gkatzia, Lemon,
and Rieser 2016) or grammar-based (Mille, Dasiopoulou, and Wanner 2019) methods. Recently,
the use of deep learning methods has expanded. These methods have been able to produce more
fluent and diverse sentences compared to traditional methods (Wang, Schwing, and Lazebnik
2017; Panagiaris, Hart, and Gkatzia 2020; Schuz, Han, and Zarriess 2021). One of the most com-
mon deep learning methods is to use the maximum likelihood estimation (MLE) loss function.
D2T models trained with this method, which are generally based on RNN networks (Wen et al.
2015a, b, ¢, 2016; Dusek and Jurcicek 2016; Mei, Bansal, and Walter 2016; Nayak et al. 2017; Riou
et al. 2017; Gehrmann, Dai, and Elder 2018; Juraska et al. 2018; Liu et al. 2018; Oraby et al. 2018;
Sha et al. 2018) or transformers (Gehrmann et al. 2018; Gong 2018; Radford et al. 2019; Kasner
and Dusek 2020a; Peng et al. 2020; Harkous, Groves, and Saffari 2020; Chen et al. 2020; Kale and
Rastogi 2020a; Raffel et al. 2020; Chang et al. 2021; Lee 2021), auto-regressively generate each
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(@ (Bananaman, broadcastedBy, BBC) && (Bananaman, creator, John_Geering) &&
MR: |(Bananaman, starring, Graeme_Garden) && (Bananaman, firstAired, 1983-10-03)
&& (Bananaman, lastAired, 1986-04-15)

Bananaman first aired on the BBC on October 3rd, 1983 and broadcast its last
Text: | episode on April 15th, 1986. Bananaman last aired on 15th April 1986. Graeme
Garden is one of the stars of the series which was created by John Geering.

WebNLG

MR: | Train-Inform(Leave=12:45)

Text: | I'm not picky on when I want to arrive I just want to leave after 12:45.

MultiWoz
(©
. | name[The Eagle], eatType[coffee shop], food[Japanese], priceRange[less than 20],
MR: . N o .
customer rating[low], area[riverside], familyFriendly[yes], near[Burger King]
Text: The Eagle is a low rated coffee shop near Burger King and the riverside that is
" | family friendly and is less than 20 for Japanese food.

E2E

Figure 1. Sample meaning representation (MR) and text chosen from (a) WebNLG, (b) MultiWoz, and (c) E2E datasets.

output token based on the sequence of previously generated tokens. Although these methods
have achieved good performance on the D2T task, they also have problems. One of the major
drawbacks of these methods is exposure bias caused by the difference between the training and
testing phases. In the training phase, the ground-truth tokens are used as the model input, but in
the test phase, the token generated in the previous step is used as the next step input. In this case,
if the previously generated token is incorrect, the tokens that are subsequently generated will also
be incorrect. Another problem with these methods, which is related to the nature of MLE, is the
sensitivity to rare examples in the training dataset, which leads to a cautious prediction of the real
data distribution. As a result of these problems, the produced text could still be dull, unnatural,
and also containing incoherent representations. Moreover, since these methods have little con-
trol over the semantic flow in the process of generating text, the output sentences have duplicate
and redundant information or lack parts of the input information in the output text (Juraska and
Walker 2021).

In contrast to MLE, there is another class of deep learning-based methods called generative
adversarial network (GAN) (Goodfellow et al. 2014), which aims to generate texts by an unsuper-
vised learning approach (Kusner and Herndndez-Lobato 2016; Zhang et al. 2017; Yu et al. 2017;
Che et al. 2017; Lin et al. 2017; Gou et al. 2017; Fedus, Goodfellow, and Dai 2018; Xu et al. 2018;
Wang and Wan 2018; Chen et al. 2018; Nie, Narodytska, and Patel 2019; Jiao and Ren 2021). The
GAN model includes the generator and discriminator networks. The generator network tries to
generate a sample similar to the real sample by taking the noise signal, and the discriminator net-
work moves the generator in the right direction and generates samples closer to real samples by
distinguishing real samples from the fake ones. This results in solving the exposure bias problem.
However, training of the GANs faces challenges such as the instability of the training process and
the mode collapse problem (Ledig et al. 2017). Mode collapse occurs when the generator finds a
small number of template that fool the discriminator. Therefore, generator is not able to generate
any sentences other than this limited set of templates.
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To improve the quality of the generated sentences in terms of semantics, verbal, and diver-
sity, we propose a novel model for D2T generation named conditional generative adversarial with
enhanced transformer (CGA-ET). The generator network in the proposed model is our enhanced
version of the vanilla transformer encoder and decoder (Vaswani et al. 2017). Since input of D2T
models is an MR containing a set of distinct slots, which must be expressed in the output text com-
pletely without redundancy or repetition, we modified self-attention of each encoder block with
a diagonal mask and added history of each slot’s attention weights to multi-head cross-attention
of its decoder. Furthermore, for strengthening the generator in order to generate diverse and ver-
bally correct sentences, we use the triplet network (Hoffer and Ailon 2015), including the vanilla
transformer encoder blocks, as the discriminator network. The triplet network takes triplet sets
of input MR, real and fake sentences as input, extracts sets of rich context vectors from them,
and tries to update its parameters in a way that the semantic similarity between the input MR
and the real sentence is greater than the semantic similarity between the input MR and the fake
sentence. In this way, the discriminator networks guide the generator to generate sentences that
are semantically and structurally close to the input MR as well as the real sentence. In addition, in
order to stabilize the model training process, the WGAN-GP (Gulrajani et al. 2017) loss function
is used. To evaluate the performance of the CGA-ET model, experiments are performed on the
WebNLG (Castro Ferreira et al. 2020), MultiWoz (Budzianowski et al. 2018), and E2E (Dusek,
Howcroft, and Rieser 2019) datasets. The results of comparing the CGA-ET with state-of-the-art
models demonstrate the superiority and efficiency of our proposed model.

The major contributions of this paper are summarized below:

« We introduce an enhanced version of the vanilla transformer encoder and decoder for the
D2T generation task. In this model, a diagonal mask matrix is added to the self-attention
scores of each encoder block, and the history of multi-head cross-attention scores of previ-
ously generated tokens between encoder and decoder is used to compute attention weights
of the current token in the decoder. This decreases semantic errors in the output sentences.

o We introduce a new model called CGA-ET, which uses our enhanced version of the vanilla
transformer encoder and decoder as the generator and the triplet network containing
transformer encoder blocks as the discriminator.

» We use a combination of the WGAN-GP and triplet loss functions to train the model, so
while stabilizing the model training process, by controlling the semantic similarity of the
sentences and then generating diverse sentences, the mode collapse problem is prevented.

The rest of our paper is structured as follows: Section 2 presents related works. Section 3
presents the proposed CGA-ET model. Datasets, experimental setups, and evaluation metrics are
described in Section 4. The resulting analysis and case studies are presented in Section 5. The
paper is concluded in Section 6.

2. Related work

The main focus of our proposed model is on improving the semantic quality of generated sen-
tences in the field of D2T generation. Due to the importance of semantic fidelity to the given
input in the output sentences, so far many efforts have been made to preserve the meaning in
tasks such as abstractive summarization, dialog generation, and D2T generation, selected works
of which are mentioned below.

To prevent the generation of repetitive and redundant phrases and words in abstractive sum-
marization, See ef al. (2017) propose a hybrid pointer-generator architecture that copies words
from the source text to improve accuracy by handling OOV words along with learning to generate
new words. Also, they propose a coverage mechanism (COV) that keeps track of words that have
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been summarized and that makes a model aware of its attention history. Li et al. (2018) propose
a model that incorporates entailment knowledge into the summarization in an encoder-decoder
structure. Their proposed encoder jointly learns summarization generation and entailment recog-
nition, so it can grasp both the gist of the source sentence and be aware of entailment relationships.
Furthermore, they train the decoder by entailment reward augmented maximum likelihood
training to encourage it to produce a summary entailed by the source. In the same direction,
Perez-Beltrachini and Lapata (2021) propose an attention mechanism that encourages the decoder
in each time step to pay greater attention to a subset of input representations that are both relevant
and diverse.

In the dialog generation task, to reduce missing or misplacing slot values in the generated out-
put, Li et al. (2020) propose a dialog state tracker with reinforcement learning (RL). Their model
uses a slot consistency reward which is the cardinality of the difference between the generated
template and the slot-value pairs extracted from the input dialog act. Rashkin et al. (2021) use
DialoGPT (Zhang et al. 2017) model and fine-tune it on their dialog dataset. Also, they introduce
a set of control codes, entailment, objective voice, and lexical precision and concatenate them
with dialog inputs to encourage the model to generate responses that are faithful to the provided
evidence.

To improve faithfulness to resources in the D2T generation task, Liu et al. (2021) propose a
two-step generator with a separate text planner, which is augmented by auxiliary entity informa-
tion. First, the text planner predicts the content plan based on the input data. Second, given the
input data and the predicted content plan, the sequence generator generates the text. Tian et al.
(2019) first define a confidence score to detect semantic errors in each time step t of the decoder
by using an attention score to measure how much the model is attending to the source and a lan-
guage model to judge if a word conveys source information. Then, they propose a variational Bayes
training framework that encourages a model to generate output text with high confidence, while
learning the confidence score parameters at the same time. Wang et al. (2020) enhance the vanilla
transformer model with two content-matching constraints. By using a latent-representation-level
matching constraint, they encourage model to generate text semantically consistent with input
data. Also, by using an explicit entity-level matching scheme, they control that the entities of
input and the corresponding text are identical. PlanGen, proposed by Su et al. (2021), consists of
a content planner to predict the most probable content plan from the input data and a sequence
generator that takes the input data and predicted content plan and generates the output text. Then
by training this model using a structure-aware RL objective, the model is encouraged to be faithful
to the predicted content plan.

In the proposed model, we used a different approach than the works mentioned above. In
the proposed model, to generate sentences with semantic fidelity to the input MRs, an adversar-
ial learning method with an objective function, including constraints on the semantic distance
between the generated sentences and their corresponding MRs, is used. The generator network in
the proposed model is an enhanced version of the base transformer network. In this enhanced
version, attention mask and history information are added to the encoder and decoder self-
attention layers, respectively. In this way, this transformer network will be more compatible with
D2T generation. The generator network in the proposed model is an enhanced version of the
base transformer network. In this enhanced version, attention mask and history information are
added to the encoder and decoder self-attention layers, respectively. In this way, this transformer
network will be more compatible with D2T generation.

It is necessary to note that efforts have been made before to enhance the transformer model
which is completely different from our proposed method. For example, Su et al. (2021) introduce
a method called Rotary Position Embedding to effectively leverage the positional information into
the training process of pretrained language models. In this method, absolute positions are encoded
with a rotation matrix and incorporate explicit relative position dependency in self-attention lay-
ers formulation. The studies conducted on this method are shown that the objective function of
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the pretraining process converges faster and dependency between words in very long sentences
is better learned by this enhanced model compared to the base transformer model. In order to
reduce the training time and floating-point operations of attention-based language models, a new
network, named GroupBERT, is introduced by modifying the structure of the transformer net-
work of Chelombiev et al. (2021). In this model, a dedicated grouped convolution module is added
to each self-attention layer to better learn local and global interactions between tokens. Also, the
density of fully connected layers is reduced by using grouped transformations. This model has
achieved better results compared to the BERT model on language representation learning. Also,
its efficiency improved both in terms of floating-point operations and time-to-train. To improve
the quality of word alignment in the source text and target text in NMT, Song et al. (2020) added
a dedicated head to the multi-head transformer, which is supervised during training. The eval-
uation results show that using this head to derive better word alignment leads to improvement
in dictionary-guided decoding. In the field of D2T generation, Gong, Crego and Senellart (2019)
apply a classification layer on the output of the encoder to define which slot and values of input
MRs should be expressed in the output text and which ones not.

3. Approach

We use a combination of the transformers model and the adversarial learning method to gener-
ate text from nonlinguistic, structured input data. The general outline of our proposed model is
shown in Fig. 2. The input of the proposed model is the MRs consisting of slot and value pairs
and a noise vector drawn from a normal distribution N(0, 1), and the output of the model is the
descriptive text equivalent to the input MR. The proposed model consists of two parts: a genera-
tor and a discriminator. The generator network is the vanilla transformer encoder and decoder
(Vaswani et al. 2017). This network gets the input MRs and the noise vector, then by using
Gumbel-SoftMax (Kusner and Hernandez-Lobato 2016) in the output layer, generates a condi-
tional probabilistic distribution of the vocabulary tokens. Since the generator must be trained to
produce sentences that are close to the real sentences, both verbally and semantically, a triplet
network (Hoffer and Ailon 2015) consisting of the vanilla transformer encoder blocks is used as
the discriminator network. The input to this network is a triplet including the real sentence, the
fake sentence generated by the generator, and the input MR. The objective function of this net-
work is defined in such a way that the semantic distances of the input MRs from the real sentences
are less than the semantic distances of the input MRs from the fake sentences. In this way, the
discriminator teaches the generator how to express the information of the input MRs to generate
correct sentences that are semantically close to the real sentences. In addition, to avoid the mode
collapse problem and make the model training process more stable, the WGAN-GP (Gulrajani
et al. 2017) loss function is also used in the discriminator objective function. The details of our
proposed model are given in the following subsections.

3.1. Generator

As mentioned earlier, the generator network used in this work is the vanilla transformer with
six encoder and decoder layers. Encoder layers are made up of blocks with similar structures,
including multi-heads self-attention and feed-forward sublayers. For each word of the encoder
input sequence, first, the encoding vector resulting from the sum of the word embedding vector
and positional encoding vector is produced. The produced encoding vector then is converted into
sets of three vectors g, k, and v depending on the number of heads. Afterward, for each head,
vectors g, k, and v of all words are stored in matrices named Q, K, and V with d dimension, and
they are used to calculate the self-attention vector as follows:
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Figure 2. The block diagram of CGS-ET model. In the generator diagram, improvements made to the transformers-based
generator network are shown as blocks with dashed borders. The discriminator diagram shows a triplet network that
consists of three vanilla transformer encoders with sharing weights.

KT
Scaled Dot-Product = Q—

vd (1)
Attention (Q, K, V) = SoftMax (Scaled Dot-Product) . V

The output of the SoftMax function shows the contribution of the other input sequence words
in creating the final attention vector for each word. For example, when the input of the encoder
is a sentence like “This morning I went to the bank that is near the river bank to open an account,”
words like “open” and “account” contribute more to the attention vector of the first “bank,” and for
the second “bank” more attention weight is given to “river.” After attention vectors for all tokens
are generated in each layer, the attention vectors of all heads are concatenated and after passing
through a feed-forward layer with the linear activation function, the final attention vector is made.
This vector is then passed through the normalization layer with residual connection and is given
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Figure 3. Generating Masked Scores for the self-attention sublayer of each encoder block.

as an input to the next encoder layer. For the D2T generation task, the input of encoder is not a
sentence, but an MR includes a number of slots such as “name[The Eagle], eatType[coffee shop],
food[Japanese], priceRange[less than 20], customer rating[low], area[riverside], familyFriendly[yes],
near[Burger King].” Each slot has its own independent concept. Therefore, it is not right to gener-
ate the attention vector for each slot based on other slots in MR. For this reason, before applying
the SoftMax function for each head, the output of the scaled dot product step is summed by a
Diagonal Mask matrix. In this way, a MR vector is created for each input slot independent of the
other slots (Fig. 3). Therefore, the attention vector for the encoder layers is calculated as follows:

T
Scaled Dot-Product = —
Vd
Masked Dot-Product = Scaled Dot-Product + Mask (2)

Masked Scores = SoftMax (Masked Dot-Product)
Attention (Q, K, V) = Masked Scores . V

where Mask is a diagonal matrix whose diagonal elements are 0 and its other elements are -inf.

Decoder layers in the vanilla transformer are also made of similar blocks including multi-head
cross-attention, feed-forward, and multi-heads encoder—decoder attention sublayers where the
last one is responsible for calculating the attention scores between the decoder Q and encoder
K and V vectors. Both decoder attention layers of the vanilla transformer have the same com-
putation as in Equation (1), without the use of a diagonal mask. The output of the last layer of
the decoder passing through a feed-forward layer with the RELU activation function and then a
feed-forward layer with the linear function generates a token based on the previously generated
ones. Since in the D2T generation task, all the encoder input slots, not the redundant ones and
also without repetition, must be expressed in the decoder output, it is necessary for the decoder to
consider the weights previously given to each slot to calculate the current attention weight scores;
as a result, duplicate or lack of expression of the slots in the output text will be prevented. For this
purpose, attention vectors generated for previous tokens, which we called History, and the atten-
tion vector for the current token are given to a sigmoid gate. So, by using this gate, the attention
vector between encoder and decoder is calculated based on a weighted combination of history and
current information (Fig. 4):

KT
Attention = SoftMax Q .V
Vd

(3)
History = Concat([0, 0, . . . 0] Attention[: — 1])

Histoty-based Attention(Q, K, V) = W, sigmoid (W}, Attention + W, History)

where W,, W}, and W, are weight matrices that are learned during the model training process.
Moreover, to solve the gradient back-propagation problem in adversarial training, in this work,
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Figure 4. Generating the encoder-decoder self-attention vector in (a) the vanilla transformer and (b) the proposed model.

the Gumbel-SoftMax function is used instead of the SoftMax function in the last layer of the
decoder.

3.2. Discriminator

The generator network needs a discriminative signal from the discriminator network to be trained.
The more information the received signal contains, the more successful the generator training
is and the closer the generated sentences are to real sentences. The closeness of real and fake
sentences can be defined at two levels: word level and semantic level. Using the MLE objective
function, the generator can be trained in a teacher-forcing manner (Bengio et al. 2015) to generate
a sentence close to the real sentence at the level of the words. However, due to the MLE drawbacks
such as exposure bias and sensitivity to rare examples resulting in conservative learning of real
data distribution, this objective function cannot guarantee that the generated sentence is close
enough to the real sentence in terms of maintaining the semantic structure and expressing the
input MRs information. For this reason, in this work, the task of extracting the semantic features
of sentences and estimating the distance between them is entrusted to the discriminator network.

The proposed discriminator is a triplet network composed of the transformer encoder blocks
(Fig. 5). This network takes triplets including the input MR, the real sentence, and the generated
sentence as an anchor, positive, and negative samples, respectively. Then it extracts the semantic
features of each triplet in such a way that in the created semantic space the sum of the distance
between the input MR and the real sentence (positive distance) with a margin value is still less
than the distance between the input MR and the fake sentence (negative distance) (Hermans,
Beyer, and Leibe 2017). In this work, to calculate the positive and negative distances between the
semantic features of sentences, the element-wise cosine distance is used as follows:
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T
Positive Distance =1 — ( Sreal ) ( Jur )
fReatll2 ) \Ilfmrll2

Srake Sfur

T
Negative Distance =1 — ( ) ( )
frakell2 / \ Ifmrll2

where fReal> frake> and fur indicate the semantic feature vector extracted by the encoder blocks
from the real sentence, fake sentence, and input MR, respectively. In addition, in order to make the
training process of the model more stable, the extracted semantic feature vectors are concatenated
in pairs of real and anchor sentences as well as fake and anchor sentences, then these concatenated
vectors are passed through a feed-forward layer with one output neuron and the linear activation
function. The value of the output neuron is considered as the output discriminator for real and
fake sentences, and their distances show how close their distributions are. In this way, in addition
to discovering which sentence is better, the discriminator teaches the generator how to generate
sentences that are semantically close to the real sentences.

(4)

3.3. Objective functions and training process

To train the discriminator network with the aim of increasing the semantic distance between real
and fake sentences, the discriminator objective function is defined as follows:

(5)

Lp = Lryiplet + LwGan-Gp
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where discriminator tries to minimize this objective function by calculating Lryipjer and LwGan-Gp
as follows:

Lryiples = E[Positive Distance — Negative Distance + Margin]
(6)
LwGan-Gp = E(Dpake) — E(DRear) + AE(]| VDInerpolate”Z - 1)2

where V denotes gradient and Diyyerpolate is @ linear mixture of the real and generated sentences.
Accordingly, the generative objective function is also defined as follows:

LG = ”fReal _fFake”% - E(DFake) + LMLE (7)

where ||frear — frake ||§ is the Euclidean distance between real and fake sentences semantic features.
Also, Ly is a regularization term that calculates by using categorical cross-entropy between the
real sentence and the sentence generated by generator network in a teacher-forcing manner. So by
minimizing this loss, the value of the discriminator objective function is increasing.

Algorithm 1: Training process of our proposed model.

1: Require: Conditional-Generator Gy, Discriminator Dy, Training data distribution pgate, Max length sentence T
2: Initialization: Initialize Gy and Dy with random weights
3: Begin
4:  while not done do
5: Sample a batch of (MR, Real sentence) pairs from training dataset
6: Sample Noise~ N(0, 1)
I fori=0toi=Tdo
8: Representation;;1 = Gy (Tokeng:;|MR, Noise)
9: Token;;+1 = Gumbel-Softmax(Representation; ;)
10: end for
11: Fake Sentence = Tokeng.r
12: Frake>FrealsFMR,Dreals Drake=Dg (Fake Sentence, Real Sentence, MR)
13: Compute distances with Equation (4)
14: Compute Lp with Equation (5)
15: Update ¢
16: Compute L with Equation (7)

17: Update 6
18: end while

The whole training process of the proposed method is illustrated in Algorithm 1. As observed,
to calculate the Ly, the generator network generates the output sentence in a teacher-forcing
manner for the given MR, while to generate a fake sentence the tokens generated at each step
are used as the input of the next step. Moreover, the generator and discriminator networks in the
proposed model do not require any pretraining and both networks are trained adversarially from
the beginning.
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Table 1. Datasets statistics. Attributes shows the total number of slot types and Avg-
Len indicates average length of sentences in each dataset

Dataset #Train #Validation #Test Attributes Avg-Len
WebNLG 18,081 2260 4928 373 29.69
MultiWoz 8759 1001 768 27 14.72
E2E 33,525 4299 4693 8 20.10

4. Experiments

Experiments to evaluate the performance of the proposed CGA-ET model and compare it with
other state-of-the-art models are described in this section. The used datasets, experimental setups,
evaluation metrics, experiments results, and their analysis are described below.

4.1. Datasets

To qualitatively evaluate the proposed CGA-ET model, we used three datasets: (1) the enriched
version of WebNLG + 2020 (Castro-Ferreira et al. 2018; Castro Ferreira et al. 2020), which is the
modified version of the original WebNLG dataset (Gardent et al. 2017), containing sets of RDF
triples (Subject, Predicate, and Object) extracted from DBPedia and their corresponding texts of
10 seen domains in the training data and 5 unseen domains of the test data; (2) Multiwoz 2.1
(Budzianowski et al. 2018) consisting of conversation sequences and their equivalent semantic
representations in seven domains; and (3) cleaned version of E2E dataset (Dusek et al. 2019) con-
taining descriptions of restaurants with their equivalent MR in form slots and values. Details of
these datasets are given in Table 1.

4.2. Experimental setups

The proposed CGA-ET model is implemented using the TensorFlow library and trained on
Google Colaboartory with one Tesla P100-PCIE-16 GB GPU for 20k steps. Encoder and decoder
in both generator and discriminator networks include six multi-head attention layers with eight
heads. The model dimensions and fully connected layers size are set to 256, the batch size is set
to 10, and the dropout rate is set to 10%. The CGA-ET model at first is initialized with random
weights and then optimized using an Adam optimizer with a learning rate of le-4. This pro-
cess is terminated by early stopping based on the validation loss. Moreover, for every 50 steps,
L2-regularization with A =le — 5 is added to loss values. In the inference phase, beam search
with width 10 is used, and for each MR, then the top sentence is selected based on its negative
log-likelihood value.?

4.3. Automatic evaluation metrics

To automatically evaluate the quality of sentences produced by the proposed CGA-ET model and
compare them with baseline models on the E2E dataset, as in the E2E challenge, BLEU (Papineni
et al. 2002), METEOR (Lavie, Sagae, and Jayaraman 2004), NIST (Martin and Przybocki 2000),
ROUGE-L (Lin 2004), and CIDEr (Vedantam, Zitnick, and Parikh 2015) metrics are used. The
BLEU, METEOR, and BERTScore (Zhang et al. 2020) metrics used in the WebNLG + 2020 chal-
lenge are also used for the WebNLG dataset. For the MultiWoz dataset, BLEU and slot error rate

2Code and data will be published in https://github.com/seifossadat/CGA-ET
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Table 2. Results on WebNLG seen and unseen test data. The best and second-best models are highlighted in
bold and underline face, respectively

Seen Unseen

Model BLEU METEOR BERTScore F1 BLEU METEOR BERTScore-F1
mBART 59.13 42.2 0.960 42.24 37.5 0.943
PlanEnc 64.42 45.0 0.962 38.23 37.0 0.954
T5-small 62.60 45.0 - 38.80 37.0 -
T5-base 64.70 46.0 - 49.40 41.0 -
T5-large 63.90 46.0 - 52.80 41.0 -
T5-3B 62.80 45.0 - 52.00 42.0 -
OSU Neural NLG 61.20 43.4 0.962 52.40 41.6 0.951
FBConvAl 61.30 41.6 0.962 50.30 41.4 0.950
BT5 61.10 43.3 0.963 50.80 41.5 0.947
CGA-ET 65.10 46.5 0.970 50.60 41.0 0.940

(SER) metrics are used. SER is the fraction of times where at least one slot value from the input
MR is not expressed or incorrectly expressed in the output sentence (Wen et al. 2015c).

4.4. Human evaluation

Human evaluation is performed to evaluate the semantic quality of the generated sentences by
our proposed model in terms of faithfulness (How many of the semantic units in the given sen-
tence can be found/recognized in the given MR/RDF), coverage (How many of the given MRs
slots values/RDF triples can be found/recognized in the given sentence), and fluency (whether the
given sentence is clear, natural, grammatically correct, and understandable). For fluency, we asked
the judges to evaluate the given sentence and then give it a score: 1 (with many errors and hardly
understandable), 2 (with a few errors, but mostly understandable), and 3 (clear, natural, grammat-
ically correct, and completely understandable). As judges, 20 English speakers are chosen (Fleiss’s
x =0.65 Landis and Koch 1977 and Krippendorff’s & = 0.58 Krippendorff 2011) for evaluating
50 tests MRs that were randomly selected from each dataset. To avoid any bias, judges are shown
a randomly selected MR at a time, together with its gold sentence and the generated models. The
judges were not aware of the model each output sentence is generated by and the sentences are
presented each time in a different order.

4.5. Results and analysis

4.5.1. Results on WebNLG

The results of the BLEU and METEOR automatic metrics for the output of the CGA-ET and
baseline models on the seen, unseen, and full test data are given in Tables 2 and 3. The baseline
models used for comparison include the following:
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Table 3. Results on WebNLG full test data. The best and second-best
models are highlighted in bold and underline face, respectively

Model BLEU METEOR BERTScore-F1
DATATUNER 52.40 42.4 -
mBART 50.34 39.8 0.951
PlanEnc 52.78 41.0 0.958
T5-small 52.00 41.0 -
T5-base 55.20 43.0 -
T5-large 57.10 44.0 -
T5-3B 54.00 43.0 -
OSU Neural NLG 53.50 41.4 0.956
FBConvAl 52.70 41.3 0.956
BT5 51.70 41.1 0.954
ReGen 56.30 42.5 -
CGA-ET 58.01 44.5 0.960

DATATUNER (Harkous et al. 2020), which first fine-tuned the GPT-2 pretrained language
model on the WebNLG dataset and then by using the RoBERTa (Liu et al. 2019) model as
a semantic fidelity classifier it detects and avoids generation errors.

mBART (Kasner and Dusek 2020b), which is fine-tuned on the WebNLG dataset.

T5-small, T5-large, T5-base, and T5-3B (Kale and Rastogi 2020b), which are different
versions of T5 pretrained model that are fine-tuned on the WebNLG dataset.

ReGen (Dognin et al. 2021), which is the T5 model that fine-tuned using REINFORCE
method (Williams 1992)

The top models participating in the WebNLG + 2020 challenge (Castro Ferreira et al. 2020) are
also selected for comparison:

PlanEnc (Zhao, Walker, and Chaturvedi 2020), which consists of two graph convolution
network-based encoders to extract both structural information and sequential content of
the input graph. The decoder in this model is an LSTM conditioned on both encoder
outputs, with attention and copy mechanism.

OSU Neural NLG (Li et al. 2020), which fine-tuned the T5 pretrained language model on
the WebNLG dataset.

FBConvAlI (Yang et al. 2020), which fine-tuned the BART (Lewis et al. 2020) model on the
WebNLG dataset and proposed two different methods for giving a graph as input to the
BART model.

BT5(Agarwal et al. 2020), which is the T5 model that is trained and fine-tuned bilingually
on the WebNLG dataset.

As shown, the proposed model has outperformed all the baselines on seen and full test data and
got the highest BLEU, METEOR, and BERTScore values. This advantage is due to the fact that in
the process of training our CGA-ET model’s generator and discriminator, by forcing the reduction
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Table 4. Results of human evaluations on WebNLG dataset in terms of Faithfulness,
Coverage, and Fluency (rating out of 3). The symbols x and 7 indicate statistically sig-
nificant improvement with p < 0.05 and p < 0.01, based on the paired t-test and the
ANOVA test, respectively

Model Faithfulness (%) Coverage (%) Fluency
PlanEnc (Zhao et al. 2020) 97.05 83.11 2.73
OSU Neural NLG (Li et al. 2020) 94.40 81.52 2.65
FBConvAl (Yang et al. 2020) 95.73 76.01 2.78
BT5 (Agarwal et al. 2020) 93.12 74.34 2.61
CGA-ET 98.47* 85.20% 2.807

of the semantic distance of the generated sentences with the input RDF triples, the generator
has been successful in learning how to express all semantic elements of the given RDF triples
in the output sentences. But for the unseen test set, our model performed moderately, because
the generator has not trained in generating tokens for expressing unseen concepts. Moreover,
as subjective evaluations, we compared the outputs generated by our CGA-ET model, with the
published outputs of baseline models in terms of faithfulness (precision), coverage (recall), and
fluency and reported its results in Table 4. Since the proposed model has a better ability to express
the predicates in the input RDF than baseline models, it has achieved higher faithfulness and
coverage values. Also, controlling the output of the generator using similarity in both levels of
words and semantic has resulted in more fluent outputs. An example of the input RDF and output
sentences generated by the CGA-ET and baseline models is given in Table 5.

4.5.2. Results on MultiWoz

The experiments performed on the MultiWoz dataset are aimed at generating sentences from the
input MRs. The results of the BLEU and SER automatic metrics for the output of the CGA-ET and
transformer-based baseline models are given in Table 6. The baseline models used for comparison
include the following:

« Hierarchically disentangled self-attention or HDSA (Chen et al. 2019), a transformer-
based model that encodes the input MR into a multilayer hierarchical graph and assigns
separate head attentions to each node in the generated graph.

o SC-GPT2 (Peng et al. 2020) is the GPT-2 model pretrained on a large D2T corpus and are
fine-tuned on the MultiWoz dataset.

o Schema and T2G2 (Kale and Rastogi 2020a) are two methods of generating text using
a common model. In this model, the semantically correct but possibly incoherent and
ungrammatical utterances are first generated for an input MR by using schema-guided
or template-guided approaches. These utterances are then rewritten into natural sentences
using T5.

o T5-small, T5-large, T5-base, and T5-3B (Kale and Rastogi 2020b) that are different versions
of the T5 pretrained language model fine-tuned on the MultiWoz dataset.

As one can observe from Table 7, the proposed model is able to obtain the lowest value of SER
and the highest value of BLEU compared to the baseline models. A lower value of SER, which
means fewer semantic defects in the generated sentences, leads to an improvement in the value of
BLEU. Moreover, we evaluated the output sentences of our model using BERTScore for which a
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Table 5. Comparison of the generated sentences from the WebNLG dataset for our proposed model and baselines. The
missed meaning labels for each generated sentence are shown in red

MR Nord_(Year_of_No_Light_album)
|followedBy|L|ve at_ Roadburn _2008 (Year of_No nght album)

&Nord (Year of No nght album |producer\Year of No nght
&Nord _(Year_ of No_Light_. album ) |artist|Year_of_No L|ght

& Nord_(Year_of_No_Light_album) |recordLabel|Crucial_Blast

Reference Year of No Light is both the artist and the producer of the album Nord. The album was
released on the label Crucial Blast. Year of No Light’s next album was Live at Roadburn
2008

PlanEnc (Zhao et al. 2020) The Year of No Light album was produced by Year of No Light and released on the record
label Crucial Blast. The album was followed by Live at Roadburn 2008. artist

(BLEU =0.7123, BERTScore_F1 = 0.9246)

OSU Neural NLG (Liet al. The album Year of No Light was produced by Year of No Light and was followed by Live at
2020) Roadburn 2008. It was released on the record label Crucial Blast. artist

(BLEU = 0.6649, BERTScore_F1 = 0.9195)

FBConvAl (Yang et al. 2020) Nord was produced by Year of No Light and was signed to the record label Crucial Blast. It
was followed by Live at Roadburn 2008. artist

(BLEU = 0.4793, BERTScore_F1 = 0.9221)

BT5 (Agarwal et al. 2020) The year of No Light is the producer of the album, Nord which was released on the record
label Crucial Blast. The album was followed by Live at Roadburn 2008. artist

(BLEU = 0.7050, BERTScore_F1 = 0.9194)

CGA-ET The artist of Nord album is Year of No Light. It was produced by Year of No Light, released
on the record label Crucial Blast and followed by Live at Roadburn 2008

(BLEU = 0.7078, BERTScore_F1 = 0.9394)

MR Estadio Mun|C|pal Coaracy_da Mata Fonseca|locat|on|Arap|raca
o - .&Agremlagao Sportlva Araplraquense|league|Campeonato Brasﬂélro‘Serle C -
‘ &Campeonato_Bra5|lelro_Sene_C|country|BraZ|l -
&Agremlagao Sport|va Araplraquense|n|ckname|AlV|negro

& Agremiagdo_Sportiva_Arapiraquense|ground|Estadio_ Mun|C|pal Coaracy da Mata_

Fonseca

Reference Estadio Municipal Coaracy da Mata Fonseca is the name of the ground of Agremiagéo
Sportiva Arapiraquense in Arapiraca. Agremiagao Sportiva Arapiraquense, nicknamed
“Alvinegro”, lay in the Campeonato Brasileiro Série C league from Brazil

PlanEnc (Zhao et al. 2020) Agremiagao Sportiva Arapiraquense play in Brazil’s Campeonato Brasileiro Série C league
and have the nickname Alvinegro. Their home ground is the Estadio Municipal Coaracy da
Mata Fonseca in Arapiraca

(BLEU = 0.7311, BERTScore_F1 = 0.9243)
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OSU Neural NLG (Li et al.
2020)

Estadio Municipal Coaracy da Mata Fonseca is located in Arapiraca and is the home
ground of Agremiacao Sportiva Arapiraquense. They play in the Campeonato Brasileiro
Série C league in Brazil and are nicknamed Alvinegro

(BLEU = 0.7753, BERTScore_F1 = 0.9281)

FBConvAl (Yang et al. 2020)

Estadio Municipal Coaracy da Mata Fonseca is located in Arapiraca and is the ground of
Agremiagao Sportiva Arapiraquense who play in the Campeonato Brasileiro Série C league
in Brazil. Their nickname is Alvinegro

(BLEU =0.7699, BERTScore_F1 = 0.9422)

BT5 (Agarwal et al. 2020)

CGA-ET

Alvinegro is the nickname for Agremiagédo Sportiva Arapiraquense who play in the
Campeonato Brasileiro Série C league in Brazil. Their ground is the Estadio Municipal
Coaracy da Mata Fonseca which is located in Arapiraca

(BLEU = 0.7667, BERTScore_F1 = 0.9224)
Estadio Municipal Coaracy da Mata Fonseca is located in Arapiraca and is the ground of

Agremiagao Sportiva Arapiraquense. They play in the Campeonato Brasileiro Série C
league in Brazil and thier nickname is Alvinegro

(BLEU = 0.7665, BERTScore_F1 = 0.9465)

Table 6. Results on MultiWoz for generat-
ing sentence form input MR. The best and
second-best models are highlighted in bold
and underline face, respectively

Model BLEU4 SER|
HDSA 26.5 12.14
SC-GPT2 30.8 0.53
Schema 333 1.89
T2G2 34.4 1.85
T5-small 34.6 1.27
T5-base 35.1 0.99
T5-large 34.7 0.92
T5-3B 34.8 0.86
CGA-ET 37.5 0.41

value of 0.915 was obtained indicating that the outputs of our proposed model are semantically
close to the reference sentences. Since the outputs of the baseline models are not available, the
reference sentences in the test set and the sentences generated by the CGA-ET model are used
for subjective evaluation with results given in Table 7. In this dataset, some reference sentences in
test data contain semantic errors and do not contain all concepts of the MR. For this reason, the
proposed model has achieved higher coverage and faithfulness scores than the reference sentences.
However, the score of fluency of the proposed model is lower compared to the reference sentences
(about 0.07 units), which is an acceptable difference considering that the reference sentences are
written by humans. Examples of input MRs and sentences generated by the CGA-ET model are

given in Table 8.
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Table 7. Results of human evaluations on MultiWoz dataset in
terms of Faithfulness, Coverage, and Fluency (rating out of 3)

Model Faithfulness (%) Coverage (%) Fluency
Reference 89.74 86.34 2.95
CGA-ET 93.17 90.21 2.89

Table 8. Comparison of the generated sentences from the MultiWoz dataset for our proposed model

MR Booklng Book(Ref 3FR308HO)
Reference i have made your reservations and your reference number is 3fr308ho
CGA-ET bookmg was successful the table will be reserved for 15 minutes. reference number is: 3fr308ho

(BLEU = 0.4062, BERTScore_F1 = 0.8999)

MR Hotel Inform(Pnce cheap Type guesthouse)
Reference i would llke one of the cheap guesthouses please7
CGA-ET i would llke a guesthouses in the cheap price range

(BLEU = 0.6839, BERTScore_F1 = 0.9160)

MR Train- Inform(Depart cambrldge Dest= ely,Leave_ 18: 15)
Reference iam leavmg from cambrldge and gomg to ely i want to leave at 18 15
CGA-ET i need atrain from cambridge to ely, leavmg after 18:15, please

(BLEU = 0.5135, BERTScore_F1 = 0.9218)

MR Attraction- Inform(Fee =2.50 pounds Addr= salntJohn s street)
Reference the entrance fee is 2. 50 pounds and the address is salntJohn s street
CGA-ET itis located in salntjohn s street and its entrance fee is2.50 pounds

(BLEU = 0.7349, BERTScore_F1 = 0.9525)

MR Restaurant- Inform(Food european)
Reference i thmk it would be great to try European food Do you thlnk they would accept areservation for a party of 77
CGA-ET i am looking for a restaurant serving european food

(BLEU = 0.1757, BERTScore_F1 = 0.8784)

4.5.3. Results on E2E

The results of the automatic metrics for the output of the CGA-ET and baseline models on
the E2E dataset are given in Table 9. The baseline models used for comparison include the
following:

« DATATUNER (Harkous et al. 2020), which first fine-tuned the GPT-2 pretrained language
model on the E2E dataset and then by using the RoBERTa (Liu et al. 2019) model as a
semantic fidelity classifier it detects and avoids generation errors.

o TGEN+ (Dusek et al. 2019), which is an LSTM-based sequence-to-sequence model with
attention that uses slot matching script directly.
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Table 9. Results on E2E. The best and second-best models are highlighted in bold and
underline face, respectively

Model BLEU} METEOR? NIST4 ROUGE-L 1 CIDErt
DATATUNER 43.60 39.00 - 57.50 2.000
TGEN+ 40.51 37.61 6.1226 55.98 1.828
Schema 43.10 38.70 6.4000 56.80 1.900
1262 42.50 38.70 6.4000 56.90 1.900
+R 45.60 39.00 - 65.70 2678
+RM 46.10 39.80 - 65.40 2.639
SQL 41.70 - - _ _
CGA-ET 49.03 41.10 6.5040 65.82 2.690

Table 10. Results of human evaluations on E2E dataset in terms
of Faithfulness, Coverage, and Fluency (rating out of 3)

Model Faithfulness (%) Coverage (%) Fluency
Reference 100.0 100.0 2.93
CGA-ET 98.09 97.83 2.87

o Schema and T2G2 (Kale and Rastogi 2020a) are two methods of generating text using
a common model. In this model, the semantically correct but possibly incoherent and
ungrammatical utterances are first generated for an input MR by using schema-guided
or template-guided approaches. These utterances are then rewritten into natural sentences
using T5.

« +Rand +RM (Shen et al. 2020), which automatically extract the segmental structures of
texts and learn to align them with their data correspondences. For reducing hallucination,
they used constraints to prevent repetition (+R) and further reduce information missing
(+RM).

« SQL (Guo et al. 2021), which is GPT-2 pretrained language model fine-tuned using soft
Q-learning (Schulman, Chen, and Abbeel 2017)

The results in Table 10 show that the proposed model has outperformed all the baseline models
in terms of the n-grams-based evaluation metrics. Also, we evaluated the output sentences of our
model using BERTScore for which a value of 0.930 was obtained indicating that the outputs of
our proposed model are semantically close to the reference sentences. As subjective evaluations,
we compared the outputs generated by our CGA-ET model, with their gold reference, since the
baseline outputs are not published. Table 10 shows the scores of each human evaluation factor for
the E2E dataset. In the cleaned version of the E2E dataset, the semantic deficiencies that existed in
previous versions have been fixed so that the concept of all input slots is expressed in the reference
sentences. For this reason, the faithfulness and coverage scores for reference sentences are both
100%. The difference between the fluency scores of the CGA-ET model and the references is due to
the fact that the reference sentences are written by humans. Examples of input MRs and sentences
generated by the CGA-ET model are given in Table 11.

The loss curves of our CGA-ET model during the adversarial training process are shown in
Fig. 6. As illustrated, the adversarial process between generator (Gen) and discriminator (Dis)
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Table 11. Comparison of the generated sentences from the E2E dataset for our proposed model

MR name[The Wrestlers], eatType[pub], food[ltalian], priceRange[moderate], area[city centre],
familyFriendly[no], near[Raja Indian Cuisine]

Reference Located in the centre of the C|ty, close to Raja Ind|an Cuisine, The Wrestlers isa pub offenng Itallan food

CGA-ET The Wrestlers isa pub prowdmg Itallan food itis located in the centre ofthe C|ty near Raja Indlan Cuisine

(BLEU = 0.7878, BERTScore_F1 = 0.9547)

MR name[The Wrestlers], eatType[restaurant], food[Japanese], priceRange[more than pounds 30], area[city
centre] famllyFnendly[yes] near[RaJa Ind|an Cwsme]

Reference Near RaJa Indian Cuisine is a Japanese restaurant and restaurant named The Wrestlers It has aprice
range of more than pounds 30 and is kid-friendly

CGA-ET The Wrestlers is a Japanese restaurant in city centre near Raja Indian Cuisine. it is children friendly and
has a price range of more than pounds 30

(BLEU =0.7602, BERTScore_F1 = 0.9420)

MR name[Zizzi], eatType[coffee shop], customer rating[high], near[Burger King]
Reference Near Burger Klng isa hlghly rated coffee shop called Zizzi
CGA-ET Zizziis a coffee shop near Burger ng W|th a hlgh customer ratlng

(BLEU = 0.6408, BERTScore_F1 =0.9181)

MR name|[The Vaults], eatType[pub], food[ltalian], priceRange[moderate], customer rating[1 out of 5],
area[uty centre] famllyFrlendly[no] near[Ralnbow Vegetarlan Cafe]

Reference The Vaults, a moderately priced Itallan pub in the centre of the city near Ralnbow Vegetanan Cafe has a
low customer ratlng and does not Welcome chlldren

CGA-ET There isan adult only pub called The Vaults WhICh prowdes Itallan food in the moderate prices. Itis
situated in the city centre near to the Rainbow Vegetarian Café with 1 out of 5 customer rating

(BLEU = 0.5584, BERTScore_F1 = 0.9111)

MR name[Clowns] eatType[coffee shop] customer ratlng[3 out of 5] near[All Bar One]
Reference Near All Bar One there isa coffee shop named Clowns and itis rated 3 out ofs
CGA-ET There isa coffee shop called Clowns near All Bar One W|th 3out of 5 customer ratlngs

(BLEU = 0.6859, BERTScore_F1 = 0.9382)

is quite stable. Initially, the value for the WGAN-GP loss function is high and prevents the
error gradient for the fake sentence from being zero. During the training process, the amount
of WGAN-GP is reduced, while triplet loss controls the semantic similarity of real and fake sen-
tences with the input MR. Fluctuations in generator loss value indicate a productive attempt to
mislead the discriminator under the control of MLE (similarity at the word level) and Distance
(semantic similarity of sentences).

4.6. Ablation study

As mentioned earlier, we made modifications to the vanilla transformer encoder and decoder
to create an enhanced transformer model that is more compatible with the task D2T, and we
used this enhanced model for the generator network of our CGA-ET model. To evaluate the
effect of the modifications and compare them with the vanilla transformer, experiments are per-
formed. In these experiments, the vanilla transformer, vanilla transformer + Diagonal Mask, and
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Figure 6. Encoder-decoder attention weights for an E2E MR and the equivalent sentence generated by (a) Vanilla trans-

former, (b) Vanilla transformer-+Diagonal Mask. and (c) Vanilla transformer+-Diagonal Mask+History.

vanilla transformer 4+ Diagonal Mask + History are trained separately on the training sets of E2E,
WebNLG, and MultiWoz datasets using MLE. We also fine-tuned the GPT2 model on all three
training datasets to compare it with the vanilla and enhanced transformer. For this purpose, we
gave the sequence of pairs slots and values in the form < slot_value > to the GPT-2 and adjusted
the weights of all 12 layers of it so that the equivalent sentence would be generated at the output.
We also used beam search with a width of 5 and temperature 0.7 to generate the sentences in

https://doi.org/10.1017/51351324923000487 Published online by Cambridge University Press


https://doi.org/10.1017/S1351324923000487

716 E. Seifossadat and H. Sameti

Table 12. Comparison of the effect of modifications on the vanilla transformer in data-to-text generation

BERTScore BERTScore BERTScore

Dataset Model Recall Precision F1
WebNLG Vanilla Transformer 0.74 0.85 0.79
e \./a.nvi.“.a.Tl.’énﬂsf.o}rﬁér._F. biég.o.n,.al.Ma.SI.( .............. 077 .......... 089 ........... . 82
Vanilla Transformer + Diagonal Mask + History 080 091 085
Fine-Tuned GPT-2 0.70 0.84 0.76
MultiWoz Vanilla Transformer 0.73 0.81 0.77
© VonilaTransformer + DiagonalMask 078 083 080
Vanilla Transformer 4 Diagonal Mask + History 0.80 0.84 0.82
. FmeTunedeTz e e 072 [ 079 [ 075 .
E2E Vanilla Transformer 0.75 0.81 0.78
Vanilla Transformer + Diagonal Mask 0.79 0.82 0.80
 Vanilla Transformer + Diagonal Mask + History 081 084 082
FmeTunedGPTz e 072 [ 078 R 075 B

the inference phase. The results obtained on each test dataset are given in Table 12. As observed,
when the vanilla transformer is trained and tested on a dataset, its generated output sentences
got a higher value for F1 than when the pretrained models are used. Furthermore, as previously
mentioned, the use of the diagonal mask in calculating the weights of attention in the encoder
results in separate generation of input slots without considering the order of slots in the input
MR. This makes the model less restricted in expressing slots in a particular order or in relation to
other slots in equivalent sentences; so as a result, its F1 score is increased. Moreover, the use of
history in calculating encoder—decoder attention weights causes the decoder to always pay atten-
tion to the sequence of slots previously expressed in the output when generating output tokens.
Hence, semantic similarity with gold test sentences is increased. To illustrate the effect of using
diagonal mask and history in output sentences, the encoder-decoder attention weights for an MR
input from the E2E dataset and the generated sentences by enhanced and vanilla transformers are
shown in Fig. 7.

4.7. Case study

Examples of generated texts for a certain MR from the WebNLG, MultiWoz, and E2E datasets by
CGA-ET and baseline models are shown in Tables 8, 9, and 10, respectively. The MR chosen from
the WebNLG dataset has two similar objects and subjects but with two different predicates artist
and producer, which is a challenge for the D2T models to express both predicates in their output
sentences. As shown in Table 5, for the first example, unlike our proposed model, neither of the
baseline models could express both predicates in the output. In the second example, all the input
concepts are expressed in the sentences generated by baseline and our models. But the structures
of the produced sentences are different, and this has caused the sentences to have different levels of
fluency. Since the sentences generated by the baseline models are not published for the MultiWoz
and E2E datasets, the outputs of the CGA-ET model for five MRs from these datasets are shown
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Figure 7. Different loss curves of CGA-ET model during adversarial training process.

in Tables 8 and 9. These sentences show that the proposed model is able to express all the required
concepts in the input MR.

Apart from the faithfulness and coverage, the other differences between the sentences gener-
ated by our models, references, and baseline outputs are in their structure, syntax, and length. This
diversity in the selection of phrases and words to express the input concepts is the effect of using
an adversarial method for training the proposed model. Because, unlike the MLE-based baseline
models, the generator in the proposed model does not generate sentences based on frequent pat-
terns in the training data. As can be seen from the BLEU scores given in the tables obtained by
comparing each sentence with the reference, this difference in the structure of the sentences gen-
erated by our proposed model led to getting a lower score when evaluated by the n-gram-based
evaluation metrics, despite the semantic and structural correctness. But the BERTScore metric
clearly shows the semantic similarity of the generated sentences to the reference sentence.

5. Conclusion

In this paper, we present a novel conditional generative adversarial method for D2T generation.
The generator network in this model is our enhanced version of the vanilla transformer encoder
and decoder. In this enhanced version, which is created to reduce semantic errors in the output
sentences, a diagonal mask matrix is added to the self-attention computation step of the vanilla
transformer encoder. Moreover, in the encoder-decoder multi-head cross-attention computation
step of the vanilla transformer decoder, the history of attention scores for the previously gener-
ated tokens is considered. The discriminator network in the proposed model is a triplet network
that consists of three vanilla transformer encoders with sharing weights. The loss function of the
discriminator network includes WGAN-GP loss and triplet loss function between the real and
generated output sentences and the input MR; as a result, while stabilizing the model training pro-
cess, the semantic similarity between the generated sentence and the real sentence is maintained.
Experimental results demonstrate that our proposed model can generate higher-quality sentences
than transformer-based baseline models, in terms of BLEU, METEOR, NIST, ROUGE-L, CIDEr,
BERTScore, and SER evaluation metrics.
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