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We investigate the energy transfer from the mean profile to velocity fluctuations in channel
flow by calculating nonlinear optimal disturbances, i.e. the initial condition of a given finite
energy that achieves the highest possible energy growth during a given fixed time horizon.
It is found that for a large range of time horizons and initial disturbance energies, the
nonlinear optimal exhibits streak spacing and amplitude consistent with direct numerical
simulation (DNS) at least at Reτ = 180, which suggests that they isolate the relevant
physical mechanisms that sustain turbulence. Moreover, the time horizon necessary for
a nonlinear disturbance to outperform a linear optimal is consistent with previous DNS-
based estimates using eddy turnover time, which offers a new perspective on how some
turbulent time scales are determined.
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1. Introduction
When trying to understand how turbulence is sustained in shear flow, an essential part of
the picture is the transfer of energy from the mean profile to the fluctuations. To shed light
on this, a popular approach has been to linearise the Navier–Stokes equations around the
mean profile and to study the growth of linear optimal disturbances on top of this mean.
Some aspects of the dynamics observed in fully developed turbulence can be explained
in this way, for example, streak formation along with the correct streak spacing (Butler &
Farrell 1993), as well as streak breakdown (Schoppa & Hussain 2002; Hoepffner, Brandt
& Henningson 2005; Cassinelli et al. 2017).

This energy transfer is usually understood as a self-sustaining process (Kim, Kline
& Reynolds 1971; Jiménez & Moin 1991; Hamilton, Kim & Waleffe 1995; Waleffe
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1997; Jiménez & Pinelli 1999; Farrell & Ioannou 2012). The current prevailing picture
is that of a two-stage linear process (Schoppa & Hussain 2002; Lozano-Durán et al.
2021; Markeviciute & Kerswell 2024). In a primary linear process, streaks form and
grow due to transient growth. If one subsequently changes the decomposition so as to
include these streaks in the base profile, a secondary linear process can describe how
secondary disturbances grow on top of this streaky field (again fuelled by transient
growth), ultimately causing the streaks to break down and restarting the cycle (Hamilton
et al. 1995; Schoppa & Hussain 2002; Hoepffner et al. 2005; Lozano-Durán et al. 2021).

Even though breaking this process down into linear subprocesses offers great practical
advantages associated with the simplicity of linear theories in general, it also introduces a
number of questions that are difficult to answer in a self-contained manner. For example,
it remains unclear how to choose the correct streak amplitude for the secondary linear
process without appealing to direct numerical simulation (DNS) results (Markeviciute &
Kerswell 2024).

A natural generalisation, which also helps address these challenges, is to consider
the full nonlinear optimisation problem. Thanks to the presence of the nonlinear term,
the primary and secondary linear processes can be coupled together, thus eliminating the
need for formulating a two-stage process. Of course, it is unclear a priori if the nonlinear
optimal actually involves such a two-stage process, or if completely different dynamics is
more effective. More generally, the central question to be addressed in this work is which
aspects of the nonlinear optimal resemble the dynamics of real turbulence.

The motivation for studying this problem is twofold. First, a better understanding of how
turbulence is sustained could inform modelling and flow control tasks. Second, Malkus
(1956) formulated the seminal idea that the mean profile actually observed in practice is
in some way optimal in its ability to sustain turbulence (in concrete terms, he asserted
that the mean profile should be marginally stable in a statistical sense). Using the methods
available at the time, he focused on long-term (linear) stability rather than short-term
transient energy growth as the main mechanism responsible for maintaining turbulence
and ultimately failed (e.g. Reynolds & Tiederman 1967) to formulate a suitable definition
of optimality. However, the general notion is still appealing today and we hope that the
present study could contribute to a discussion about reviving this idea.

Attempts to understand turbulence by linearising around a suitable base flow have
been around for a long time (Malkus 1956; Reynolds & Tiederman 1967). However, it
was not until Farrell (1988) that transient growth was popularised as an important linear
mechanism for describing energy transfer from the mean profile to the fluctuations. In
a seminal work, Schoppa & Hussain (2002) furthermore showed that when linearising
around a streaky base flow, it is again transient growth that can best describe energy
transfer from the streaky mean field to the disturbances, thus giving rise to the two-step
picture described previously. Whereas the primary linear process is fairly well-understood,
much debate has surrounded the question of which linear process can best describe the
secondary process (Waleffe 1997; Reddy et al. 1998; Schoppa & Hussain 2002; Hoepffner
et al. 2005; Farrell & Ioannou 2012). Recently, however, in an extensive cause-and-effect
study, Lozano-Durán et al. (2021) were able to confirm Schoppa & Hussain’s (2002)
assertion that transient growth is more important than other proposed mechanisms such
as linear instability or parametric instability, at least at the relatively low Reynolds number
of Reτ = 180.

By comparison, the nonlinear optimisation problem has received much less attention.
For one, nonlinear optimisation relying on solving the full three-dimensional Navier–
Stokes equations only became computationally feasible during the 2010s (Pringle &
Kerswell 2010; Cherubini et al. 2010, 2011; Monokrousos et al. 2011; Pringle, Willis &
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Kerswell 2012; Farano et al. 2016). However, even today, the computational effort remains
high, leading to relatively few works applying nonlinear optimisation to the turbulent
setting (Cherubini & De Palma 2013; Farano et al. 2015, 2017). Notably, however, these
works employ a different formulation than used here, rendering these works unsuitable to
answer the questions with which we are presently concerned. This is discussed in greater
detail in § 2.

Including the nonlinear term in the optimisation problem can lead to fundamentally
different optimals. Whereas linear optimals are global in structure and only include a single
streamwise and spanwise wave number mode, nonlinear optimals combine multiple wave
numbers and, under some circumstances, can be highly localised in space. Moreover, they
can achieve much higher growth than linear optimals, often by coupling together multiple
linear mechanisms (Pringle et al. 2012; Kerswell 2018). An important point to note is that
unlike in the transition problem, the disturbances relevant to the turbulent problem are not
necessarily small, which makes it more difficult to justify dropping the nonlinear term.
Even though, as discussed by Lozano-Durán et al. (2021), there are still good reasons to
consider linear theories, it does imply that the evolution of the linear optimal is in practice
influenced by the nonlinear term, which, at high energies, may actually limit the gains it
can produce. As a result, nonlinear optimals are likely more practically relevant, while at
the same time also offering deeper insights into the relevant dynamics of turbulence.

This paper is organised as follows: in § 2, we discuss the problem formulation on a
theoretical level and § 3 describes the numerical implementation. Results are shown and
discussed in § 4, and § 5 concludes.

2. Problem formulation
In the present work, we consider the same problem as Lozano-Durán et al. (2021), i.e.
incompressible Newtonian channel flow at friction Reynolds number Reτ = uτ h/ν = 180,
where uτ is the wall friction velocity, h the channel half-height and ν the kinematic
viscosity. The problem is governed by the Navier–Stokes equations

N := ∂u
∂t

+ u · ∇u + ∇ p + f − 1
Reτ

∇2u = 0, (2.1)

M := ∇ · u = 0, (2.2)

where u and p are the dimensionless flow velocity and pressure, respectively, and f is
an external volume forcing term, the reasons for including which will become apparent
later. The coordinate system is oriented such that x points in the streamwise direction, y
in the wall-normal direction and z in the spanwise direction. We decompose velocity and
pressure into a base and a disturbance part,

u = U + ũ, p = P + p̃, (2.3)

where capital letters denote the base and tilde denotes the disturbance fields. In this study,
the base is obtained by temporal averaging an a priori DNS run. Since it is calculated
in advance, U can be thought of as a fixed parameter entering the problem. In the
following, we set −∇P = x̂, with x̂ denoting the unit vector in the x-direction. Note
that the streamwise-spanwise (but not temporal) average of ũ, which we denote 〈ũ〉xz ,
is allowed to be non-zero. Here, angular brackets denote averaging across the directions in
the index, so, for example,

〈ũ〉t xz = 1
T Lx Lz

∫ T

0

∫ Lx

0

∫ Lz

0
ũ dz dz dt. (2.4)
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This ensures consistency because ũ is able to change the streamwise-spanwise averaged
velocity 〈u〉xz as the disturbance grows on the short time scales in which we are presently
interested, even though U remains fixed. However, in the limit of very long time horizons,
the temporal average 〈ũ〉t vanishes. Inserting (2.3) into (2.1) and (2.2) yields

N := ∂U
∂t

+ U · ∇U − x̂ + f − 1
Reτ

∇2U

+ ∂ ũ
∂t

+ U · ∇ũ + ũ · ∇U + ũ · ∇ũ + ∇ p̃ − 1
Reτ

∇2ũ = 0, (2.5)

M := ∇ · U + ∇ · ũ = 0. (2.6)
We now set

f = x̂ + 1
Reτ

∇2U . (2.7)

Physically, this forcing term represents the background turbulence fluctuations
maintaining U . It is important to note that these background fluctuations are separate from
the disturbances ũ in our present model. This point is further discussed later. Together with
∂U/∂t = 0 due to statistical stationarity and U · ∇U = ∇ · U = 0 in channel flow, this
yields an equation system for the disturbances which reads

Ñ := ∂ ũ
∂t

+ U · ∇ũ + ũ · ∇U + ũ · ∇ũ + ∇ p̃ − 1
Reτ

∇2ũ = 0, (2.8)

M̃ := ∇ · ũ = 0. (2.9)

For a given base profile U , time horizon T and initial condition ũ(x, 0), (2.9) and (2.8)
can be integrated forward in time to yield ũ(x, T ) and, in particular, the final disturbance
energy eT := 1/(2V )

∫∫∫
V

∣∣ũ(x, T )
∣∣2 dV . Normalising eT by the initial energy e0 yields

the energy gain G := eT /e0. By further fixing the initial energy e0, one can ask which
initial condition ũ(x, 0) experiences the highest energy gain G by the end of the time
horizon T . This question naturally leads to an optimisation problem which has been
studied extensively in previous works (Pringle & Kerswell 2010; Cherubini et al. 2010,
2011; Monokrousos et al. 2011; Cherubini & De Palma 2013; Farano et al. 2017), and
which can be solved using adjoint looping. Details of the solution algorithm are given
in § 3. In this study, only (2.8) and (2.9) are actually solved numerically. The base
velocity is imposed to be the time-averaged mean profile obtained from a previous DNS
(Markeviciute & Kerswell 2024).

As mentioned previously, 〈ũ〉xz can be non-zero and, as a consequence, 〈u〉xz = U +
〈ũ〉xz �= U . Thus, it might appear like the initial disturbance ũ(x, 0) is free to adjust
〈u(x, 0)〉xz to any arbitrary profile, in particular one that might be more suitable for
generating disturbance energy growth than U . However, the initial energies considered
here are � 0.02 % of the base energy (except for one run at 0.04 % in § 4.3) and so this is
not an issue.

The formulation given by (2.8) and (2.9) is intended to be the simplest possible nonlinear
model that could be used to investigate disturbance growth in turbulent flows. We note that
in the literature, an alternative formulation exist (e.g. Farano et al. 2017), which differs
from our work in that no background turbulence fluctuations are presumed. This, in turn,
implies a feedback mechanism. Since in that model, the disturbances are responsible for
maintaining the base flow U , they are constrained to be of an order of magnitude that
would be necessary for maintaining the mean flow in a DNS. For the questions to be
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investigated in the present work, this constrained behaviour of the disturbances would not
make sense, as we are interested in how the disturbances grow on top of the base profile,
drawing energy only from it.

Some authors considering the linear optimisation problem (Reynolds & Hussain 1972;
Pujals et al. 2009; Cossu & Hwang 2017) have advocated for including an eddy viscosity
in the momentum equation for the disturbances, i.e. (2.8). This introduces an ad hoc
assumption that the eddy viscosity felt by the mean profile is also the same as would be
felt by the fluctuations. To keep the model as simple as possible, we decide not to include
an eddy viscosity in this study, though its effect could be an interesting topic for future
work.

To formulate the optimisation algorithm, we follow Kerswell (2018) and consider the
Lagrangian

L=
∫∫∫

V

1
2

∣∣ũ(x, T )
∣∣2 dV + λ

⎡
⎣

∫∫∫

V

1
2

∣∣ũ(x, 0)
∣∣2 dV − e0

⎤
⎦

+
∫ T

0

∫∫∫

V

ṽ(x, t) · Ñ dV dt +
∫ T

0

∫∫∫

V

q̃(x, t)M̃dV dt, (2.10)

where λ, ṽ and q̃ are Lagrange multipliers. Setting the first variation of L to zero leads,
after some algebra, to the further conditions for the Lagrange multiplier fields that

ũ(x, T ) + ṽ(x, T ) = 0, (2.11)

∂ ṽ

∂t
+ (U + ũ) · ∇ṽ − ṽ · (∇(U + ũ))ᵀ + ∇q̃ + 1

Reτ

∇2ṽ = 0, (2.12)

∇ · ṽ = 0, (2.13)

provided that the boundary conditions for ṽ are the same as for ũ. Furthermore,

δL

δũ(x, 0)
= λũ(x, 0) − ṽ(x, 0) = 0. (2.14)

Note that (2.12) and (2.13) form the adjoint Navier–Stokes equations, and the Lagrange
multipliers ṽ and q̃ can be interpreted as adjoint velocity and pressure (divided by the
density), respectively. This set of equations naturally gives rise to a looping algorithm to
obtain the optimal initial condition ũopt (x, 0) that generates the highest energy gain G at
the end of the time horizon T . First, make an initial guess for ũopt (x, 0), which we call
ũ(x, 0), and evolve it forward in time using the Navier–Stokes equations (2.9) and (2.8)
until time t = T . Second, obtain the initial condition for the adjoint system ṽ(x, T )

using (2.11), and integrate (2.12) and (2.13) backward in time from t = T to t = 0. Third,
now that the final value of the adjoint variable ṽ(x, 0) is known, calculate δL/δũ(x, 0)

using (2.14) and use this gradient to improve the current guess ũ(x, 0). Repeat this loop
until some convergence criterion is reached. More technical details of this algorithm are
discussed in § 3.

3. Computational method
A special-purpose solver has been implemented in the programming language Python
to integrate (2.9) and (2.8) forward in time, and to integrate the adjoint system (2.13)
and (2.12) backward in time. This solver uses the library JAX (Bradbury et al.
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2018), which makes the code fully differentiable (although this is not used much in
the present work) and provides GPU acceleration, thus delivering a crucial speed-up
and making the investigation feasible. The source code of the solver is available at
https://github.com/dakling/jax-spectral-dns.

Following Kim, Moin & Moser (1987) and Lluesma-Rodríguez et al. (2021), a velocity-
vorticity formulation is employed. Spatial directions are discretised using a pseudospectral
method, with Fourier modes in periodic directions and Chebyshev modes in the wall-
normal direction. A third-order Runge–Kutta method derived by Spalart, Moser & Rogers
(1991) is used for time discretisation. De-aliasing using the 3/2-rule (Orszag & Patterson
1972) is done in the Fourier directions (but not in Chebyshev directions for performance
reasons), though this is probably unnecessary at the employed resolution. The nonlinear
terms are formulated in skew-symmetric form for increased numerical stability (Gibson
2014).

As is further discussed in Appendix A.2, we choose a computational domain size of π ×
2 × π , which is bigger than the minimal channel unit (0.6π × 2 × 0.3π at the considered
Reynolds number) but still small enough to keep the numerical effort reasonably low
(Jiménez & Moin 1991). This domain size should be enough to observe some localisation
of the nonlinear optimal. Following Kim et al. (1987), the domain is discretised using
a resolution of at least 48 × 129 × 80, which corresponds to �x+ ≈ 11.8, �y+

max ≈ 4.2
and �z+ ≈ 7.1, though some calculations were done using a higher resolution to ensure
that it does not make a difference. To make full use of JAX’s GPU acceleration, the
time step size should be set a priori, as JAX is better able to optimise loops of fixed
size compared with loops of variable size. Taking into account the base velocity and the
expected magnitude of the disturbances (which is either roughly known from the previous
looping iteration or can be estimated depending on the nature of the initial guess), the
time step is chosen such that the Courant–Friedrichs–Lewy number (CFL) is kept below
0.6 with a safety factor of 0.9. Since the time stepping algorithm has been reported to
be stable up to CFL = 0.7 (Lluesma-Rodríguez et al. 2021), this choice is conservative,
and indeed no issues with time stepping instabilities occurred with this setting. Thanks to
the GPU acceleration provided by JAX, the duration of a single DNS forward run is of
the order of a few minutes (compared with a few hours when running on a single CPU),
rendering the looping approach computationally feasible.

More important than runtime, a major limiting factor for the present looping algorithm
is memory. Note that (2.12) contains ũ, i.e. the full velocity space–time history of the
forward run. Depending on the details of the set-up, in our present investigation, the size
of this variable is of the order of magnitude between 10 and 100 GB, which, given that
this is just a single variable, would cause out-of-memory issues on GPUs for all but
the smallest cases considered here if it needed to be saved entirely. However, memory
can be traded for runtime efficiency by employing a strategy known as checkpointing
(Berggren 1998; Griewank & Walther 2000; Hinze, Walther & Sternberg 2005). The idea
is that rather than storing the entire history of the forward run, only some snapshots,
or checkpoints, of the forward calculation are saved, serving as initial conditions for
recomputing intervals as needed during the adjoint calculation. The strategy employed
in this work is fairly simple: snapshots are saved at equally spaced time intervals.
The number of time intervals is chosen such that the number of snapshots is roughly
equal to the number of time steps between two snapshots. This reduces the memory
requirements from N to 2

√
N , where N characterises the size of the space–time history

of the velocity field, while increasing the runtime of the adjoint calculation by a factor of
two.
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The effectiveness and efficiency of the looping approach crucially depends on the
employed gradient-based optimisation algorithm. In the present work, we follow Cherubini
et al. (2011) and use a conjugate gradient method, although we determine the step
size adaptively using a two-way backtracking line search (Truong & Nguyen 2020).
This line search is similar to a regular backtracking line search, but the step size from
the last iteration is used as an initial guess for the new step size, thus reducing the
number of necessary function evaluations (which are quite expensive as they involve
the forward run of the DNS). If the step size is found to be sufficiently small, it is
also periodically tested if the step size can be increased, which is not necessary in
classical backtracking line search. Note that the formula for the gradient (2.14) contains
the Lagrange multiplier λ, which ensures that the initial energy constraint is fulfilled.
Its appropriate value depends on the step size and direction taken, so the gradient
itself depends on the parameters of the conjugate descent and must be recomputed
appropriately. For a given set of descent parameters, λ is then obtained using a standard
Newton method. To ensure that numerical issues with determining λ can never lead to a
violation of the initial energy constraint, the resulting initial condition is also appropriately
rescaled after each optimisation iteration. The algorithm is documented in detail in
Appendix A.3.

Another critical question concerns constructing an appropriate initial guess.
Inconveniently, for many of the parameters considered here, it appears that the linear
optimal remains a local optimum, so that it (or slightly perturbed versions of it) are
unsuitable as an initial guess. Instead, in this work, we rely on introducing randomness
by running the optimisation loop with a deliberately large step size, effectively forcing the
algorithm to sample the space of flow fields in a chaotic manner. Another strategy is to
use a random snapshot from a DNS as an initial condition. Generally, it should be noted
that even though nonlinear optimals outperform linear ones even for relatively short time
horizons and low initial energies, to find them initially, longer time horizons and higher
initial energies are usually necessary. Once an initial condition that gives rise to a nonlinear
optimal is found, this resulting nonlinear optimal can in turn also be used as an initial
condition for calculations with different parameters. Most of the parameter combinations –
including all on which we focus the following discussion – were also rerun from different
initial conditions to ensure that the same optimal was reached, although, since this is a
nonlinear optimisation problem, there is no rigorous way to ensure that a global optimum
has indeed been found. Nevertheless, the conclusions made in the following are quite
robust to changes in the computational set-up, including the domain size, as is further
discussed in Appendix A.2.

Since the code written for this study supports automatic differentiation, it would also be
possible to obtain the necessary gradient information without solving the adjoint system.
However, it has been found that using the classical adjoint-based approach performs better
than automatic differentiation, both in terms of memory and runtime. In particular, the
ability to more easily control the trade-off between memory usage and runtime through
checkpointing makes the adjoint approach preferable since we are currently already close
to the limits of available GPU-memory on an NVIDIA A100 card with 40 GB memory.
Moreover, the gradients obtained from the adjoint method are fairly smooth, whereas in
gradients obtained from automatic differentiation, the discretisation error manifests itself
in the form of noise, so that some processing of these gradients would likely be necessary.
Automatic differentiation does have the advantage of requiring less development time and
thus being more readily applied to new problems, so that this feature will likely be valuable
in future studies.
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4. Results
As discussed in § 2, the main parameters are the time horizon T and the initial disturbance
energy e0. Unlike in the transition problem, it is not useful to look at very large time
horizons, as the time scale on which disturbances can grow is constrained by large-scale
disruptive turbulent events. This argument has been used by Butler & Farrell (1993) to
determine the time scale for linear optimal growth, and the general idea also applies to
the nonlinear case. From previous investigations (Lozano-Durán et al. 2021; Markeviciute
& Kerswell 2024), we can estimate that the primary and the secondary linear processes
both operate on a time scale of approximately tp = ts = 0.35h/uτ and that bursting events
are roughly tburst = 4h/uτ apart. This motivates an initial focus on the time horizon
T = 0.7h/uτ = 2tp, as this would be enough to see both the primary and the secondary
linear process. This is addressed in § 4.1. To get a deeper understanding of the role of this
parameter, we additionally study times tp, 1.5tp, 3tp, 4tp, 6tp and 8tp in § 4.2.

For any T , as e0 → 0, the linear optimisation problem is recovered. Consequently, for
small e0, a quasilinear optimal, which closely resembles the linear optimal, is obtained.
The linear optimal’s distinguishing property is that it consists of only a single wave
number mode. This is because interactions between different wave number modes would
require nonlinear effects, in the absence of which the optimisation algorithm simply picks
the wave number mode with the highest energy gain for the given time horizon. The
quasilinear optimal is the weakly nonlinear extension of the linear optimal. Since it is finite
amplitude, nonlinear coupling between modes exists but is too weak to make much of a
difference compared with the linear optimal. As e0 increases, there comes a point where
a structurally completely different nonlinear optimal arises. For large e0, the final state of
the disturbances may be well in the turbulent regime, which, in the current formulation,
usually causes the optimisation algorithm to fail, as the final state dependency on the
initial condition is too sensitive and chaotic for the optimisation problem to remain well
conditioned. The precise determination of this boundary is difficult and not very important
to the present study, but values up to e0/E0 = 10−4 were found to converge without issues
even for the longest time horizons considered here, where E0 denotes the energy of the
base flow. Naturally, we are most interested in nonlinear optimals whose initial energy is
below this value.

4.1. Optimal disturbances at T = 0.7h/uτ

In this subsection, we consider the time horizon T = 0.7h/uτ . The optimal gain that can
be achieved as a function of initial energy e0 is plotted in figure 1.

It is apparent that at e0/E0 = 2 × 10−5, a first nonlinear optimal emerges. As the
initial energy increases further, this optimal becomes increasingly more efficient, until
the highest gain among all e0 is found at e0/E0 = 7.2 × 10−5. As e0/E0 is increased
beyond this value, saturation seems to set in and the achieved gains slowly diminish
until around e0/E0 = 2 × 10−4, where the optimisation problem starts becoming ill-
conditioned. Interestingly, the difference between the highest nonlinear optimal gain
(34.82) and the linear gain (28.48) is not very high at this T . However, the long-term
evolution (obtained by solving (2.8) and (2.9) with an optimal disturbance as the initial
condition, but for tfinal 	 T ) reveals a major difference: whereas the gain G(t) = e(t)/e0 =
1/(2V )

∫∫∫
V

∣∣ũ(x, t)
∣∣2 dV/e0 of the linear optimal tends to reach its peak gain at or close to

t = T , the nonlinear optimals keep growing significantly, often almost by another order of
magnitude (see figure 2). This continued growth seems to be a consequence of localisation,
i.e. it is mainly due to the disturbance further spreading out in space rather than it growing
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Figure 1. Optimal gain over initial energy normalised by the energy of the base flow E0. Note the truncated
vertical axis. Plots of the initial condition of the streamwise disturbance velocity for some of the optimals are
also included. For more details on these and their time evolution, please refer to figures 3 and 5.

in amplitude. The fact that a decay is observed for long times ensures that the long-term
temporal average 〈ũ〉t vanishes.

Next, we study the structure of the observed optimals to better assess their relevance in
fully developed turbulence, starting with the linear optimal. Its time evolution is shown in
figure 3. As is expected for a linear optimal, only a single wave number mode – in this case,
[kx , kz] = [0, 8] – is present, with the energy of all other modes combined only making
up approximately 10−10 times the total energy. This wave number mode grows due to the
well-documented transient growth mechanism based on non-normal interaction of modes.
Here, kx = 2π/λx , where λx stands for the x-wavelength, and kz is defined analogously.
Note that the streak spacing does not match what one would observe in real turbulence.
This is expected, however, because, following the argument of Butler & Farrell (1993), the
considered time horizon is unrealistically long (by a factor of two) for the primary linear
process alone.

Moving to finite but small values for e0/E0, at 10−6 and up to 10−5, a quasilinear
optimal is found. Its velocity time evolution (not shown) closely resembles the linear
optimal (figure 3), though the effects of the nonlinear term are visible in the combined
energy of the non-dominant wave modes, which grows from approximately 3 × 10−4 to
2.6 × 10−3 times the total energy. This becomes apparent in the spectral decomposition of
the streamwise velocity shown in figure 4.

Optimal gain is achieved by the nonlinear optimal with initial energy e0/E0 = 7.2 ×
10−5, and its time evolution is shown in figures 5 and 6. It is apparent that the shape
of the initial condition is completely different from the linear optimal. Most notably, no
streaks are present, and the disturbance is concentrated, or localised, in specific parts of
the domain. This localisation is most clear in the spanwise direction, as there is no full
localisation in the streamwise direction (see figure 6). Instead, in the streamwise direction,
there seems to be a length scale between the two distinct peaks of the disturbance. Indeed,
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Figure 2. Long-term evolution (tfinaluτ/h = 60) of the energy gain G of the quasilinear optimal (e0/E0 =
10−6, T uτ/h = 0.7, blue line), the nonlinear optimal (e0/E0 = 7.2 × 10−5, T uτ/h = 0.7, orange line), as well
as the nonlinear optimal (e0/E0 = 1 × 10−4, T uτ/h = 2.8, green line). Vertical dashed lines indicate tuτ/h =
0.7 and tuτ/h = 2.8, respectively. Snapshots of the streamwise disturbance velocity are shown for the (e0/E0 =
7.2 × 10−5, T uτ/h = 0.7)-optimal (orange line).
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Figure 3. Streamwise velocity evolution (tuτ/h = 0, 0.35, 0.7) of the linear optimal for T uτ/h = 0.7.
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1015 A50-10

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
39

6 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10396


Journal of Fluid Mechanics

1

0y

–1

1

0

–1

1

0

–1

0 1 2

z
3

1

0

–1

2.5

0

–2.5

5

0
ũx
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Figure 6. Streamwise velocity evolution (tuτ/h = 0, 0.35, 0.7) of the nonlinear optimal (e0/E0 = 7.2 × 10−5)
for T uτ/h = 0.7 plotted in the x–y plane.

when moving to a box twice as large in the streamwise direction (i.e. 2π × 2 × π), four
such peaks can be identified (see Appendix A.2). It is unclear how this length scale is
determined, but we may speculate that it is the most efficient spacing to quickly generate
continuous streaks. This may also be related to the size of the minimal channel unit,
which is roughly half of the current domain in the streamwise direction. Therefore, it
is possible that the current structure could be thought of as two minimal channel optimals
stitched together in the streamwise direction. Localisation is also visible in the wall-normal
direction, with the initial disturbance concentrated close to the wall where the base shear is
high. The fact that the entire disturbance is concentrated on one side and not symmetrical
can also be explained with localisation. This is in contrast to the linear optimal, for which
both the symmetrical and the one-sided versions yield the same gain, though we only
show the one-sided version here. Localisation is a well-known phenomenon for nonlinear
optimals (Kerswell 2018) and can be rationalised by the optimisation algorithm trying to
accommodate the initial energy constraint: instead of distributing the disturbance energy
evenly, it may make more sense to have high-amplitude disturbances strategically placed in
some small areas and then rely on nonlinear mechanisms to spread out these disturbances
over time.

The early part of the evolution is characterised by an absence of streaks (see figure 9a),
and instead we observe tilted flow structures oriented such that they are amplified by an
Orr-type mechanism (this is most clearly observed in figure 8). Following this initial phase,
these disturbances quickly organise into streaks (see figures 6b, 7b and 9b). Note that the
streaks that have formed at this point do exhibit correct streak spacing and amplitude (see
figure 5b and the discussion in § 4.2). Unlike the streaks of the linear optimal, the low-
speed streaks do not remain straight as they evolve, but meander and wrap around the
high-speed streaks, as is revealed by figure 7. Subsequently, these streaks grow due to
the lift-up mechanism, and although no clear streak breakdown can be observed, it is clear
from figure 10 that second-order disturbances grow on top of the streaks towards the end of
the considered time window (from time (iii) onwards). Thus, it can be concluded that the
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Figure 7. Streamwise velocity evolution (tuτ/h = 0, 0.35, 0.7) of the nonlinear optimal (e0/E0 = 7.2 × 10−5)
for T uτ/h = 0.7. Yellow isocontours indicate 60 % of the maximum value and blue isocontours 60 % of the
minimum value.
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Figure 8. Early part of the streamwise velocity evolution (tuτ/h = 0, 0.35, 0.7) of the nonlinear optimal
(e0/E0 = 7.2 × 10−5) for T uτ/h = 0.7 plotted in the x–y plane.
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Figure 9. Streamwise spectrum of the streamwise velocity at times tuτ/h = 0, 0.35, 0.7 of the nonlinear
optimal (e0/E0 = 7 × 10−5) for T uτ/h = 0.7. Compared with figure 4, the spectral dynamics are much more
complicated, with streaks (kx = 0) not being dominant initially, but then containing most of the energy later.

primary and, although not as pronounced, the secondary linear processes are both visible
in the nonlinear optimum, though the way that they are coupled together by the nonlinear
term means that there is significant temporal overlap. This serves as a reminder that
characterising them as neatly separated subprocesses constitutes a major simplification.
Moreover, the streak growth itself is clearly not exclusively fuelled by transient growth
(although this likely plays a significant role), as can be most clearly observed by the
temporal evolution of the high-frequency modes (kx � 6) between the times (i) and (ii)
shown in figure 10. After an initial growth up to the time marked by vertical line (i), these
modes start decaying, indicating that they transfer energy to the streaks.

Interestingly, the main features remain remarkably stable throughout the nonlinear
regime. Comparing the optimal at e0/E0 = 3 × 10−5 with that at e0/E0 = 10−4 (figure 11)
reveals that only the localisation in the spanwise direction diminishes for higher energies
(as one would expect), but apart from this, the dynamics, including time scales and streak
spacing, is comparable. In particular, the minimum and maximum values of the streamwise
velocity disturbances are very similar, so it can be concluded that the additional initial
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Figure 10. Streamwise velocity amplitudes of x-wave number modes over time for different localised nonlinear
optimals, (a) e0/E0 = 3 × 10−5, (b) e0/E0 = 7.2 × 10−5 and (c) e0/E0 = 10−4, all for T uτ/h = 0.7. Shown are
wave numbers kx = 0, i.e. the streaks (blue); kx = 2 (orange); kx = 4 (green); kx = 6 (red) and kx = 8 (purple).
Despite the different initial disturbance energies, all exhibit a rapid early growth up to time (I), then a decay of
the kx � 6-modes until around time (II) and a final growth of these higher-order modes after time (III).

energy available for the e0/E0 = 10−4 case only serves to reduce localisation, rather than
amplify the magnitude of the disturbance. The similarity of the underlying dynamics is
also confirmed by the wave number plot shown in figure 10 and further discussed in § 4.2.

4.2. Exploring time-energy parameter space
It is clear that not any arbitrary parameter combination of T and e0 will give rise to
optimals that distil the relevant dynamics of fully developed turbulence. Although rough
estimates for the time and energy scales can be made based on scaling arguments as
discussed in § 4.1, it is important to understand how the shape and dynamics of the
optimals change in (T ,e0)-space. In particular, we would like to investigate how sensitive
the dynamics is to changes in T and e0. Figure 12 shows the different regimes that can be
identified between T = 0.35h/uτ and T = 2.8h/uτ , with the initial energy chosen small
enough to result in an end state that is not too chaotic for the optimisation to converge.
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is redundant in this plot, but allows establishing connections to figures 16, 17(a) and 17(b).

The gain achieved by each optimal is also shown, with values between the points obtained
by interpolation. For small e0, the quasilinear regime is found, which we here identify by
the most energetic wave number mode of the initial optimal disturbance containing most
(more than 90 %, though the exact value does not matter much as long as it is high) of the
total energy. The boundary to the nonlinear regime has not been precisely resolved for all T
(unlike in the transition problem, this area is not of primary interest here). It is interesting
to note, however, that at T � tp, the quasilinear optimal found at low e0 produces higher
gains than optimals found at higher e0. This trend is reversed for larger T , which implies
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Figure 13. Streamwise velocity evolution (tuτ/h = 0, 1.4, 2.8) of the optimal for T uτ/h = 2.8 and
e0/E0 = 3 × 10−5.
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Figure 14. Energy over time of the optimal for the nonlinear localised optimal at T uτ/h = 1.4 (blue) compared
with the nonlinear non-localised optimals at T uτ/h = 2.1 (orange) and T uτ/h = 2.8 (green), all at e0/E0 =
3 × 10−5. It is apparent that much of the energy growth of the non-localised optimals happens late, which
explains why they are not observed for short time horizons.

that the primary growth time scale tp can also be thought of as the largest time horizon for
which the (quasi-) linear optimal outperforms the nonlinear one.

At large time horizons but small initial energies, a completely new nonlinear optimal
structure emerges (figure 13). Interestingly, this structure is not localised but global, and,
as can be seen in figure 14, much of the energy growth happens in the final part of the
calculation, which explains why this structure is not optimal when considering shorter time
scales. We distinguish this regime from the nonlinear localised regime by checking that
the lowest quarter of wave number modes of the initial optimal disturbance contain almost
all (>99.999 %) of its energy. However, as is apparent visually and will be discussed in
more detail later, the dynamics of how these optimals evolve bears no resemblance to
fully developed turbulence, which confirms the expectation discussed at the beginning of
§ 4 that in a real flow, optimals have to evolve on much shorter time scales. Thus, we
can conclude that time scales between approximately T = 0.7h/uτ and T = 2.1h/uτ , and
initial energy roughly between e0/E0 = 3 × 10−5 and e0/E0 = 10−4 give rise to nonlinear
optimals whose dynamics shares distinctive features with fully developed turbulence.

Qualitative visual inspection hints at a remarkable uniformity of all cases in the
nonlinear localised regime. For example, comparing the nonlinear optimal at T = 0.7h/uτ

and e0/E0 = 7.2 × 10−5 (figure 5) with that found at T = 2.1h/uτ and e0/E0 = 10−4

(figure 15), even though the localisation is a bit diminished in the latter one due to the
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Figure 15. Early part of the streamwise velocity evolution (tuτ/h = 0, 0.35, 0.7 for comparison with figure 5)
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Figure 16. Infinity norm for each case in figure 12 with colours indicating e0 (see figure 12). Crosses indicate
the quasilinear regime, squares the nonlinear non-localised regime and circles the nonlinear localised regime.
Despite different initial disturbance energies, all optimals of the nonlinear localised regime exhibit infinity
norms in a very narrow range, which is not true for the optimals of the other regimes.

less restrictive initial energy, the general dynamics as well as length and time scales are
very similar.

In the following, we pursue a more quantitative analysis to confirm the two observations
made previously, i.e. that (i) the optimals in the nonlinear localised regime show very
similar dynamics to those seen in real turbulence, and that (ii) this is true for all optimals
in the nonlinear localised regime, even across the wide range of T and e0 spanned by this
regime. Plotting the infinity norm of the initial disturbance velocity |ũ(x, 0)|∞ (figure 16)
shows a clear clustering of the different regimes. One might expect |ũ(x, 0)|∞ to mainly
depend on the initial energy e0, because it determines the general magnitude of the
velocity disturbance. However, especially the cases that fall into the nonlinear localised
regime exhibit a remarkable uniformity in their respective |ũ(x, 0)|∞. This also confirms
the qualitative observation in figure 11 that in the nonlinear localised regime, additional
initial energy does not lead to higher initial disturbance amplitudes, but mainly to reduced
localisation. Furthermore, it is reassuring that while the e0/E0-values are much lower than
typical disturbance energies in real turbulent flow, their |ũ(x, 0)|∞-values are of the order
of 10–20 % of the mean centreline velocity, which is a much more plausible value.
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Figure 17. Comparison of streak length scales with DNS. Only the cases of the nonlinear localised regime
agree well with DNS, both in terms of (a) streak spacing and (b) streak amplitude.

This uniformity found in the nonlinear localised regime also manifests itself in the
streak spacing λ+z , which is shown in figure 17(a). Here, the streak spacing is obtained
automatically by computing the dominant (kx = 0, kz)-mode of the x-velocity at t =
0.3uτ/h and then inferring the streak spacing from the kz-value. This streak spacing
detection works very robustly for the quasilinear optimals, but for the nonlinear optimals,
the initial state is localised and does not contain any discernable streaks of which to
speak. Towards the end of some of the runs, the streaks break down or diminish in
importance. As a result, the automatic streak spacing detection is unreliable for early and
late times of these runs. However, in a fairly long intermediate phase from approximately
0.1h/uτ to 0.6h/uτ , when streaks stand out distinctly, the method works well, which
motivates the choice of t = 0.3h/uτ as the reference time. The result is that all runs
that belong to the group of nonlinear localised optimals show streak spacing values
inside the expected range, which is only true for some but not all the runs in the other
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groups. In particular, it is apparent that linear optimals require a much more precise
choice of the time horizon T if they are to produce the correct streak spacing, and
that the optimals belonging to the nonlinear non-localised regime exhibit unrealistically
high streak spacing. Further evidence for the uniformity and realism of the nonlinear
localised optimals is provided in figure 17(b), which shows the infinity norm of the
streaks, i.e. the kx = 0 part of the x-velocity fields at t = 0.8T for each case. This
relatively late time is chosen here to allow the streaks enough time to not only form
but also grow. Note that we consider the infinity norm rather than, say, the energy
norm here because the former is less sensitive to localisation, thus allowing for a better
comparison. Unlike streak spacing, this metric is not widely discussed in the literature,
so that values for the mean and standard deviation of the infinity norm of streaks
were obtained from 2000 DNS snapshots. Again, only the optimals belonging to the
nonlinear localised regime produce streaks with a realistic infinity norm, though it is
apparent that for the cases with relatively short time horizons, the streaks are still a bit
small as they have not had the time to fully establish themselves yet. One might object
that the comparison is somewhat unfair, because the cases in the quasilinear regime
simply lack the initial energy to generate realistic streak amplitudes; however, in the
nonlinear non-localised regime, even when there is sufficient initial energy, the streaks
that form are not as pronounced and, thus, do not seem as crucial to the overall evolution
dynamics.

Another interesting point is that the general shape of these optimals closely resembles
that of optimal perturbations found in the transition problem. In the parameter study by
Farano et al. (2016), both the linear regime and the nonlinear localised regime, which they
refer to as highly nonlinear regime, seem to have counterparts that can be observed in the
transition problem as well, although the time horizons considered in that study are much
longer and the initial energies smaller.

These results are reassuring and, at the same time, highlight the usefulness of
considering nonlinear optimals: whereas linear optimals require a very specific time
horizon T for their predicted steak spacing to agree with fully developed turbulence,
nonlinear optimals are much more robust in this regard, as every optimal in the nonlinear
localised regime, which spans a considerable range of T and e0, yields dynamics
consistent with fully developed turbulence, despite the relatively simple equation system
employed here.

4.3. Short-time high-energy optimals
Having expanded the parameter space to very long times, we now also address the
question of what happens for very short time horizons. Here, we choose T = 0.1uτ/h.
To compensate for this short time horizon, we select a relatively large initial energy of
e0/E0 = 4 × 10−4. The evolution of this optimal, which grows by approximately an order
of magnitude in the given time horizon, is shown in figure 18.

Interestingly, there is no localisation in x or z, and although the disturbance is
concentrated in the y-direction to where the base shear is high, it appears on both walls,
again indicating that localisation is not important for these parameters. This is partly
expected due to the relatively high initial energy, but the more important point is probably
the short time horizon. As can be inferred from the tilting of the disturbances visible in
figure 18(d–f ), only the Orr mechanism is important here, as there is no time for streaks
to develop and make use of the lift-up mechanism. This is expected and consistent with
the time scales observed in the temporal evolution of the nonlinear optimals discussed in
§§ 4.1 and 4.2. The fact that there is only a single linear mechanism at play due to the short
time horizon thus helps explain why localisation is not observed.
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Figure 18. Streamwise velocity evolution (tuτ/h = 0, 0.05, 0.1) of the nonlinear optimal (e0/E0 = 4 × 10−4)
for T uτ/h = 0.1 plotted (a–c) in the x–z plane and (d–f ) in the x–y plane.

5. Conclusion
In this work, we have investigated the mechanisms by which energy is transferred from
the mean to fluctuations in turbulent flow by computing the nonlinear optimals for
various initial energies and time horizons. The results show that for a large range of
intermediate time horizons, given initial energies large enough to trigger nonlinear effects,
localised nonlinear optimals with very similar dynamics emerge. Important aspects of
these dynamics, such as the streak spacing and amplitudes, are in good agreement with
fully developed turbulence. Interestingly, the lower end of this range of time horizons is
consistent with previous estimates of the time scales on which primary and secondary
linear processes operate.

These results confirm that the evolution of nonlinear optimals reflects crucial aspects of
turbulent dynamics, despite the simplicity of our model. At the same time, the optimisation
serves to remove any non-essential noise not contributing to disturbance growth, which
would be difficult to filter out in other methods such as DNS. This makes nonlinear
optimals an attractive concept for isolating the important dynamics, allowing one to study
turbulence in a ‘clean’ environment. At the same time, the present analysis provides upper
bounds for the level of energy transfer to the turbulent fluctuations, which could serve as
a foundation for future work aimed at better understanding under which circumstances
turbulence is sustained. When compared with computationally less expensive linear
methods, two major advantages of this approach are (i) the conceptual simplicity – in
particular, there is no need to prescribe a streak amplitude as is the case for methods
coupling linear processes ‘manually’ (e.g. Ciola et al. 2024; Markeviciute & Kerswell
2024) – and (ii) the robustness with which correct values for important characteristics of
the dynamics, namely streak spacing and amplitude, are found with respect to parameter
variations.

Future work could be aimed at combining the method of nonlinear optimisation with
numerical experiments, in which equations are deliberately altered to test the effect. In
the past, such numerical experiments have been done using DNS; however, this has the
limitation that one relies on DNS snapshots of realistic turbulence as initial conditions
to make predictions about an artificial setting. This may make conclusions less reliable
compared with using nonlinear optimisation, which are fully self-contained.
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Furthermore, the role of the base profile should be investigated. Understanding how
different base profile affect disturbance growth could help answer the question of why
a particular base profile (i.e. the mean) is selected in reality instead of some different
profile. This line of reasoning could ultimately even provide an avenue towards predicting
the mean profile in shear flows at moderate Reynolds number if a corrected version of
Malkus’s (1956) theory could be formulated.
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Appendix A.

A.1. Solver validation
The solver presented in § 3 was validated by reproducing the growth rates of single modes
(see figure 19) and by testing the transient growth of linear optimals (see figure 20).
Both the single modes and the linear optimals were computed by the solver, which
contains an implementation of the relevant linear stability problem in the spirit of Reddy
& Henningson (1993) for this specific purpose. As can be seen in the two figures, the
agreement is excellent.

A.2. Influence of the domain size
To justify the choice of the fairly small domain used in this study, we compare it with the
more commonly used domain size of 2π × 2 × π , for which a resolution of 96 × 129 × 80
is used. Figure 21 shows the evolution of the optimal at T uτ/h = 0.7 and e0/E0 =
3 × 10−5 on this larger domain. As can be seen by comparison with figure 11(a,d), the
dynamics is essentially indistinguishable. The gain of 33.63 is also very close to the small

0

0.9990

0.9995

1.0000
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1.0005

Re = 5500

Re = 5772.22

Re = 6000

0.2 0.4 0.6

t
0.8 1.0

Figure 19. Growth rates of the most unstable mode at Re = 5500, 5772.22, 6000, with α = 1.02056; β = 0:
analytic values (lines) compared with numerical results (crosses).
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Figure 20. Growth rates of the linear optimal at Re = 3000 with α = 1, β = 0 for different values of the time
horizon T , compared with the optimal growth plotted over time (dashed line; from Reddy & Henningson
1993).
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Figure 21. Streamwise velocity evolution (tuτ/h = 0, 0.35, 0.7) of the optimal for T uτ/h = 0.7 and
e0/E0 = 3 × 10−5 in a larger channel.
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Figure 22. Streamwise velocity evolution (tuτ/h = 0, 0.35, 0.7) of the optimal for T uτ/h = 0.7 and
e0/E0 = 3 × 10−5 in a larger channel plotted in the x–y-plane.

channel value of 34.82. Interestingly, as is revealed by comparing figure 22 with figure 6
(the slightly higher e0 has no significant effect on the dynamics), four instead of two
clusters are present in the initial condition, and the streamwise length scale of the low-
speed streaks is also the same as four instead of two low-speed regions can be seen in this
plane.

A similar comparison was also done for the very different time horizon of T = 2.8, again
at e0/E0 = 3 × 10−5, placing the corresponding optimal into the nonlinear non-localised
regime. Again, the quantitative agreement of the gain, which was calculated to be 360.85,
is in excellent agreement with the small channel value of 361.20. Furthermore, comparison
of figure 23 with figure 13 reveals good qualitative agreement of the time evolution of the
optimals for each channel size.
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Figure 23. Streamwise velocity evolution (tuτ/h = 0, 1.4, 2.8) of the optimal for T uτ/h = 2.8 and
e0/E0 = 3 × 10−5 in a larger channel.

We can thus conclude that the smaller channel of π × 2 × π is sufficient for the
purposes of this investigation.

A.3. Gradient-based optimisation algorithm
We now turn to a more detailed description of the optimisation approach roughly
introduced in § 3. Generally speaking, any gradient-based optimisation algorithm has two
components: First, selecting a step direction and, second, selecting a step size determining
how far to move along this direction. Note that in the literature, optimisation problems
are often phrased as minimisation problems. Here, since we are trying to maximise the
energy gain, we use language to reflect that we are solving a maximisation problem. The
mathematics is obviously completely equivalent up to flipping signs. Notably, we refer
to gradient ascent rather than gradient descent. A natural choice for the ascent direction
is the steepest direction (given by the gradient); however, in the present work, we follow
Cherubini et al. (2011) and use the conjugate gradient algorithm with the Polak–Ribière
formula (Polak & Ribiere 1969). In concrete terms, the ascent direction pn+1 is determined
using

pn+1 = δL

δũn(x, 0)
+ βn pn = λn ũn(x, 0) − ṽn(x, 0) + βn pn. (A1)

At the first step, β0 is initialised with zero. Afterwards, it is calculated by

βn+1 = (gn+1)
ᵀ
(gn+1 − gn)

(gn)ᵀgn
, (A2)

where g is the steepest ascent direction. Note that some additional complexity arises from
the fact that (2.14) depends on the Lagrange multiplier λ, which ensures the initial energy
constraint. At step n, for a given step size αn and conjugate parameter βn , λn is determined
implicitly from the formula

1
2V

∫∫∫

V

∣∣∣ũn+1
∣∣∣2

dV = e0, (A3)

where the new guess ũn+1 is given by

ũn+1 = ũn + α pn, (A4)

and the ascent direction pn is obtained from (A1). Here, we solve (A3) for λ using
a standard Newton method, where the necessary gradients are obtained by automatic
differentiation.
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Unlike Cherubini et al. (2011), who adjust the step size depending on whether the last
iteration was successful in increasing the objective function, our solver includes the option
of using a line search. This can save time under some circumstances, but may also be
counterproductive due to its inability to ‘escape’ local optima, so while the line search was
used most of the time in obtaining the results presented here, some calculations fully or
partially relied on the simpler adaptive step method described by Cherubini et al. (2011).
The crucial advantage of line search algorithms is that instead of simply accepting an
optimisation step, it is first checked if taking this step actually leads to a sufficient increase
in the objective function, and only then is the step accepted. Thus, line search ensures that
the objective function increases in each iteration. Moreover, even though more function
evaluations are necessary in each time step, the step size is adaptively increased if possible,
leading to fewer iterations until convergence. Whether this trade-off makes sense depends
on the problem, but usually and also in the present case, it does.

The general idea behind a line search algorithm is to maximise the objective function
along the chosen ascent direction. However, in practice, it is not a good use of
computational resources to find an exact optimum, but it is better to instead settle on a step
size that yields a reasonable improvement and is easy to find. Depending on the problem,
many approaches exist for this. In the present work, once an ascent direction is determined,
a step using the current step size αi is taken, and the function is evaluated at the new guess.
If the increase is big enough, i.e. fulfils the Armijo condition (Armijo 1966)

f (x + αi p) − f (x)� α j t, (A5)

where f is the objective function and t is a parameter between 0 and 1, the new guess
is either accepted directly or αi is increased until (A5) is no longer satisfied. Note that
trying to increase the step size requires additional function evaluations, so in practice, it
should usually not be done in every iteration, but only, say, every third iteration. However,
not trying to increase the step size once in a while will likely lead to slow convergence
due to a possibly too small step size. If (A5) is not satisfied, αi is decreased until it is.
The step size for the new iteration αi+1 is then chosen to be the final step size of the old
iteration. Note that upper and lower limits for the step size αi can be imposed to ensure
reasonable behaviour of the solver. This was done in the present work, though the borders
were chosen quite liberally as a restriction of the steps size should, in principle, not be
required. The convergence criterion is that the relative change of the objective function
between two successive iterations lies below a critical value (10−8 is chosen in the present
work).
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