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Abstract. In this paper we deduce the existence of analytic structure in a
neighbourhood of a maximal ideal M in the spectrum of a commutative Banach
algebra, A, from homological assumptions. We assume properties of certain of the
cohomology groups Hn�A;A=M�, rather than the stronger conditions on the homo-
logical dimension of the maximal ideal the ®rst author has considered in previous
papers. The conclusion is correspondingly weaker: in the previous work one deduces
the existence of a Gel'fand neighbourhood with analytic structure, here we deduce
only the existence of a metric neighbourhood with analytic structure. The main
method is to consider products of certain co-cycles to deduce facts about the sym-
metric second cohomology, which is known to be related to the deformation theory
of algebras.
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1. Introduction. This work can be considered as one in the series of papers by
the ®rst author which study homological properties of non-idempotent maximal
ideals in commutative Banach algebras ([8], [9]). From another point of view it
continues the long series of paper by many authors which studied conditions on the
vanishing of cohomology groups of Banach algebras.

Throughout this paper A denotes a commutative Banach algebra with unit 1,
M � A is a ®xed maximal ideal. We denote byMA the space of maximal ideals of A
and consider two topologies on MA ± the Gelfand topology and norm (metric)
topology, induced by the norm from A�. The letter ! stands for the point in MA,
that corresponds to M and for the multiplicative functional annihilating M.

The symbol 
̂ denotes the projective tensor product of Banach spaces [4], and
� : M
̂M!M is the operator of multiplication. We denote by M2 the algebraic
square of M (that is the linear space generated by ab, (a; b 2M)). We also consider
the topological square M2, which is the closure of M2. The ideal M is called idem-
potent if M �M2 and non-idempotent otherwise. Note that the quotient space
M=M2 is the predual of the space of bounded point derivations at the point !.

There was a series of papers in the 60's and 70's (see [2], [11]) that tried to con-
nect the behaviour of bounded point derivations at point ! (and therefore of the
closed powers of the ideal M) with an analytic structure inMA. We recall that the
subset U �MA is called an n-dimensional analytic polydisc if there is a home-
omorphism 
 from the open unit polydisc Dn � Cn onto U such that for all a 2 A
the function â � 
 is holomorphic in Dn (where â denotes the Gelfand transformation
of a).
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Perhaps the most detailed results concerning powers of a maximal ideal and
analytic structure are in [11]. We shall use a much simpli®ed version of the main
results of [11] and present it in the following theorem:

Theorem R. If

(i) dimMk=Mk�1 � n�kÿ1
k

ÿ �
for all natural numbers k, and

(ii) ��M
̂M� �M2,

then there exists a neighbourhood U of the point ! in the metric topology that is an
n-dimensional analytic polydisc.

Note that the condition �i� says that the powers of M behave in the best possible
manner Ð as in the polydisc algebra A�Dn�.

A brief outline of the proof of this theorem can be found in [10]. This theorem
was a principal tool in the papers of the ®rst author ([8]±[10]), where the existence of
an analytic polydisc was deduced from such homological conditions as projectivity,
¯atness and ®nite homological dimension of M as a Banach A-module. Now we
consider weaker homological conditions ± namely the triviality of some homology
and cohomology groups of the Banach algebra A.

We denote by C the trivial bimodule A=M and consider the Hochschild
homology group Hn�A;C� and cohomology group Hn�A;C� (note that these are
respectively equal to Hn�M;C� and Hn�M;C�). As usual we denote by Ln�M;C� the
space of all continuous n-linear maps from M�M� � � � �M (n times) to C, by
Zn�M;C� the group of all n-cycles, by Bn�M;C� the group of all n-boundaries, by
Zn�M;C� the group of all n-cocycles and by Bn�M;C� the group of all n-
coboundaries [7]. We denote by d the boundary operator and � the coboundary
operator (usually we omit the degree of d and �). Note that the symbol �ij stands for
the Kronecker delta.

To de®ne the symmetric homology and cohomology groups we introduce
the following operator on n-chains: �a1 
 a2 
 � � � 
 an�op � �ÿ1�12n�n�1�ÿ1�an 
 anÿ1

 � � � 
 a1�. The symmetric and antisymmetric chains are the �1 and ÿ1 eigenspaces
of the operator op. One easily checks that d��op� � �d��op for all n-chains �. This
shows that the symmetric and antisymmetric chains form two subcomplexes of the
spaces of all chains. The homology of these subcomplexes are the symmetric and
antisymmetric homology. In exactly the same fashion we de®ne �op��� � ���op� for an
n-cochain �. Again ���op� � ����op and the homology of the resulting subcomplexes
of eigenspaces gives the symmetric and antisymmetric cohomology. When we orna-
ment a space of (co)-chains, (co)-cycles, (co)-boundaries or (co)-homology groups
by a or s we mean the corresponding symmetric or antisymmetric version. Note in
each case the usual space is the direct sum of the symmetric and antisymmetric ver-
sions.

We mainly consider the symmetric second cohomology group H2
s �M;C�, which

is important in the theory of extensions of Banach algebras, see [1].

2. The �-property. Theorem R includes the condition that the image of the
canonical multiplication operator � : M
̂M!M must coincide with M2. Note that
we always have M2 � Im� �M2 and hence Im� �M2 if and only if Im� is closed.
We shall call this condition the �-property.
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Actually one often meets the �-property in Banach homology theory (see, for
example [8], [10]). In particular projective and ¯at [8] maximal ideals have this
property. All M possessing a bounded approximate identity satisfy M2 �M, by
Cohen's factorization theorem hence have the �-property. An unbounded approx-
imate identity is not enough: for instance, the algebra l2�N�, with pointwise opera-
tions, does not have the �-property (Im� � l1�N�). The following result shows a
relationship between the �-property and the second cohomology group.

Proposition 1. If H2
s �M;C� � 0, then M has the �-property.

Proof. Assume the contrary: that Im� is not closed. In this case the usual norm
on Im�, that induced from M, does not agree with the factor-norm generated by the
operator � : M
̂M! Im�. We can choose a functional f : Im�! C, which is
bounded in the factor norm (that is f���u���� �� � K uk k for all u 2M
̂M), but
unbounded in the usual norm. Consider the functional  � f � � on M
̂M. Since  
is bounded and  �ab
 c� �  �a
 bc�, it generates a cocycle in Z2�M;C�, which is
obviously symmetrical. This implies that  � g � �, g 2M�, and hence the bounded
g and unbounded f agree on the dense subset Im� of M2. This contradiction proves
the result.

Corollary. If H2�M;C� � 0, then M has the �-property.

Proof. If every 2-cocycle is a coboundary, then every symmetrical 2-cocycle is a
2-coboundary and the result follows from Proposition 1.

The following result is far more general than Proposition 1 and its Corollary.

Theorem 1. If Hn�2�M;C� � 0 and dimM=M2 � m � n � 0, then M has the �-
property.

Proof. If Im� is not closed, then there exists f : Im�! C, which is bounded in
the factor-norm, but unbounded in the usual norm of M. Since dimM=M2 �
m � n � 0 we can choose h1; . . . ; hn 2M and t1; . . . ; tn 2M� such that ti�hj� � �ij
and each tj annihilates M2. Now consider T 2 Ln�2�M;C�, given by the formula

T�a1; . . . ; an�2� � t1�a1� . . . tn�an�f�an�1an�2�:

It is obvious that �T � 0 and so T 2 Zn�2�M;C�. Hence T 2 Bn�2�M;C� and so
there exists S 2 Ln�1�M;C� such that T � �S. This means that

t1�a1� . . . tn�an�f�an�1an�2� � S�a1a2; a3; . . . ; an�2� ÿ S�a1; a2a3; . . . ; an�2� � � � �
� �ÿ1�nS�a1; a2; . . . ; an; an�1an�2�: ���

Now ®x a; b 2M and substitute in ��� instead of a1; a2; . . . ; an�2 all permutations of
h1; h2; . . . ; hn; a; b such that a is to the left of b. Every time we multiply the equality
we obtain by the sign of the corresponding permutation. Then we add all the equations
we have obtained. The only remaining term on the left-hand side is f�ab�, because the
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other terms were either zero or have cancelled in pairs. On the right-hand side the
summands containing ab appear exactly once, while the other summands will appear
twice with di�erent signs and cancel pairwise. So we obtain the following equality,

f�ab� � S�ab; h1; . . . ; hn� ÿ S�h1; ab; . . . ; hn� � � � �
� �ÿ1�n�1S�hn; hnÿ1; . . . ; h1; ab�:

which has �n� 1�! summands on the right-hand side. This means that f is bounded
on M2 and therefore on M. This contradiction ®nishes the proof.

The following result shows that the tensor product of Banach algebras in some
sense preserves the �-property.

Proposition. Let A1 and A2 be commutative Banach algebras with unit. Let Mi

be an idempotent maximal ideal in Ai which has the �-property (i � 1; 2). Then the
corresponding maximal ideal M in A1
̂A2 also has the �-property.

Proof. We have �i�Mi
̂Mi� �Mi, (i � 1; 2). Using the well-known fact [4] that
arbitrary u 2M1
̂M2 can be represented in the form u �P1k�1 ak 
 bk, ak 2M1,
bk 2M2 and

P1
k�1 akk k bkk k <1 and the open mapping theorem, we easily see that

there exists U 2M1
̂M1
̂M2
̂M2 such that ��1 
 �2�U � u. Now we take an
arbitrary element v 2M � A1
̂A2 and represent it in the form v � u�m1 
 12
�11 
m2, where u 2M1
̂M2, mi 2Mi, 1i is the unit of Ai (i � 1; 2).

Consider the linear operator P : A1
̂A1
̂A2
̂A2! A1
̂A2
̂A1
̂A2 given by
P�a
 b
 c
 d� � a
 c
 b
 d. Note that �M � PjM1
M1
M2
M2

� �1 
 �2. Then
take the chosen element U 2M1
̂M1
̂M2
̂M2 such that ��1 
 �2�U � u and
choose elements ui 2Mi
̂Mi such that �i�ui� � mi, (i � 1; 2).

Now consider V � P�U� u1 
 12 
 12 � 11 
 11 
 u2� 2 A1
̂A2
̂A1
̂A2. First
we can easily check that V 2M
̂M: it is enough to verify that �!
 1�V, �1
 !�V
and �!
 !�V are all equal to zero, where ! is the multiplicative functional annihi-
lating M.

After that the calculation �M�V� � �MP�U� u1 
 12 
 12 � 11 
 11 
 u2� �
��1 
 �2��U� u1
 12 
 12 � 11 
 11 
 u2� � u� �1�u1� 
 12 � 11 
 �2�u2� � u�m1


12 � 11 
m2 � v proves that �M�M
̂M� �M.

Note. The �-property is very close to the well-known S-property (see [6]), which
is equivalent to the coincidence of the following two norms on M2: the usual
norm (from M) and the factor-norm given by the operator of multiplication
�� : M
M!M. It is easy to see that the S-property always implies the �-prop-
erty. The example due to P.Dixon [3] shows that the converse implication is not true:
there exists a Banach algebra A0 such that A2

0 � A0 (and hence A0 has the �-prop-
erty) but A0 does not have the S-property. In this example A0 is neither commutative
nor semisimple. It would be interesting to know whether the �-property and S-
property are equivalent in each of these cases.

3. The powers of a maximal ideal. Now we establish a su�cient condition for the
powers of the given maximal ideal M � A to behave in the best possible manner,
that is dimMk=Mk�1 � n�kÿ1

k

ÿ �
for all natural numbers k.
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Proposition 2. If M has the �-property and the functional G�, whenever it is
de®ned, annihilates the kernel of the multiplication operator �, then
dimMk=Mk�1 � n�kÿ1

k

ÿ �
for all natural numbers k.

Proof. We suppose that dimM=M2 � n and choose h1; . . . ; hn 2M and
t1; . . . ; tn 2M� such that ti�hj� � �ij and each ti annihilates M2.

We denote by � the set of all multi-indices of length n: � � ��1; . . . ; �n� and
�j j � �1 � � � � � �n the power of �. Denote also h� � h�11 . . . h�nn and ek � �0; . . . ;
1; . . . ; 0� where the unit is in the k-th place.

We shall construct, by induction on m � �j j, a collection of functionals t�,
� 2 �, such that t� annihilates Mm�1 and where t��h�� � ���. For m � 1 we already
have such functionals: set tek to be tk, and t0 � !. Fix � 2 �, �j j � m� 1. Consider
a formal equality G� �

P
�����
�j j; �j j>0

t� 
 t�. Provided all t�, �j j � m, already exist, it

de®nes a functional G� 2 �M
̂M��. Note that t0 � ! is zero on M, so regardless of
the subsequent choice of t� this sum will be equal to the same sum without the
restriction of �j j; �j j > 0.

For all � 2 �, �j j � m and t� already is de®ned. Now for an arbitrary ®xed �,
with �j j � m� 1, the functional G� is de®ned as above. Because G� annihilates
Ker�, we can see from the following diagram:

M
̂M
G� # &

�

C t�
 ÿ

M2

that there exists a continuous linear functional t� : M2! C such that t� � � � G�.
Then extend t� to M by the formula t��hk� � 0 for k � 1; 2; . . . ; n. Then for
arbitrary a 2M, b 2Mm�1 we have t��ab� � t���a
 b� � G��a
 b� �P

����� t��a�t��b� � 0, because t� annihilates Mm�1. It follows by linearity and con-
tinuity that t� annihilates Mm�2. The same type of argument shows that t��h�� � ���.

It follows by induction that the system of t� exists for all � 2 �. Hence
the system of h�, �j j � k, has independent images in Mk=Mk�1, and thus
dimMk=Mk�1 � n�kÿ1

k

ÿ �
, and the proposition is proved.

In what follows we shall use the following property of the t
 :

Lemma 1. t
�ab� �
P

����
 t��a�t��b�.

Proof. The left-hand side is equal to t
��a
 b�, and the right-hand side isP
����
 t� 
 t��a
 b� � G
�a
 b�, which is the same thing.

4. Cohomology groups and analytic polydiscs Now we shall apply our main tool,
Proposition 2, to di�erent situations and obtain the results about the existence of
analytic polydiscs.

Theorem 2. Let H2
s �M;C� � 0 and dimM=M2 � n. Then there exists a neigh-

bourhood U of the corresponding point ! 2 MA in the metric topology that is an
n-dimensional analytic polydisc.
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Proof. For every � 2 � the functional G� is de®ned. It is obvious from the
de®nition that G� is symmetric: G��a
 b� � G��b
 a�. Now using Lemma 1, we
can prove that G��ab
 c� � G��a
 bc�. In fact, G��ab
 c� �P����� t��ab� 
 t��c�
�P�����

P
��
�� t��a�t
�b�

� �
t��c� �

P
��
���� t��a�t
�b�t��c�, and similar calcula-

tions show this is also the value of G��a
 bc�.
Hence the bilinear functional g 2 L2�M;C�, given by the formula

g�a; b� � G��a
 b�, is a symmetric 2-cocycle. Since H2
s �M;C� � 0, g 2 B2�M;C�. So

G��a
 b� � f�ab� for some f 2M�, and now it is evident that G� annihilates Ker�.
Using Propositions 1 and 2 and Theorem R, we complete the proof.

Note. Certainly the requirement of symmetry of the cohomology group
H2�M;C� can be omitted. But the vanishing of the usual group restricts the dimen-
sion of the linear space M=M2, and hence the cases to which we could apply the
result.

Proposition 3. If Hn�1�M;C� � 0, then dimM=M2 � n.

Proof. Assume the contrary: dimM=M2 � n� 1. Then there exist h1; . . . ;
hn�1 2M and t1; . . . ; tn�1 2M� such that ti�hj� � �ij and each ti annihilates M2.
Consider S 2 Ln�2�M;C� de®ned by the formula

S�a1; . . . ; an�1� � t1�a1� . . . tn�1�an�1�:

Obviously �S � 0 and hence S 2 Zn�1�M;C�. Since Hn�1�M;C� � 0,
S 2 Bn�1�M;C�, that is S � �R for some R 2 Ln�M;C�. In particular, it means that

S�h1; . . . ; hn�1� � R�h1h2; h3; . . . ; hn�1� ÿ R�h1; h2h3; . . . ; hn�1� � � � �
� �ÿ1�n�1R�h1; h2; . . . ; hnhn�1�:

Now consider all possible permutations of h1; . . . ; hn�1 and write down the �n� 1�!
corresponding equations. After addition of all these equalities multiplied by the sign
of the corresponding permutation we get the number 1 on the left hand side, and on
the right-hand side all the terms cancel pairwise and we get zero. This contradiction
proves the result.

We obtain only a 1-dimensional result about the usual cohomology of order 2,
as our maximal ideals are required to be non-idempotent.

Theorem 20. If H2�M;C� � 0 and M 6�M2, then dimM=M2 � 1 and there exists
a metric neighbourhood U of the corresponding point ! 2 MA which is a 1-dimensional
analytic disc.

Now consider the vanishing of higher dimensional cohomology groups.

Theorem 3. If Hn�2�M;C� � 0 and dimM=M2 � m � n � 0, then there exists a
neighbourhood U of the corresponding point ! 2 MA, in the metric topology, that is an
m-dimensional analytic polydisc.
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Proof. By Theorem 1 M has the �-property. Next, as in the proof of Theorem 2,
we take � 2 �, �j j � k � 2 and prove that G� annihilates Ker�. Recall that G� is
symmetric.

Consider � 2 Ln�2�M;C� given by the formula

��a1; a2; . . . ; an�2� � t1�a1� . . . tn�an�G��an�1 
 an�2�:

A routine calculation similar to that in the proof of Theorem 2 shows that �� � 0
and hence � 2 Zn�2�M;C�. Therefore � 2 Bn�2�M;C�, so there exists S 2 Ln�1

�M;C� such that � � �S, that is
t1�a1� . . . tn�an�G��an�1 
 an�2� � S�a1a2; a3; . . . ; an�2� ÿ S�a1; a2a3; . . . ; an�2� � � � �

� �ÿ1�n�2S�a1; a2; . . . ; an; an�1an�2�: ����

Now we take an arbitrary u 2 Ker� and represent u �P1i�1 ai 
 bi, whereP1
i�1 aik k bik k <1 and

P1
i�1 aibi � 0.

Then apply the functional t1 
 � � � 
 tn 
 G� to all elementary tensors obtained
from h1 
 � � � 
 hn 
 ai 
 bi by permutations, in which ai remains to the left of bi.
After this add all the equations together multiplying by the signs of the corre-
sponding permutation. Finally, take the summation over i.

On the one hand we obtain
P1

i�1 G��ai 
 bi� � G��u�, because the other terms
are either zero or cancel in pairs, by the symmetry of G�. On the other hand, using
���� we get sums of terms of two kinds:

(i)
P1

i�1 S�hk1 ; . . . ; aibi; . . . ; hkn �, these sums are zero as
P1

i�1 aibi � 0;
(ii) S�hk1 ; . . . ; hkmhkm�1 ; . . . ; ai; . . . ; bi; . . .� or S�hk1 ; . . . ; hkmai; . . . ; bi; . . .�, all such

terms occur twice and cancel pairwise.

Thus we have shown that G��u� � 0, and using Proposition 2 and Theorem R,
we complete the proof.

Note 1. In view of Proposition 3 the number m in Theorem 3 actually can only
be either n or n� 1.

Note 2. Theorem 3 seems to be stronger than the main result of the ®rst
author's paper [10]. But in that paper an analytic polydisc is obtained in a Gelfand
neighbourhood. This stronger conclusion cannot be obtained from Theorem R
without some additional proof, as well as the criterion for projectivity of M in [8].

5. Homology groups and analytic polydiscs In this ®nal section we show that one
can conclude the existence of analytic polydiscs from the vanishing of certain
homology groups and assumptions about the dimension of M=M2. These results
should be compared with those of the last section and also results in [10]. In that
paper the ®rst author obtained Gelfand neighbourhoods under assumptions about
the homological dimension of the maximal ideal. The dimension assumption in [10]
is analogous to the case Hn�2�M;C� � 0 and dimM=M2 � n� 1 presented here.

We begin with a lemma. We de®ne two operators which give rise to n-cycles. Let
T : 
̂nM! 
̂nM be de®ned by
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T�a1 
 a2 
 � � � 
 an� �
X
�2Sn

��a��1� 
 a��2� 
 � � � a��n�;

and let S : 
̂n�2M! 
̂n�2M be de®ned by

S�a1 
 a2 
 � � � 
 an�2� �
X

�2Sn�2;�ÿ1�n�1�<�ÿ1�n�2�
��a��1� 
 a��2� 
 � � � a��n�2�:

Lemma 2. Let S and T be as above and let
P1

j�1 a
�j�
n�1 
 a

�j�
n�2 be an element of

Ker� then T�a1 
 a2 
 � � � 
 an� and
P1

j�1 S�a1 
 a2 
 � � � 
 an 
 a
�j�
n�1 
 a

�j�
n�2� are

cycles.

Proof.

d�T�a1 
 a2 
 � � � 
 an�� �
Xnÿ1
k�1
�ÿ1�kÿ1

X
�2Sn

��a��1� 
 � � � 
 a��k�a��k�1� 
 � � � a��n�:

Clearly interchanging k and k� 1 gives terms which cancel in pairs. Similarly

d�
X1
j�1

S�a1 
 a2 
 � � � 
 an 
 a
�j�
n�1 
 a

�j�
n�2�� �

X1
j�1

Xn�1
k�1
�ÿ1�kÿ1

X
�2Sn�2;��n�1�<��n�2�

��a
�j�
��1� 
 � � � 
 a

�j�
��k�a

�j�
��k�1� 
 � � � a�j���n�2�;

where a
�j�
k � ak for 1 � k � n. Clearly interchanging k and k� 1 gives terms which

cancel in pairs. This is allowable except when ��k� � n� 1 and ��k� 1� � n� 2. In
this case the terms cancel when they are summed over j.

Theorem 4. Let Hn�2�M;C� � 0, then dimM=M2 < n� 2.

Proof. Assume this is not the case and let h1; h2; . . . ; hn�2 be elements of M
which are linearly independent in the quotient M=M2. Let t1; . . . ; tn�2 be dual func-
tions which vanish on M2 and such that ti�hj� � �ij. By Lemma 2 T�h1 
 � � � 
 hn�2�
is a cycle. If Hn�2�M;C� � 0, it must also be a boundary, thus we have

T�h1 
 � � � 
 hn�2� �
X1
j�1

d�a�j�1 
 a
�j�
2 
 � � � 
 a

�j�
n�3�

�
X1
j�1

Xn�2
k�1
�ÿ1�kÿ1a�j�1 
 � � � a�j�k a�j�k�1 
 � � � 
 a

�j�
n�3

If we now apply t1 
 t2 
 � � � tn�2 to both sides, the left hand side equals 1, whereas
the right hand side equals 0. This contradiction proves the result.
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Theorem 5. Let Hn�2�M;C� � 0 and dimM=M2 � n, then Hs
2�M;C� � 0.

Proof. Choose h1; h2; . . . ; hn and t1; . . . ; tn as above. We denote an arbitrary
element of Ker� � Z2 by

P1
j�1 h

�j�
n�1 
 h

�j�
n�2. By Lemma 2 we have

S
X1
j�1

h1 
 � � � 
 h
�j�
n�1 
 h

�j�
n�2

 !

is an �n� 2�-cycle. As Hn�2�M;C� � 0, it is also a boundary, hence equals

d�
X1
j�1

a
�j�
1 
 a

�j�
2 
 � � � 
 a

�j�
n�3� �

X1
j�1

Xn�2
k�1
�ÿ1�kÿ1a�j�1 
 � � � a�j�k a�j�k�1 
 � � � 
 a

�j�
n�3

as above. We now apply the map t1 
 t2 
 � � � 
 tn 
 IM 
 IM to each side of the
identity (and use 
nC
̂M
̂M �M
̂M) to obtain

X1
j�1

h
�j�
n�1 
 h

�j�
n�2 �

Xn
k�1
ÿtk�h�j�n�1�hk 
 h

�j�
n�2 � tk�h�j�n�1�h�j�n�2 
 hk

h i" #

on the left hand side. This is the original 2-cycle plus an anti-symmetric 2-chain.
Note that anti-symmetric 2-chains are always 2-cycles as the algebra is commutative.
On the right hand side we obtain

�ÿ1�n
X1
j�1

t1�a�j�1 � � � � tn�a�j�n ��a�j�n�1a�j�n�2 
 a
�j�
n�3 ÿ a

�j�
n�1 
 a

�j�
n�2a

�j�
n�3�

which is a 2-boundary. This shows that Z2 � Ca
2 � B2. Now we can symmetrize this

equation, using the op operator used in the de®nition of the symmetric homology
groups. Hence Zs

2 � Bs2 i.e., Hs
2�M;C� � 0.

Theorem 6. Let Hn�1�M;C� � 0 and dimM=M2 � n, then M has the �-property.

Proof. We let c be some element of M2 and choose h1; h2; . . . ; hn and t1; . . . ; tn as
above. Then by Lemma 2 T�h1 
 � � � 
 hn 
 c� is a cycle and as Hn�1�M;C� � 0 it is
also a boundary. Hence

T�h1 
 � � � 
 hn 
 c� � d�
X1
j�1

a
�j�
1 
 a

�j�
2 
 � � � 
 a

�j�
n�2�

�
X1
j�1

Xn�1
k�1

a
�j�
1 
 � � � a�j�k a�j�k�1 
 � � � 
 a

�j�
n�2

We apply t1 
 � � � 
 tn 
 IM to the resulting equality and obtain
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c �
X1
j�1

t1�a�j�1 � � � � tn�a�j�n �a�j�n�1a�j�n�2:

This shows that c is in Im�.
Finally we are in a position to prove the result on analytic structure.

Theorem 7. If Hn�1�M;C� � 0 and dimM=M2 � n, then H2
s �M;C� � 0 and

there exists a neighbourhood U of the corresponding point ! 2 MA, in the metric
topology, that is an n-dimensional analytic polydisc.

Proof. By Theorem 2 it su�ces to show that H2
s �M;C� � 0. Let � be any sym-

metric 2-cocycle. Then � vanishes on every anti-symmetric 2-cycle, by symmetry. It
also vanishes on every symmetric 2-cycle as these are all boundaries (of symmetric 3-
cocycles) by Theorem 5. Thus � vanishes on Ker�. We now use the �-property, this
shows that � �  � � for some continuous functional  on M. Thus � � � and we
are done.
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