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A MULTIPLIER RULE IN SET-VALUED OPTIMISATION

AKHTAR A. KHAN AND FABIO RACITI

A multiplier rule is given as a necessary optimality condition for proper minimality in
set-valued optimisation. We use derivatives in the sense of the lower Dini derivative
for the objective set-valued map and the set-valued maps defining the constraints.

1. INTRODUCTION

Let X, Y, W and Zu where i £ I := {1,2, . . . ,n} , be (real) normed spaces, let the
space Y be partially ordered by a pointed convex cone C, let d C Zi be convex sets
with nonempty interior, let Q C X and let he W. Let F : X =$ Y, G{ : X =} Z{ and
H : X -¥ W be given set-valued maps. Let K. be the set of all pointed closed convex
cones K c Y such that C\{0y} C int(K) (interior of K). We use 0E to represent the
zero element of some space E.

We consider the following set-valued optimisation problem ((Pn) for brevity):

minimize F(z) subject to x € 5 := {x € Q \ h € H(x), Gi(x) n -d ^ 0 Vi G / } .

We are interested in the local proper minimisers. A point {x,y) € X x Y is called a
local proper minimiser to (Pn), if there is a neighbourhood U of x such that for some
K £ K we have (F(S nU)-y)n {-K\{0Y}) = % where F(S D U) := \J F{x) and

xesnu
y € F(x). It is a local minimiser to (Pn), if (F(SnU)-y) n ( - C \ { 0 y » = 0 and a local
weak minimiser to (Pn), if (F(SnU)-y) n (- int(C)) = 0 provided that int(C) ^ 0. If
n = 1, C\ is a cone and H is single-valued we shall denote (Pn) by {P{) and if additionally
# = 0w, then by (Po).

In recent years a great deal of attention has been given to the characterisation of
the weak-minimality for (Po) and (Pj) by employing various notions of derivatives for
set-valued maps, see [2, 3, 4, 7, 8, 11, 12, 13] and the references therein. A common
strategy adopted in these works is to use direct arguments, based on the derivatives chosen
for the set-valued maps involved, to verify a claim that the images of the derivatives do not
intersect with certain open cones. Here it should be noted that such a disjunction is given
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in the image spaces. Further, this disjunction is then combined with some separation
arguments and multiplier rules are obtained. In the context of the classical nonlinear
programming, this approach is best comparable with the methodology of [14]. However,
there is an another approach, often termed the Dubovitskii and Milyutin approach, in
nonlinear programmings. This has been systematically investigated by Dubovitski and
Milutin [6], Halkin [9], Craven [5] among others, and is based on expressing the optimality
as the disjunction of some cones in the domain space. Then the use of some separation
arguments combined with some Farkas type lemmas lead to the existence of multipliers.
Although this approach has been very useful in scalar and vector optimisation, hitherto
there is no counterpart in set-valued optimisation.

The aim of this short note is to show how the ideas in the Dubovitski and Milutin
approach can be employed to obtain a multiplier rule for (Pn). Our results show that the
lower Dini derivative, introduced by Penot [15], is more suited for this approach.

We organise this paper in four sections. In Section 2 we collect some preliminaries.
Section 3 contains a multiplier rule for (Pn) which is the main result of this paper. The
proof of this result in divided into several lemmas which are of interest in their own right.
The paper concludes with some remarks about this approach.

2. PRELIMINARIES

First we recall some results about tangent cones (see [1, 16, 17]). Set P := {t

&R\t>0}.

DEFINITION 2.1: Let Z be a normed space, let 5 C Z and let z e cl(5) (the
closure of S).

(a) The contingent cone T(S, z) of 5 at 2 is the set of all z € Z such that there
are sequences (An) C P and (zn) c Z with An 4- 0, zn -> z and z + Xnzn € 5
for every n € N.

(b) The interiorly contingent cone IT(S, z~) of 5 at z~ is the set of all z 6 Z such
that for any sequences (An) C P and (zn) C Z with An I 0 and zn —> z,
there exists an integer m € N such that z •+- Anzn € 5 for every n ^ m.

REMARK 2.1. It is known that T(S,~z) is a closed cone possessing the isotony property,
that is, for subsets Si and 52 such that Si C S2, the inclusion T(Si,'z) C T(S2,z) holds
for every ~z € cl(Si) Dcl(S2)- On the other hand the interiorly contingent cone IT(S,~z)
is an isotone open cone. Concerning the relationship between T(S, x) and IT(S,z~), we
have 7T(S, z) = Z\T(X\S, ~z). A useful implication of this relationship is that the cones
T(S,~z) and IT(S,~z) form an admissible pair, that is, for every pair of sets Si,S2 C Z
with SxnS2 = 0, we have T(Si, z) n IT{S2,z) = 0 for every z € Z. Also for arbitrary
sets SUS2 C Z we have IT(Si n S2,z) = IT[Suz) n IT(S2,z) for every l e S i f l S2. In
general, this important property is not shared by the contingent cones. For some S C Z,
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the identities T(S,z) = T(d(S),j) and IT(S,z) = IT(mt(S),z) hold. Moreover, for a
convex solid set 5, we have cl(lT(S,z)) = T{S,z) and int(T(S,z)) = IT(S,z).

Next we collect some definitions for set-valued maps. Let X and Y be normed
spaces. Let F : X =t Y be a set-valued map, that is, for each x € X, we have F(x) C 2Y

(the power set of Y). The (effective) domain and the graph of F are defined by dom(F)
:= {x e X\ F(x) ^ 0} and gph(F) := {(x,y) e X x Y \ y € F(x)}, respectively. We
shall say that F is strict if dom(ir) = X. Given a convex cone C C Y, which induces
a partial ordering in Y, the profile map F+ : X =i Y is given by: F+(x) := F(x) + C
for every x € dom(F). Now the epigraph of F can be defined as the graph of F+, that
is, epi(F) = gph(F+). The map F is called convex, if gph(F) is convex and C-convex, if
epi(F) is a convex set. Finally, we define the weak-inverse image F[S]~ of F with respect
to a set 5 6 Y as F[S}~ := {x € X \ F(x) D 5 ^ 0}.

Now, let X* be dual of X and let M C X. The negative dual of M, denoted by
Af*, is a subset of X* defined by: M* = {l € X* : l(x) ^ 0 for every x € Af }. It
is known that if M\ C M2 then M | C Mj*. Additionally, M C (Af*)* with equality if
and only if M is a closed convex cone. Also, the positive dual is then the set defined by
M* = — Af*. Both the positive and the negative duals are closed convex cones. Moreover,
the properties just mentioned for the negative dual hold for the positive dual as well.

The following definition of the derivative of a set-valued map is due to Aubin (see [1]).

Given a set-valued map F : X =$ Y and a point (x,y) e gph(F), the contingent
derivative of F at (x, y) is the set-valued map DcF(x,y) : X =3 Y defined by:

DcF(x,y)(x) := {y € Y | (x,y) € T(gph(F), (x,y))}.

Another notion of derivative for set-valued maps which turns out to be great im-
portance in the present approach is the so-called lower Dini derivative introduced by
Penot [15].

We recall that given a set-valued map F : X =t Y and a point (x, y) 6 gph(F), the
lower Dini derivative of F at (x,y) is the set-valued map DtF{x,y) : X =3 Y defined by:

DiFlx,y)(x) := liminf
( t ) - ( 0

Equivalently y € DiF(x,y)(x) if and only if for every (An) c P and for every
(xn) C X with An 4 0 and xn -> x there are a sequence (yn) C Y with yn -¥ y and an
integer m e N such that y + \nyn € F(x + \nxn) for every n ^ m.

Finally we conclude this section by recalling the following important result.

LEMMA 2 . 1 . ([6]) Let Co, C\,..., Cn be non-empty convex cones in a normed
n

space X and let Ci, for i € / := {1 ,2 , . . . , n), be open. Then f] C* = 0 if and only if
i=0

there exist ft 6 C], j € { 0 } U / , not all z e r o , such that: / 0 + / i + ••• + / „ = 0 .
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3 . A MULTIPLIER RULE

We begin by introducing the following definitions.

DEFINITION 3.1: Let X and Y be normed spaces and let R : X =* Y be a set-
valued map. The map R is called locally convex at (x~,y) G gph(i?), if the lower Dini
derivative DiR(x,y) of R at (x,y) is a convex set-valued map. The map R is called
regular at (x,y) G gph(.R), if additionally DtR(x,y) is strict.

Given A c t and 6 e R , the inequality A ^ b means that a ^ b for every a e A.
With this convention in mind we are ready to give the promised multiplier rule.

THEOREM 3 . 1 . Let (x, y) € gph(F) be a iocaJ proper minimiser of (Pn) and let
~Zi G Gi(x) n {—Ci) where i € I :— {1,2, . . . , n } . Let there exist an open convex cone
L C IT(Q,x) and a closed convex cone M C T{H[h)~,x). Let F be regular at (x, y)
and let d be regular at (x,Zj). Then there exist functionals s G L*, t G C*, Ui G C,*,
v G M*, not all zero, such that Ui(Ci — ~Zi) *£ 0. Moreover, the following inequality holds
for every x G X:

(1) t o DtF(x,y)(x) + uxo DiGi(x,zi)(x) + ••• + un o DtGn(x,zn)(x) ^ s{x) + v(x).

In addition, ifCi is a cone, then the complementary slackness condition U,(ZJ) = 0 holds.

We shall divide the proof in several lemmas. We begin with the following.

LEMMA 3 . 1 . Let {x,y) G gph(F) be a iocai minimiser to (Pn). Then:

n

(2) unQr\F[y-C\{oY}]~f]Gi[-Ci}-nH[h)- = 9
t= l

where U is a neighbourhood ofx used in the definition of the local minimality.
_ n

PROOF: Assume that there exists x G UnQC\F[y-C\{0Y}] fl Gi[-Ci]~nH[h]-.
n i=\

Now, from x G U D QC\Gi[—Ci]~ D H[h}~ we notice that x is feasible and from x
t=i

(-G F [y — C\{0y}} ~ we obtain F(x) D (y — C\{0Y}) 7̂  0 which is in contradiction to the
local minimality of (x, y). D

LEMMA 3 . 2 . Let (x, y) e gph(F) be a local minimiser to (Pn). Then:
n

IT(Q,x) nlT(F[y- C\{0y}]",x) f]lT{Gi[-Ci]-,x) nT(H[h}-,x) = 0.
1=1

P R O O F : This assertion follows from Lemma 3.1 and the properties of the interiorly
contingent cones and the contingent cones mentioned in Remark 2.1. D

LEMMA 3 . 3 . Let X and Y be normed spaces, let F : X =J Y be a set valued

map and let (x,y) G gph(F). Let K be a pointed convex cone with 'mt(K) ^ 0. Then:

DtF(x,y)[-int{K)]~CIT(F[y-int(K)]~,wy
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PROOF: Let x £ DiF(x,y)[-int(K)]~. Then there exists y £ DtF(x,y)(x)
n - int(K). Let (xn) C X and (An) C P be arbitrary sequences such that xn —* x and
An 4- 0. It suffices to show that there exists m 6 N such that x + \nxn £ F [y - int(K)] ~
for every n ^ m. By the definition of DiF(x,y){-), there exist (yn) C K with yn -> y
and ni € N such that y + Anyn € F(x + Anin) for every n ^ n\. Since y £ — int(A')
and yn -> y, there exists n2 G N such that Xnyn £ - in t ( i^) for every n ^ ra2. This
implies that y + Xnyn £ F(x + Anxn) D (y — int(A')) for n ^ m := max{ni,n2}. Hence
for the sequences (xn) and (An) we have x + Xnxn £ F\y — int(A')]~ for n ^ m. This is
equivalent to saying that x £ IT (F \y — int(jFf)] ~, xj. The proof is complete. D

LEMMA 3 . 4 . Let X and Z be normed spaces, let G : X =J Z be a set valued
map and let (x,~z) € gph(G). Let Ac Z with int(^4) ^ 0. Then the following holds:

D,G{1Z,7)[IT{-A,z)]- C IT(G[-A]~,x).

PROOF: Let u £ DiG{x,z)[lT{-A,z)]~ be arbitrary. Let (un) c X and (An) c P
be arbitrary sequences such that un -t u and An 4- 0. It suffices to show that there exists
m £ N such that x + Xnun € G[-^4]~ for every n^m. Since u £ DtG{x, z) [IT(-A, t)\ ~,
there exists v £ Z?jG(x,z)(it) n/T(—A,~z). Therefore, there are a sequence (vn) C Z and
an integer n\ £ N such that vn -¥ v and ~z+Xnvn £ G(x+Xnun) for every n ^ ni. Because
of the containment u € IT(-A,J) there exists n2 G N such that z + Anun G —̂4 for every
n ^ n2. Therefore we have 1+Xnvn £ G(x+Xnun)n(—A) for every n ^ m :— max{ni,n2}.
Consequently u£ IT(G[-A]~,x). D

LEMMA 3 . 5 . Let X and Y be normed spaces, let D C X be convex and let
A c Y be a solid closed convex cone. Let T : D =ZY be a A-convex set-valued map. If
T[- int(i4)]~ # 0, then for every p £ P* where P := T[-A}~, there exists t £ A' such
that

t o T(x) ^ p(x) for every x £ D.

IfT[- int(yl)]~ = 0, then there exists t £ i4*\{0y.} such that

t o T(x) ^ 0 for every x £ D.

PROOF: We begin with the case when the set T[— int(j4)] is nonempty. Then the
(negative) dual P* of P :— T[—A]~ is also nonempty. We choose p £ P* arbitrarily
and define a set E := Uy,p{x)) £ Y x R | y £ T(x) + A, x £ D\. In view of the
assumptions that D is convex, T is .A-convex and p G Y', we deduce that E is a convex
set. Indeed, let (j/i,zi), (y2,.z2) G E be arbitrary. Then by the definition of E, for
i = 1,2, there exists x{ £ X with z{ = p{xi) and y{ £ T(xi) + A. For A G (0,1], we have
Azi + (1 - A)z2 = p(Xxi + (1 — A)x2). Further, in view of the ^-convexity of T, we have
Aj/i + (1 - A)y2 G AT(xi) + (1 - X)T(x2) +AC T(Xxx + (1 - A)x2) + A. This, in view
of the convexity of the set D, implies that A(yi, z{) + (1 — A)(y2, z2) G E.
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Next, we claim that E n ( - int(j4) x P) — 0. In fact, if this is not the case, then
there exists (x, y) G X x Y such that y € (T(x) + A) n ( - int(A)) and p(x) > 0. Let
w G T{x) be such that y e w + A. Then w G y - .4 C - int(j4) - A = - int{A). This
however contradicts that p G P*. Therefore E n ( - int(A) x P) = 0 and hence by a
separation theorem (see [10]), we get the existence of (/,<?) G K* x R \{0y , 0} and a real
number a such that we have

(3) f(u) + g(v) ^ a for every (u,v) G £

(4) f(c) + g(d) < a for every (c, d) G - int(j4) x P.

Since A is a cone, we can set a = 0 in (3) and (4). By taking d e P arbitrary close
to 0 and c € — int(j4) arbitrary close to Qy, we obtain / G A* and g ^ 0, respectively.
We claim that g < 0. Indeed, if g = 0, we get /(c) < 0 for every c G — int(.A) and
f(u) ^ 0 for every u G T(D) + A This, however is impossible because we have (T(D)
+ A) n (— int(v4)) / 0. Therefore g < 0. Moreover, from (3), for every i e D w e have
/ o (T + A)(x) ~£ —(g • p)(x). By setting t = (-f/g) G A' and noticing that 0y G A, we
finish the proof of the first part.

For the second part, we notice that if T(— int(.4)) = 0, we have T(D) D — int(A) = 0
and hence by the arguments similar to those given above we can prove the existence of
t G >l*\{0y} such that t o T(x) ^ 0 for every x G D. D

P R O O F OF T H E O R E M 3.1 Set $ := DiF(x,y)[-int(K)]~ and *i := DlGi{x,zi)

[IT{—Ci,~z~i)\ . We shall prove the theorem by analysing the three possibilities, namely:

(i) $ = 0;

(ii) ^ i = 0 for some i G / ;

(iii) $ / 0 and ^ ^ 0 for every i G / .

We begin with case (i). Let $ = 0. Then it follows from Lemma 3.5 that there exists
t G C'\{0Y-} such that t o DtF(x,y)(x) ^ 0 for every x G X. By choosing s - Ox-,
u = Qw. and Uj = 0z>, for every i G / , we obtain the desired result. For case (ii),
let there exist i G / such that $* = 0. Then again by invoking Lemma 3.5, we obtain
Uj G (T(d, -Zi))m\{0z;} such that (u< o DGi(x,Zi))(x) ^ 0 for every x G X. By setting
s = Ox-, ^ = Oiy- and u, = Ozr, i ^ j G / , we obtain (1). For Uj(Ci — zt) ^ 0, it suffices
to notice that in view of the convexity of d, we have T(C{, —z<) 2 C< + z« and hence
Uj(z + Zi) ^ 0 for every .z G CV If Ct is a cone then by choosing z = 0Zi and z — -2z, we
obtain that u(z<) = 0.

Finally, we consider the case (iii). Since (x, y) is a proper minimiser of (Pn), it has to
be a minimiser of (Pn) with respect to some K £ K. Therefore, it follows from Lemma 3.2
and the imposed conditions that for such K G /C, we have
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Since L, M, $ and ^>i, (i e / ) are all nonempty, we can apply Lemma 2.1 to assure
the existence of

l€L*, lo

and

and

ln+l € M*

such that

(5) I + l0 + h + l2 + • • • + In + ln+l = 0.

Now, in view of Lemma 3.5, we get the existence of functionals ( 6 C and Ui
€ T(Ci, — 2j)* such that for all x € X, the following inequalities hold

(t oDtF(x,y)){x) ^ lo(x);

(uioDfiiix^W^liix), iel.

Combining of the above inequalities with (5) and setting s = — I and v = -ln+\ yield (1).
The proof for Ui(d -~Zi) ^ 0 and the complementary slackness is the same as in part
(ii). D

4. CONCLUDING REMARKS

It is clear that in Theorem 3.1 we have not imposed any differentiability assumption
on the map H. Thus it would be of interest to obtain a variant of the well-known theorem
of Lyusternik ([10]), so that the cone M* contain information about some derivative of
H. In fact, this is completely true if H is single-valued and sufficiently smooth ([17]).
Moreover, we can also define a variant of the generalised contingent epiderivative (see [3,
8, 11]) by taking the minimal points of Di(F + C)(x,y) with respect to the cone C. We
mention that our results will remain valid for such an epiderivative.
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