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Embedding Distributions of Generalized
Fan Graphs
Yichao Chen, Toufik Mansour, and Qian Zou

Abstract. Total embedding distributions have been known for a few classes of graphs. Chen, Gross,
and Rieper computed it for necklaces, close-end ladders and cobblestone paths. Kwak and Shim com-
puted it for bouquets of circles and dipoles. In this paper, a splitting theorem is generalized and the
embedding distributions of generalized fan graphs are obtained.

1 Background

One enumerative aspect of topological graph theory is to count the distribution of
genus of a graph. The history of genus distribution began with J. Gross in 1980s.
Since then it has attracted considerable attention. See [1,8–12,14,15,18,20,23,27,28,
31–37, 39] for a sample of results in the direction. However, for the total embedding
distributions, only a few classes are known. For example, Chen, Gross, and Rieper
[2] computed the total embedding distribution for necklaces, close-end ladders, and
cobblestone paths, Kwak and Shim [22] computed for bouquets of circles and dipoles.
Chen, Liu ,and Wang [5] calculated the total embedding distributions of all graphs
with maximum genus 1.

It is assumed that the reader is familiar with the basics of topological graph theory
as found in Gross and Tucker [13]. A graph G = (V (G), E(G)) is permitted to have
both loops and multiple edges. A surface is a compact closed 2-dimensional manifold
without boundary. In topology, surfaces are classified into Om, the orientable surface
with m(m ≥ 0) handles, and Nn, the nonorientable surface with n(n > 0) crosscaps.
A graph embedding into a surface means a cellular embedding.

A spanning tree of a graph G is a tree on its edges having the same order as G. The
number of co-tree edges of a spanning tree of G is called the Betti number, β(G), of
G. A rotation at a vertex v of a graph G is a cyclic order of all edges incident with v.
A pure rotation system P of a graph G is the collection of rotations at all vertices of G.
A general rotation system is a pair (P, λ), where P is a pure rotation system and λ is a
mapping E(G) → {0, 1}. The edge e is said to be twisted (respectively, untwisted) if
λ(e) = 1 (respectively, λ(e) = 0). It is well known that every orientable embedding
of a graph G can be described by a general rotation system (P, λ) with λ(e) = 0 for
all e ∈ E(G). By allowing λ to take the nonzero value, we can describe nonorientable
embeddings of G; see [2, 30] for more details. A T-rotation system (P, λ) of G is a
general rotation system (P, λ) such that λ(e) = 0, for all e ∈ E(T).
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Theorem 1.1 (see [2, 30]) Let T be a spanning tree of G and (P, λ) a general rotation
system. Then there exists a general rotation system (P

′
, λ
′
) such that

(i) (P
′
, λ
′
) yields the same embedding of G as (P, λ),

(ii) λ
′
(e) = 0 for all e ∈ E(T).

Two embeddings are considered to be the same if their T-rotation systems are
combinatorially equivalent. Fix a spanning tree T of a graph G. Let ΦT

G be the set of all
T-rotation systems of G. It is known that |ΦT

G| = 2β(G)
∏

v∈V (G)(dv−1)!. Suppose that

in these |ΦT
G| embeddings of G there are ai , i = 0, 1, . . . , embeddings into orientable

surface Oi and b j , j = 1, 2, . . . , embeddings into nonorientable surface N j . We call
the polynomial

IT
G(x) =

∞∑
i=0

aix
i +

∞∑
j=1

b jx
− j

the T-distribution polynomial of G. By the total embedding-distribution polynomial
of G, we shall mean the polynomial IG(x) = IT

G(x). We call the first (respectively,
second) part of IG(x) the genus polynomial (respectively, crosscap number polynomial)
of G and denoted by gG(x) =

∑∞
i=0 aixi (respectively, fG(y) =

∑∞
i=1 bix−i). Clearly,

IG(x) = gG(x) + fG(x). This means the number of orientable embeddings of G is∏
v∈G(dv − 1)!, while the number of non-orientable embeddings of G is

(2β(G) − 1)
∏

v∈G
(dv − 1)!.

2 The Total Embedding Distributions of Generalized Fan Graphs

A fan graph F(1,n) is defined as the graph K1 + Pn, where K1 is the empty graph on one
vertex and Pn is the path graph on n vertices. A fan-type graph Ft1,t2,...,tn is defined
as the graph K1 connecting t j edges to the vertex v j of Pn, t j ≥ 1, j = 1, 2, . . . , n.
A dipole graph Dn is a multigraph consisting of two vertices connected with n edges.
Figure 1 presents the graphs F(1,n), F2,2,...,2, and Dn.
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Figure 1: The graphs F(1,n), F2,2,...,2, and Dn

In this section, a special form of vertex-splitting of [4, 9] is generalized to the
ordinary case.
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Definition 2.1 Suppose the graph G = (V, E) is simple. Let u be a vertex of G of
valence deg(u) = d + 1 > 3 and v, v1, v2, . . . , vd be its neighbors. We denote the
edge uvi by ei , for i = 1, 2, . . . , d, and the edge uv by f . The graph Gi1,...,ik is called
a k-degree proper splitting of G at u if it can be obtained from G − u by adjoining
v, vi1 , . . . , vik to a new vertex x, adjoining all the other ex-neighbors of u to a new
vertex y (il ∈ {1, 2, . . . , k}, for l = 1, 2, . . . , k and d > k ≥ 1), and finally adjoining
x and y.

The new vertex x is (k+2)-valent for each Gi1,...,ik and the new vertex y is (d−k+1)-
valent. Let Λ be the set of all graphs Gi1,...,ik . Then the number of elements in Λ is(d

k

)
. It is obvious that each graph Gi1,...,ik has the same Betti number as that of G, and

they can contract the new edge xy to get the graph G. Figure 2 gives an example of a
2-degree proper splitting of G at u.
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Figure 2: The 2-degree proper splitting of G at u with a designate neighbor v

Theorem 2.2 (see [9]) Let G be a connected graph with a vertex of valence 4, and let
G j , j ∈ {1, 2, 3}, be graphs obtained by 1-degree properly splitting at vertex u. Then we
have

gG(x) =
1

2
[gG1 (x) + gG2 (x) + gG3 (x)].

Let G be a simple graph and T be a spanning tree of G such that all the edges
incident with u are edges of T, i.e., E(u) = {uv|v ∈ V (G)} ⊆ E(T) and (P, λ) is a
T-rotation system of G. Let Ti1,i2,...,ik be the spanning tree of Gi1,i2,...,ik such that all
the edges incident with x and y are edges of Ti1,i2,...,ik and the other edges of Ti1,i2,...,ik

are the same as the edges of T − E(u).
hbadness=1112 In order to extend the above operation on embedding graphs,

we denote the T-rotation system (P, λ) with the pure rotation system P at vertex u
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by u . ei1 ei2 · · · eid f , where i` ∈ {1, 2, . . . , d}, for ` = 1, 2, . . . , d and f is the edge
uv. Let (Pi1,i2,...,ik , λi1,i2,...,ik ) be the Ti1,i2,...,ik -rotation system of the graph Gi1,i2,...,ik

with rotations x . f ei1 · · · eik e and y . eeik+1 · · · eid , and all other vertex rotations as
in P, where e is the new edge in Gi1,i2,...,ik that connects the vertices x and y. Let
(Pid−k+1,...,id , λid−k+1,...,id ) be the Tid−k+1,...,id -rotation system of the graph Gid−k+1,...,id with
rotations x . f eeid−k+1 eid−k+2 · · · eid , y . eei1 · · · eid−k and all other vertex rotations as in
P.

Similarly, let (Pi j ,...,id,i1,...,i j+k−d−1 , λi j ,...,id,i1,...,i j+k−d−1 ) be the Ti j ,...,id,i1,...,i j+k−d−1 -
rotation system of Gi j ,...,id,i1,...,i j+k−d−1 for j = d − k + 2, . . . , d, with rotations
x . ei j · · · eid f ei1 · · · eik+ j−d−1 e and y . eeik+ j−d · · · ei j−1 and all other vertex rotations as
in P.

Definition 2.3 We say that the general rotation systems (Pi1,i2,...,ik , λi1,i2,...,ik ),
(Pid−k+1,...,id , λid−k+1,...,id ) and (Pi j ,...,id,i1,...,i j+k−d−1 , λi j ,...,id,i1,...,i j+k−d−1 ), for j = d − k +
2, . . . , d, are obtained by k-degree proper splitting the vertex u in the rotation sys-
tem (P, λ) with the designated neighbor v. We also say that the rotation system
(P, λ) is obtained by contracting the rotation system (Pi1,i2,...,ik , λi1,i2,...,ik ), (Pid−k+1,...,id ,
λid−k+1,...,id ) or (Pi j ,...,id,i1,...,i j+k−d−1 , λi j ,...,id,i1,...,i j+k−d−1 ), for j = d− k + 2, . . . , d, on the
edge e.

Let Φ
Ti1 ,i2 ,...,ik
Gi1 ,i2 ,...,ik

be the set of all Ti1,i2,...,ik -rotation systems of Gi1,i2,...,ik and ΦT
G be the

set of all T-rotation systems of G. Let

Φu =
⋃

i1,i2,...,ik

Φ
Ti1 ,i2 ,...,ik
Gi1 ,i2 ,...,ik

.

Theorem 2.4 Let G be a connected graph with a vertex of valence d + 1, d ≥ 3,
Gi1,i2,...,ik , i j ∈ {1, 2, . . . , d}, be a graph obtained by k-degree proper splitting at vertex
u, and let Λ be the set of all such graphs Gi1,i2,...,ik . Then we have

IG(x) =
1

k + 1

∑
Gi1 ,i2 ,...,ik

∈Λ

IGi1 ,i2 ,...,ik
(x).

Proof Suppose the designated neighbor is v and the T-rotation system (P, λ) with
the pure rotation system P at vertex u is u . ei1 ei2 · · · eid f , where i j ∈ {1, 2, . . . , d}, for
j = 1, 2, . . . , d and f is the edge uv. We make the following two assertions.

(i) It induces a (k + 1)-to-1 correspondence from the set of Φu to onto the set ΦT
G.

Moreover, every general rotation system of Φu is uniquely contractible on the

edge xy to a T-rotation system of Φ
Ti1 ,i2 ,...,ik
Gi1 ,i2 ,...,ik

.

(ii) It preserves the genus of the surface.

In regard to assertion (i), by the definition, the rotation system (P, λ) can be ob-
tained only by contracting the edge e in the rotation system (Pi1,i2,...,ik , λi1,i2,...,ik ),
(Pid−k+1,...,id , λid−k+1,...,id ) and (Pi j ,...,id,i1,...,i j+k−d−1 , λi j ,...,id,i1,...,i j+k−d−1 ) defined above, for
j = d− k + 2, . . . , d. Moreover, if (P, λ) can be obtained by contracting the edge e in
a rotation system (Pi1,i2,...,ik , λi1,i2,...,ik ), not only the rotations of all vertices, including
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the vertices x and y, but also the label of all cotree edges of Gi1,i2,...,ik are determined.
It is obvious that each of them is uniquely contractible on the edge e to the rotation
system (P, λ).

In regard to assertion (ii), we observe that a contraction operation decreases the
numbers of vertices and edges, each by 1, and preserves the number of faces. This
implies that the genus or crosscap number of the embedding surface is unchanged.

By the two assertions, the theorem follows.

In [22], Kwak and Shim calculated the embedding distribution of dipole Dn. Let
Let IDn (x) =

∑∞
i=−∞ gm(Dn)xi be total embedding-distribution polynomial of Dn.

They obtained the following result.

Theorem 2.5 (See [22]) If m ≥ 0, then gm(Dn) equals the coefficient of yn−2m

in î[Dn](y); otherwise gm(Dn) equals the coefficient of y−(n+m) in î[Dn](y), where
î[Dn](y) is as defined in [22].

Theorem 2.6 Let G be a graph obtained by replacing one vertex r of the dipole Dn

(with vertices r, u) by a tree R, so that G consists of R and n additional edges e1, e2, . . . , en

each joining some vertex of R to a vertex u. Then the total embedding-distribution
polynomial of G is a constant multiple of the total embedding-distribution polynomial
of Dn.

Proof To prove Theorem 2.6, take the spanning tree T = R ∪ e1. For any pure
rotation scheme P of G, let PR be the restriction of P to V (R) = V (G) − u. Thus,
PR describes the rotations of all edges (not just edges of R, but e1, e2, . . . , en as well)
at vertices of R. Let ΠR be the set of all possible PR. Now for each fixed Q ∈ ΠR the
total genus distribution of T-rotation schemes (P, λ) with PR = Q is just 1

(n−1)! IDn (x).
This is because the total genus distribution is the same as when we contract R down
to a single vertex r, preserving the relative positions of the edges e1, e2, . . . , en in the
course of contraction. The contraction does not change the surface at all. So we
get the distribution for e1-rotation schemes of Dn with the rotation around vertex r
fixed in a way that is prescribed by Q. However, by symmetry this is just 1

(n−1)! IDn (x).

Therefore IG(x) = |ΠR|
(n−1)! IDn (x).

By Theorem 2.6, the following two results easily follow.

Corollary 2.7 Let F1,n be the fan graph and Dn be the dipole graph. Then the total

embedding-distribution polynomial of the fan graph is given by IF1,n (x) = 2n−2

(n−1)! IDn (x).

Corollary 2.8 Let Ft1,t2,...,tn be the fan-type graph and Dn be the dipole graph. Then
there exists a constant C such that the total embedding-distribution polynomial of the
fan-type graph is given by IFt1 ,t2 ,...,tn

(x) = C · IDn (x).

An even more general result of Theorem 2.6 can be obtained as follows. The proof
is just a generalization of the proof of Theorem 2.6.

Theorem 2.9 Let H be a graph with a vertex r such that (Aut H)r, the stabilizer of
r in Aut H, acts as the symmetric group on the edges incident with r. Let G be a graph
obtained by replacing r by a tree R, so that each edge ur of H is replaced by an edge uv for

https://doi.org/10.4153/CMB-2011-176-6 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2011-176-6


270 Y. Chen, T. Mansour, and Q. Zou

some v ∈ V (R). Then the total embedding-distribution polynomial of G is a constant
multiple of the total embedding-distribution polynomial of H.

3 Conclusions and further problems

J. Gross [1, 12]conjectured that the genus distribution is strongly unimodal. Stahl
[34] posed a stronger conjecture which states that the zeros of genus polynomial are
real. Some counter examples were later presented in [3, 6], thus disproving Stahl’s
conjecture. However, Gross’s conjecture is still open. So far, none of the cross-
cap number distributions of those mentioned classes of graphs have proved to be
strongly unimodal. Thus, checking the crosscap number distribution of a graph G
to be strongly unimodal is a possible task. Unanswered questions include: Are the
crosscap number distributions of the necklaces, the closed-end ladders Ln, cobble-
stone path and fan-type graphs strongly unimodal?

Acknowledgements The authors thanks referees for their helpful comments which
improved a result in a former version of the paper.
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