
Glasgow Math. J. 52 (2010) 505–516. C© Glasgow Mathematical Journal Trust 2010.
doi:10.1017/S0017089510000388.

POSITIVE SOLUTIONS TO p(x)-LAPLACIAN–DIRICHLET
PROBLEMS WITH SIGN-CHANGING NON-LINEARITIES

XIANLING FAN
Department of Mathematics, Lanzhou City University, Lanzhou 730070, PR China

Department of Mathematics, Lanzhou University, Lanzhou 730000, PR China
e-mail: fanxl@lzu.edu.cn

(Received 8 March 2009; revised 14 January 2010; accepted 21 February 2010)

Abstract. Consider the p(x)-Laplacian–Dirichlet problem with sign-changing
non-linearity of the form{−div(|∇u|p(x)−2 ∇u) + m(x) |u|p(x)−2 u = λa(x)f (u) in �

u = 0 on ∂�,

where � ⊂ �N is a bounded domain, p ∈ C0(�) and infx∈�p(x) > 1, m ∈ L∞(�) is
non-negative, f : � → � is continuous and f (0) > 0, the coefficient a ∈ L∞(�) is
sign-changing in �. We give some sufficient conditions to assure the existence of a
positive solution to the problem for sufficiently small λ > 0. Our results extend the
corresponding results established in the p-Laplacian case to the p(x)-Laplacian case.

2010 Mathematics Subject Classification. 35J70.

1. Introduction. In this paper, we consider the existence of positive solutions for
the following p(x)-Laplacian–Dirichlet problem of the form{−div(|∇u|p(x)−2 ∇u) + m(x) |u|p(x)−2 u = λa(x)f (u) in �,

u = 0 on ∂�,
(1.1)

where � is a bounded smooth domain in �N , λ > 0, the function a(x) is allowed to
change sign, p, m and f satisfy the following conditions, respectively:

(P) p ∈ C0(�) and 1 < p− := infx∈� p(x) ≤ p+ := supx∈� p(x) < +∞.
(M) m ∈ L∞(�) and m(x) ≥ 0 for x ∈ �.
(F) f : � → � is continuous and f (0) > 0.
Problem (1.1) involves the variable exponent p(·). The study of various

mathematical problems with variable exponent has received considerable attention
in recent years. For a survey of this area see [4, 7, 20, 28], and for the application
background see [21, 27]. The existence and multiplicity of solutions to the p(x)-
Laplacian equations under various hypotheses were studied by many authors (see
e.g. [3, 8, 10–12, 16, 23–26, 29, 30]). In this paper, we study the existence of a positive
solution to problem (1.1) for sufficiently small λ > 0.

The existence of positive solutions to problem (1.1) when p(x) ≡ p (a constant)
was obtained in [2, 5, 6, 17, 18]. In [2, 5, 6, 17] the case that p = 2 and m = 0 was
investigated, where in [5] the radially symmetric case was investigated. Hai and Xu [18]
investigated the case that p ∈ (1,∞) and m ≥ 0. In [2, 5, 6, 17, 18] the authors gave
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some sufficient conditions on a(x) to assure the existence of a positive solution for
small values of λ. We denote by Sp(a) the unique solution of the problem{−div(|∇z|p−2 ∇z) + m |z|p−2 z = a(x) in �,

z = 0 on ∂�,
(1.2)

for a ∈ L∞(�). Then the condition given in [6, 17] is
(A≥

ε ) there exists ε > 0 such that S2(a+ − (1 + ε)a−) ≥ 0 in �, where a+(x) =
max{0, a(x)} and a−(x) = a+(x) − a(x).

The condition given in [2, 18] is
(A∗) Sp(a) > 0 in � and ∂Sp(a)

∂ν
< 0 on ∂�, where ν denotes the unit outward normal

vector.
The p(x)-Laplacian is an extension of the p-Laplacian. An essential difference

between them is that the p-Laplacian operator is (p − 1)homogeneous, that is, �p(λu) =
λp−1�pu for every λ > 0, but the p(x)-Laplacian operator, when p(x) is not a constant,
is not homogeneous. Our purpose is to extend the corresponding results established in
[2, 5, 6, 17, 18] on the p-Laplacian problems to the p(x)-Laplacian case; however, in this
respect we face an essential difficulty due to the inhomogeneity of the p(x)-Laplacian
operator. It is well known that, in the case that p(x) ≡ p (a constant), if z is a positive
solution of (1.2), then, by the (p − 1)homogeneity of the p-Laplacian operator, for any
λ > 0, λ

1
p−1 z is exactly a positive solution of the problem{−div(|∇z|p−2 ∇z) + m |z|p−2 z = λa(x) in �,

z = 0 on ∂�.
(1.3)

This fact plays an important role in [2, 5, 6, 17, 18]. It is a pity that, in the p(x)-Laplacian
case, such fact does not hold. To see this, in Section 2 we give an example which shows
that there are p(x) and a(x) such that the corresponding problem (1.2) with p = p(x)
has a positive solution, but for sufficiently small λ > 0, the corresponding problem
(1.3) with p = p(x) has no positive solution. Such an example shows that the condition
of the same form as (A≥

ε ) or (A∗) is not suitable for the variable exponent problems
considered in the present paper. In order to achieve our goal we must find some new
conditions which are different from (A≥

ε ) and (A∗) in form, but include (A≥
ε ) and (A∗)

as a special case when p is a constant.
In Section 2, we give some preliminaries about the p(x)-Laplacian and also give

an example as mentioned above. In Section 3, we give some sufficient conditions for
the existence of a positive solution to problem (1.1) for sufficiently small λ > 0. Our
results are a generalization of the corresponding results established in [2, 5, 6, 17, 18]
for the p-Laplacian case to the p(x)-Laplacian case.

2. Preliminaries and example. In this paper, if there is no other explanation, it
will always be assumed that � is a bounded smooth domain in �N and p and m satisfy
(P) and (M).

The variable exponent Lebesgue space Lp(·)(�) is defined by

Lp(·) (�) =
{

u | u : � → � is measurable,
∫

�

|u|p(x) dx < ∞
}
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with the norm

|u|Lp(·)(�) = |u|p(·) = inf
{
σ > 0 |

∫
�

∣∣∣ u
σ

∣∣∣p(x)
dx ≤ 1

}
.

The variable exponent Sobolev space W 1,p(·)(�) is defined by

W 1,p(·) (�) = {
u ∈ Lp(·) (�) | |∇u| ∈ Lp(·) (�)

}
with the norm

‖u‖W 1,p(·)(�) = ‖u‖1,p(·) = |u|p(·) + |∇u|p(·) .

Denote by W 1,p(·)
0 (�) the closure of C∞

0 (�) in W 1,p(·)(�). |∇u|p(·) is an equivalent

norm on W 1,p(·)
0 (�). We refer to [4, 7, 14, 19, 22, 28] for the elementary properties of

the space W 1,p(x)(�).
u ∈ W 1,p(·)

0 (�) is said to be a (weak) solution of (1.1) if∫
�

( |∇u|p(x)−2 ∇u∇v + m(x) |u|p(x)−2 uv
)
dx = λ

∫
�

a(x)f (u)vdx, ∀v ∈ W 1,p(·)
0 (�) .

Define T = Tp(·) : W 1,p(·)
0 (�) → (

W 1,p(·)
0 (�)

)∗
by

T(u)v =
∫

�

(|∇u|p(x)−2∇u∇v + m(x)|u|p(x)−2uv
)
dx, ∀u, v ∈ W 1,p(·)

0 (�).

PROPOSITION 2.1. ([12]) The mapping T : W 1,p(·)
0 (�) → (W 1,p(·)

0 (�))∗ is a
strictly monotone homeomorphism, and is of type (S+), namely for any sequence
{un} ⊂ W 1,p(·)

0 (�) for which un ⇀ u in W 1,p(·)
0 (�) and limn→∞T(un)(un − u) ≤ 0, un

must converge strongly to u in W 1,p(·)
0 (�), where ‘⇀’ denotes the weak convergence in

W 1,p(·)
0 (�).

Denote by S = Sp(·) the inverse mapping of T . Then the mapping S = T−1 :
(W 1,p(·)

0 (�))∗ → W 1,p(·)
0 (�) is a strictly monotone homeomorphism. We often view

S as the solution operator for the problem{−div(|∇u|p(x)−2 ∇u) + m(x) |u|p(x)−2 u = h(x) in �,

u = 0 on ∂�,
(2.1)

namely, we denote by S(h) the (unique) solution of (2.1), and according to the
different ranges of h and S(h), we may have the different understandings of the
mapping S.

PROPOSITION 2.2. (1) For every h ∈ L∞(�), (2.1) has a unique solution S(h) and
S(h) ∈ L∞(�).
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(2) (Comparison principle) The mapping S : L∞(�) → L∞(�) is increasing, that is,
S(h) ≤ S(g) in � if h ≤ g in �.

(3) The mapping S : L∞(�) → L∞(�) is bounded, and there is a positive constant
C∗, dependent on p+, p−, N and |�|, such that

|S(h)|L∞(�) ≤ C ∗ max
{
|h|

1
p+−1

L∞(�) , |h|
1

p−−1

L∞(�)

}
for all h ∈ L∞(�).

Proof. For statement (1) see [13], and for statement (2) see [10]. Here we only
prove statement (3). First, let us consider the case that h(x) ≡ M (a constant). By [10,
Lemma 2.1], there exists a positive constant C∗, dependent on p+, p−, N and |�|, such
that

|S(M)|L∞(�) ≤ C∗ max
{
|M| 1

p+−1 , |M| 1
p−−1

}
for all M ∈ �.

(Note that Lemma 2.1 in [10] was proved for the case that m = 0, in fact, the proof of
the same result in the case when m �= 0 is similar and the constant C∗ is independent
of m). Then, for any h ∈ L∞(�), statement (3) follows from the above inequality for
the constant function M and the comparison principle (2). �

p is said to be Hölder continuous on � if there exist constants α ∈ (0, 1) and
L > 0 such that |p(x) − p(y)| ≤ L|x − y|α for all x, y ∈ �. p is said to be Log-Hölder
continuous on � if there exists a positive constant L such that

|p(x) − p(y)| ≤ L
− ln |x − y| for all x, y ∈ � with |x − y| ≤ 1

2
.

It is obvious that Lipschitz continuity =⇒ Hölder continuity =⇒ Log-Hölder
continuity.

PROPOSITION 2.3. (1) ([1, 10, 13]) When p is Log-Hölder continuous on �, for every
h ∈ L∞(�), S(h) is Hölder continuous on �, and therefore, the mapping S : L∞(�) →
C0(�) is completely continuous.

(2) ([1, 9, 10]) When p is Hölder continuous on �, for every h ∈ L∞(�),
S(h) ∈ C1,α(�), and therefore, the mapping S : L∞(�) → C1(�) is completely
continuous.

PROPOSITION 2.4. ([15]) (A strong maximum principle) Suppose that p is Lipschitz
continuous on �, h ∈ L∞(�), h(x) ≥ 0 for x ∈ � and h(x) �≡ 0 in �. Then S(h) ∈ C1,α(�),
S(h)(x) > 0 for x ∈ � and ∂S(h)

∂ν
< 0 on ∂�.

Propositions 2.1–2.4 are an extension of the corresponding results established in
the case that p is a constant.

An essential difference between the p(x)-Laplacian and the p-Laplacian is that the
p-Laplacian is homogeneous but the p(x)-Laplacian is inhomogeneous. As mentioned
in Section 1, in the case that p is a constant, if for a fixed h ∈ L∞(�) there holds
Sp(h)(x) ≥ 0 (resp. Sp(h)(x) > 0) for x ∈ �, then for every λ > 0, there holds also
Sp(λh)(x) ≥ 0 (resp. Sp(λh)(x) > 0) for x ∈ �. However, this is not the case when p(·)
is not a constant. To see this, we give an example as follows.
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EXAMPLE. Let N = 1, � = (−1, 1), m = 0,

p(r) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
4, if |r| ≤ 1

4 ,

−8
(

|r| − 1
2

)
+ 2, if 1

4 ≤ |r| ≤ 1
2 ,

2, if 1
2 ≤ |r| ≤ 1,

hε(r) =
{−ε, if |r| ≤ 1

2 ,

1 if 1
2 < |r| ≤ 1.

where ε is a small positive number.
For this example we have the following

PROPOSITION 2.5. In the above example, there exists ε > 0 sufficiently small such
that Sp(·)(hε) > 0 in � and

inf
r∈(−1,1)

Sp(·)(λhε)(r ) < 0 for sufficiently small λ > 0. (2.2)

Proof. By the definition of p(r), p is Lipschitz continuous on �. Noting that when
ε = 0, h0 ≥ 0 and h0 �≡ 0 in �, by Proposition 2.4, S(h0) ∈ C1(�), S(h0)(x) > 0 for
x ∈ � and ∂S(h0)

∂ν
< 0 on ∂�. By 2) of Proposition 2.3, for sufficiently small ε > 0, we

have S(hε) ∈ C1(�), S(hε)(x) > 0 for x ∈ � and ∂S(hε)
∂ν

< 0 on ∂�. Now let ε ∈ (0, 1) be
small enough. For any λ > 0, denote uλ = S(λhε). Then, since p(·) and hε(·) are radially
symmetric, uλ is radially symmetric and it is the unique solution of the following
problem: {−(|u′

λ(r)|p(r)−2u′
λ(r)

)′ = λhε(r) in (0, 1)

uλ(1) = 0, u′
λ(0) = 0.

(2.3)

Indeed, problem (2.3) has a unique solution uλ(r) for r ∈ [0, 1], which is expressed by
formula (2.4). Setting uλ(r) = uλ(−r) for r ∈ [−1, 0], then the function uλ(r), r ∈ [−1, 1],
is radially symmetric and uλ = S(λhε).

Denote �(r, ξ ) = |ξ |p(r)−2ξ for r ∈ [−1, 1] and ξ ∈ �. Then for each r ∈ [−1, 1],
�(r, ·) : � → � is a homeomorphism. Denote by �−1

r the inverse mapping of �(r, ·),
that is

�−1
r (η) =

⎧⎨⎩η
1

p(r)−1 if η ≥ 0

− |η| 1
p(r)−1 if η < 0.

Then we have

uλ(r) =
∫ 1

r
�−1

t

(∫ t

0
λhε(s)ds

)
dt for r ∈ [0, 1]. (2.4)

From the definition of hε we have∫ t

0
hε(s)ds

{
< 0 if 0 < r < 1

2 + 1
2ε,

≥ 0 if 1
2 + 1

2ε ≤ r ≤ 1,
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and thus by (2.4),

uλ(0) =
∫ 1

0
�−1

t

(∫ t

0
λhε(s)ds

)
dt

=
∫ 1

2 + 1
2 ε

0
�−1

t

(∫ t

0
λhε(s)ds

)
dt +

∫ 1

1
2 + 1

2 ε

�−1
t

(∫ t

0
λhε(s)ds

)
dt

<

∫ 1
4

0
�−1

t

(∫ t

0
λhε(s)ds

)
dt + λ

∫ 1

1
2 + 1

2 ε

(
t − 1

2
− 1

2
ε

)
dt

≤ −
∫ 1

4

0
(λεt)

1
3 dt + λ

∫ 1

1
2

(
t − 1

2

)
dt

= −3
4

(
1
4

) 4
3

ε
1
3 λ

1
3 + 1

8
λ.

This shows that, when λ ≤ 6
3
2 ( 1

4 )2ε
1
2 , uλ(0) < 0, that is, (2.2) holds.

3. Existence of positive solutions. Let us continue to use the notations as in
Sections 1 and 2.

Let

�
≥
p(·) = {

h ∈ L∞(�)|Sp(·)(h)(x) ≥ 0 for x ∈ �
}
,

�>
p(·) = {

h ∈ L∞(�)|Sp(·)(h)(x) > 0 for x ∈ �
}
.

It is clear that when a = 0, problem (1.1) has only a zero solution, and when a ≥ 0
and a(x) �≡ 0 for x ∈ �, using the strong maximum principle, we can easily obtain the
existence of a positive solution to (1.1) for small λ > 0. In this section, we assume that
a is sign-changed, that is, a satisfies the following condition:

(A±
∞) a ∈ L∞(�), a+ �= 0 and a− �= 0.

THEOREM 3.1. Let (P), (M), (F) and (A±
∞) hold. Suppose the following condition is

satisfied:
(A≥

ε,δ) (resp. ((A>
ε,δ)) There are ε > 0 and δ > 0 such that

μ(a+ − (1 + ε)a−) ∈ �
≥
p(·)

(
resp. ∈ �>

p(·)
)

for μ ∈ (0, δ].

Then for sufficiently small λ > 0, problem (1.1) has a non-negative (resp. a positive)
solution.

Proof. We only consider the case of (A>
ε,δ) because the proof for the case of (A≥

ε,δ)
is similar. Let ε and δ be as in condition (A>

ε,δ). Define f̃ : � → � by

f̃ (t) =

⎧⎪⎪⎨⎪⎪⎩
f (t) for |t| ≤ 1,

f (−1) for t < −1,

f (1) for t > 1.
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Consider the following problem:{−div(|∇u|p(x)−2 ∇u) + m(x) |u|p(x)−2 u = λa(x)̃f (u) in �,

u = 0 on ∂�.
(3.1)

Define F̃(t) = ∫ t
0 f̃ (s)ds for t ∈ � and

Jλ(u) =
∫

�

(
1

p(x)
|∇u|p(x) + m(x)

p(x)
|u|p(x) − λa(x)F̃(u)

)
dx, ∀u ∈ W 1,p(·)

0 (�).

Obviously, there exists a positive constant C such that |̃f (t)| ≤ C for all t ∈ �, this
implies that |F̃(t)| ≤ C|t| for all t ∈ �. Noting that p− > 1, m ∈ L∞(�), m(x) ≥ 0
and a ∈ L∞(�), we can see that, for each λ > 0, the functional Jλ : W 1,p(·)

0 (�) →
� is coercive and sequentially weakly lower semi-continuous, and consequently, Jλ

has a global minimizer uλ which is a weak solution of problem (3.1). Noting that
|λa(x)̃f (uλ)|L∞(�) → 0 as λ → 0, by 3) of Proposition 2.2, we have that |uλ|L∞(�) → 0
as λ → 0. Now we assume that λ > 0 is small enough such that |uλ|L∞(�) ≤ 1. Then
f̃ (uλ) = f (uλ) and so uλ is a solution of problem (1.1). Set γ = ε

2+ε
. Since f is continuous

at 0 and f (0) > 0, there is ρ ∈ (0, 1) such that

−f (0)γ < f (ξ ) − f (0) < f (0)γ for |ξ | ≤ ρ.

Take λ1 > 0 small enough such that |uλ|L∞(�) ≤ ρ for λ ∈ (0, λ1]. Then when λ ∈ (0, λ1],

λa(x)f (uλ(x)) = λ(a+(x) − a−(x))f (uλ(x))

= λa+(x)f (uλ(x)) − λa−(x)f (uλ(x))

≥ λa+(x)f (0)(1 − γ ) − λa−(x)f (0)(1 + γ )

= λ(1 − γ )f (0)
(

a+(x) − 1 + γ

1 − γ
a−(x)

)
= λ(1 − γ )f (0)

(
a+(x) − (1 + ε)a−(x)

)
. (3.2)

Let λ2 = δ
(1−γ )f (0) and λ3 = min{λ1, λ2}. Then when λ ∈ (0, λ3], we have that λ(1 −

γ )f (0) ≤ δ, and by condition (A>
ε,δ),

λ(1 − γ )f (0)(a+(x) − (1 + ε)a−(x)) ∈ �>
p(·).

By (3.2) and the comparison principle, λa(x)f (uλ(x)) ∈ �>
p(·), which shows that uλ is a

positive solution of problem (1.1). �

REMARK 3.1. In Section 1, we mentioned condition (A≥
ε ) which was used in

[6, 17] for the case that p = 2. We may extend it to the variable exponent case. For
given variable exponent p(·), we say that a ∈ L∞(�) satisfies condition (A≥

ε ) (resp.
(A>

ε )) if the following condition holds:
(A≥

ε ) (resp. (A>
ε )) there exists ε > 0 such that

(a+ − (1 + ε)a−) ∈ �
≥
p(·)

(
resp. ∈ �>

p(·)
)
.

Obviously, condition (A>
ε ) implies condition (A≥

ε ). In the case when p = 2, from the
strong comparison principle (i.e. the strong maximum principle) we may see that
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when a ∈ L∞(�)\{0} satisfies condition (A≥
ε ) with some ε > 0, a must satisfy condition

(A>
ε1

) for every ε1 ∈ (0, ε). In other words, when p = 2, (A≥
ε ) and (A>

ε ) are essentially
equivalent to each other. However, in the case when p �= 2, because of lack of the general
strong comparison principle, in general, condition (A≥

ε ) does not imply condition (A>
ε1

)
for ε1 ∈ (0, ε). It is clear that, in the case when p is a constant, (A≥

ε ) and (A≥
ε,δ) (resp.

(A>
ε ) and (A>

ε,δ)) are essentially equivalent to each other. Thus our Theorem 3.1 is
an extension of Theorem 2 in [6] and Theorem 1.1 in [17] to the p(x)-Laplacian
case.

For h ∈ L∞(�) and ε > 0, define

B∞(h, ε) = {
g ∈ L∞(�)| |g − h|L∞(�) < ε

}
,

and for δ > 0, define

K (B∞(h, ε), δ) = {μg|μ ∈ (0, δ] and g ∈ B∞(h, ε)} .

COROLLARY 3.1. Let (P), (M), (F) and (A±
∞) hold. Suppose the following condition

is satisfied:
(K≥

ε,δ) (resp. (K>
ε,δ)) There are ε > 0 and δ > 0 such that

K (B∞(a, ε), δ) ⊂ �
≥
p(·)

(
resp. ⊂ �>

p(·)
)
.

Then a satisfies (A≥
ε1,δ

) (resp. (A>
ε1,δ

)) for some ε1 > 0, and consequently, for sufficiently
small λ > 0, problem (1.1) has a non-negative (resp. a positive) solution.

Proof. Let a satisfy (K≥
ε,δ) (resp. (K>

ε,δ)). Take ε1 ∈ (0, ε
|a−|L∞(�)

). Then

|(a+ − (1 + ε1)a−) − a|L∞(�) = ε1|a−|L∞(�) < ε,

which shows (a+ − (1 + ε1)a−) ∈ B∞(a, ε). For μ ∈ (0, δ], we have that

μ(a+ − (1 + ε1)a−) ∈ K (B∞(h, ε), δ) ⊂ �
≥
p(·)

(
resp. ⊂ �>

p(·)
)
.

This shows that (A≥
ε1,δ

) (resp. (A>
ε1,δ

)) is satisfied, and consequently, by Theorem 3.1,
problem (1.1) has a non-negative (resp. a positive) solution for sufficiently small
λ > 0. �

REMARK 3.2. Let p ∈ (1,∞) be a constant and a ∈ L∞(�) satisfy condition (A∗),
that is Sp(a) > 0 in � and ∂Sp(a)

∂ν
< 0 on ∂�. Since Sp : L∞(�) → C1(�) is continuous,

there exists ε > 0 such that B∞(a, ε) ⊂ �>
p . In this case, for any δ > 0, K(B∞(a, ε), δ) ⊂

�>
p holds. This shows that, when p is a constant, condition (A∗) implies condition (K>

ε,δ)
for some ε > 0 and any δ > 0. Hence Theorem 1 of Hai and Xu [18] is a special case
of Corollary 3.1.

Now let us consider the radially symmetric case. Suppose that the following
condition is satisfied.

(R) � = B(0, r0) ⊂ �N is a ball, p(x) = p(|x|) = p(r) and a(x) = a(|x|) = a(r) are
radially symmetric, and m = 0.

https://doi.org/10.1017/S0017089510000388 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089510000388


POSITIVE SOLUTIONS TO p(x)- LAPLACIAN–DIRICHLET PROBLEMS 513

In this case, the solution of (1.1) is just the solution of the following problem:{−(
rN−1|u′(r)|p(r)−2u′(r)

)′ = λrN−1a(r)f (u) in (0, r0),

u(r0) = 0, u′(0) = 0.
(3.3)

COROLLARY 3.2. Let (P), (M), (F), (A±
∞) and (R) hold. Suppose that a satisfies the

following condition
(Iτ ) there exists τ > 0 such that∫ s

0
tN−1a+(t)dt ≥ (1 + τ )

∫ s

0
tN−1a−(t)dt for s ∈ (0 , r 0].

Then a satisfies condition (A>
ε,δ) with ε = τ

2 and any δ > 0, and consequently, for
sufficiently small λ > 0, problem (1.1) has a positive solution.

Proof. Put ε = τ
2 . Let any μ > 0 be given. Denote u = Sp(·)(μ(a+ − (1 + ε)a−)).

Then {−(
rN−1|u′(r)|p(r)−2u′(r)

)′ = μrN−1(a+ − (1 + ε)a−) in (0, r0),

u(r0) = 0, u′(0) = 0.

Thus we have, for r ∈ (0, r0],

−(
rN−1|u′(r)|p(r)−2u′(r)

) = μ

∫ r

0
tN−1

(
a+(t) −

(
1 + τ

2

)
a−(t)

)
dt

≥ μτ

2

∫ r

0
tN−1a−(t)dt ≥ 0.

This shows that u′(r) ≤ 0 for all r ∈ (0, r0). Noting that
∫ r0

0 tN−1a−(t)dt > 0, we have
u′(r0) < 0, and therefore u(r) > 0 for r ∈ [0, r0) because u(r0) = 0. This proves that
μ(a+ − (1 + ε)a−) ∈ �>

p(·) for any μ > 0, that is, condition (A>
ε,δ) with ε = τ

2 and any
δ > 0 is satisfied, and consequently, by Theorem 3.1, problem (1.1) has a positive
solution for sufficiently small λ > 0. �

REMARK 3.3. Condition (Iτ ) was proposed by Các, Fink and Gatica [5] for the
case that p = 2. Note that condition (Iτ ) used in this paper is the same as in [5], and it
is independent of p(·). The verification of condition (Iτ ) is often easy, for example, it is
easy to see that, in the radially symmetric case, the function a, defined by

a(r) =
{

1 if |r| ≤ r0
2 ,

−ε if r0
2 < |r| ≤ r0,

where ε ∈ (0, 1
2N−1 ), satisfies condition (Iτ ) with τ ∈ (0, 1

ε(2N−1) − 1). Of course, as was
mentioned in [2, 6], (Iτ ) is a stronger condition to assure the existence of a positive
solution to problem (3.4) for small values of λ.

REMARK 3.4. Let �, m, p(·) and a = hε be as in the example given in Section 2,
where ε > 0 is sufficiently small, and let f (t) = 1 for all t ∈ �. Proposition 2.5 shows
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that, in this case, condition (A∗) as well as condition (A>
ε1

) with small ε1 > 0 is satisfied
but the corresponding problem (1.1) has no positive solution for sufficiently small
λ > 0.

Finally, we give an example in which the condition (A>
ε,δ) put in Theorem 3.1 is

satisfied but the condition (Iτ ) put in Corollary 3.2 is not satisfied.

EXAMPLE 3.5. Let N = 1, � = (−1, 1), m = 0,

p(r) =

⎧⎪⎪⎨⎪⎪⎩
2, if |r| ≤ 1

2 ,

8
(|r| − 1

2

) + 2, if 1
2 ≤ |r| ≤ 3

4 ,

4, if 3
4 ≤ |r| ≤ 1,

a(r) =
{− 1

8 , if |r| ≤ 1
2 ,

1 if 1
2 < |r| ≤ 1.

Take ε = 1. we will show that there exists δ > 0 such that condition (A>
1,δ) is sat-

isfied, that is, μ(a+ − (1 + 1)a−) ∈ �>
p(·) for μ ∈ (0, δ]. Denote uμ = Sp(·)(μ(a+ − 2a−)).

Then uλ is radially symmetric and it is the unique solution of the following problem:{−(|u′
μ(r)|p(r)−2u′

μ(r)
)′ = μ(a+ − 2a−)(r) in (0, 1),

uμ(1) = 0, u′
μ(0) = 0.

Thus, we have

u′
μ(r) = −�−1

r

(∫ r

0
μ(a+(s) − 2a−(s))ds

)
for r ∈ (0, 1). (3.4)

It is sufficient to prove that uμ(r) > 0 for sufficiently small μ > 0 and all r ∈ [0, 1).
We may assume μ ∈ (0, 1). Noting that when r ∈ (0, 1

2 ],∫ r

0
μ(a+(s) − 2a−(s))ds =

∫ r

0
−1

4
μds = −1

4
μr < 0,

and when r ∈ ( 1
2 , 1),∫ r

0
μ(a+(s) − 2a−(s))ds =

∫ 1
2

0
−1

4
μds +

∫ r

1
2

μds

= −1
8
μ +

(
r − 1

2

)
μ =

(
r − 5

8

)
μ,

we can see that u′
μ(r) > 0 for r ∈ (0, 5

8 ), u′
μ(r) < 0 for r ∈ ( 5

8 , 1), and uμ attains its
maximum at r = 5

8 . Since uμ(1) = 0, we have that uμ(r) > 0 for r ∈ [ 5
8 , 1) and

uμ

(
5
8

)
> uμ

(
3
4

)
= −

∫ 1

3
4

u′
μ(r)dr =

∫ 1

3
4

�−1
r

((
r − 5

8

)
μ

)
dr

≥
∫ 1

3
4

(
1
8
μ

) 1
4−1

dr = 1
4

· 1
2
μ

1
3 .
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For r ∈ [0, 5
8 ) we have

uμ(r) ≥ uμ(0) = uμ

(
5
8

)
−

∫ 5
8

0
u′

μ(r)dr ≥ uμ

(
5
8

)
−

∫ 5
8

0
�−1

r

(
1
4
μ

)
dr

≥ uμ

(
5
8

)
−

∫ 5
8

0

(
1
4
μ

) 1

p( 5
8 )−1

dr

= 1
8
μ

1
3 − 5

8
·
(

1
4
μ

) 1
2

.

It follows that when μ ∈ (0, ( 2
5 )6), uμ(r) > 0 for all r ∈ [0, 1). This shows that the

condition (A>
1,δ) is satisfied for δ ∈ (0, ( 2

5 )6). It is obvious that the condition (Iτ ) is not
satisfied because for any τ > 0 and s ∈ (0, 1

2 ),

0 =
∫ s

0
a+(t)dt < (1 + τ )

∫ s

0
a−(t)dt .
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