ON THE DERIVATIONS IN MAXIMAL
ORDERS OF SIMPLE ALGEBRAS

YUSAKU KAWAHARA

1. The theory of derivations and differents in the algebraic number fields
or Dedekind rings has been developped by A. Weil [1], Y. Kawada [2] and M.
Moriya [4]. Further Y.Kawada [3] has investigated the derivations in maximal
orders of simple algebras over number fields. This note is concerned with the
derivations in the simple algebras over fields which are quotient fields of De-
dekind rings; the commutative rings in which the fundamental theorem of

multiplicative ideal theory holds. The auther gives his hearty thanks to Prof.
M. Moriya who gave him valuable remarks.

Let 3t be a ring and let M be a two-sided N-module. By a derivation D
of N into M, is meant a mapping D of N into M which satisfies

D(a+ B) = D(a) + D(B), for «, BE R,

D(a*B)=a-+*D(B)+ D(a)- 5.
A derivation D is called inner, if there is some element ¢ in T such that

D(a)=t a—a-t

for each element a in N. The set of all derivations of R into M constitutes a
module D(R ; M), and the set of all inner derivations constitutes a submodule
(R 5 M) of DR ; M). The 1-dimensional cohomology group of N for the two-
sided ft-module M, denoted H(N ; M), is the factor module of D(N ; M) modulo
the submodule of inner derivations. Let R/ be a subring of R. The set of all
derivations D of R into M such that D(a’) =0 for each «' in N’ is denoted by
DR, N’ ; M), and H(R, R ; M) is the factor module of D(R, R’ ; M) modulo
DR, R 5 TN (R M). Let R be a subring of N such that if «” € %", then
a' «t=1t+a" for any element ¢ in M.

Then obviously ®(%, %' ; M) and H'(R. R’ ; M) are considered as RN''-

module.
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2. Let % be a field which is complete with respect to a discrete valuation.
Let K be a finite algebraic extension of %2 and let S=(m, Z, s) be a cyclic
division algebra over K, whose center is K, where Z is a cyclic inertial ex-
tension of degree »n over K (unramified and the residue class field of Z is
separable over the residue class field of K). Further we assume the residue
class field of K is separable over the residue class field of 2. m; is a prime
element in K and ¢ is a generating element of the Galois group of Z/K ; ="
=m, 7 ar=a’, (&« €Z), where = is a prime element in S. Let s, Oz, Ox
and O be the valuation rings of S, Z, K and k respectively, and let Bs, Bx
be the prime ideals in Os and Ox.

Os=Qz+70z+ ... +72"'Ds.

Let (1, w, &% ..., ©® ") be a base of O, with respect to Ox. Now Ds/P5 is

considered as two-sided Os-module.

LemMa 1. Let D& D(Ds, Ok 3 Os/Bs) and D(w) =a(Ps) a € Oz Then
the restriction of D on Oz is a derivation of Dz into Dz/QOz N\ Ps and there is
an element & in Oz such that D(z) ==&, mod Bs.

Proof. Let B be an element in 2. Then wf = Bfw. Therefore

wD(B) + D(w)B = BD(w) + D(B)w,
wD(B) +af = Ba+ D(B)w, hence

D(B)o—wD(B) =0  mod Ps.
Put
D) =m+mm+ ... +7"  guer (BH).
Then
(o= + . .. + 7" puei(0 = 0™ 7)) =0 (B5).

Since w — 0 is not divisible by Bsfor 1 =i=n—-1, we get

1 =0,..., n"—lﬂn—1 =0 (S'BZ)-

Therefore
D(B) =7 mod Pk.
Now, let
D(n) =& +ns1+ ... +7I'n—15n—1 mod %;.
Then since

D(7)w’ +7D(0’) =wD(x) + D(w)x mod B,
Lo+t + ..+ 0 — (0fy+ oty

+ PR +U)7{'n~15n—1)+7[(D(a)c) _D(w)) EO (%;),
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t(o—o0) + (0 —0™) + . .. + 7" % n1(0" = 0™)
k 4+ 7(D(w°) - D(w)) =0 (5.

Therefore, we get

&=0 7&=0,..., 7" 8u=0 (%),
hence
D(n) =r=2 mod Pj.
LemMa 2. Let D& D(Ds, Ok ; Os/Ps) and D(w) =a(Ph), a € Dz Then

the restriction of D on Ox is a derivation of Ox into Ox/Qx NPy, and
moSPzix(€) = D(my) mod P,
where D(z) =n5 mod %s.
Proof. Since 7" =m,

D(m) =D(x") = > #’D(n)n’ = Y Ainga’

i+j=n=1 {+j=n-1

. . s n-1 ;
= > ln’mr’é"J = ?_‘_(.)n"é"’= 70 Spzix(£) mod Bs.

itj=n—

As mSp(¢) € Ok, D(m) € Ox/Qx N Ph.

Now, since the residue class field of K is separable over the residue class
field of k, there is a subfield K™ of K such that K* is unramified over % and
the residue class field of K* coincides with that of K over the residue class
field of . Let © be the valuation ring of K™ and let w1, . .., ws be a base
of O* over Op.  Then, as K* is unramified over &, D(O*, Or ; O/ NP5)
={0}.Y Therefore D(w;) =0 mod P5; moreover since mw; (j=1,...,s,
i=0,1,...) is a base of Ox over Ok, we see that for any element 8 in Ok,
D(B) is congruent to an element in Ox mod Ps. This shows that the restriction
of D on Ox is a derivation of Ox into Ox/Ox N P&.

Lemma 3. Let D" be a derivation of Oz into Oz/0z N\ B, which is an ex-
tension of a derivation D' of Ok into Ox/Ox N Ps. Then for y€ Oz and for
any automorphism v of Z|K, D"(y°) = D"(3)" mod Ps.

Proof. Put D(3) =D"(4°)"" mod Ps. Then D is a derivation of O into
0z/9z NP5, which coincides with D" on Ox. Since Z/K is unramified, there
is only one extension of D'.” Therefore D=D" and hence D"(y") =D"()"
mod P5.

1 M. Moriya [4], p. 134, Satz 5 and Satz 6.
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Lemma 4. Let D'e D(Dx, Or 3 Ox/Ox NPY).  If ¢ € Dz and moSpzx(£)
= D'(m) mod B, then there is a derivation D in D(Ds, Or ; Os/Bs) which is
an extension of D', satisfying D(r) = ¢ mod Ps.

Proof. There is a uniquely determined derivation D" of O into 02/0z N Bs,
n=1 n=1 n—1 .
such that D' is an extension of D'. We put D(>\n') = 20+ D" () + %D(n’)ﬂi,
i=0 is0 i=
7 € Oz, where
D)y =r(t+e+ ... +2”™)  mod L.
Then for i+j7<mn,
D(ﬂ:inj) =t (e 4+ F T $°i+j—l)
= (e84 ..+ kL)
=D(r') 7’ + ' D(x7) mod Pk.
Fori+jz=n i<n j<n,
D(z'n’) = D(z" ") = 2 e+ &4 oL+ 8T ) 4 7T (o)
= 42 L+ 8T 1 Shk(8)
=nt e+ 4 .+ 87T =2 D7) + D)
Therefore for i+j <n by using Lemma 3,
D(a'pi e i/ p;) = D(rrir:jn?jnj) = 7r£+jD”('0;'1j‘0j) + D7)y g
7 D' ) mj+ 7t 2 g D" () + 7' D(n?) 97 7+ D) 77 ni
=[7'D"(4:) + D(z") yida? m; + o' ni[n? D" (57) + D(2?) ;]
= D(a'y:) o/ nj+ a' i D(a? 7).

Il

Similarly we get
D(ipin’9)) = D' 0/ nj + 7' D(2? ;) for i+ji=n.
Hence it follows easily that D is a derivation of Og into Ds/W5.

LeMMA b. Let W be an unramified Galots extension of K such that the
residue class field of W is separable over the residue class field of K. 1If a
mapping ¢ - as of the Galois group & of W/K into Ow/P satisfies the con-
ditions:

A =as+a. foral o, 1€,

then there is an element b & Ow such that a, = b —b" mod B for all o.

Proof. Since the residue class field of W is separable over that of X there
is an element v in O such that Spwx(v) = 0 mod Pw. Put
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| ’
= Sp(v) mod EBu’.
Then
b = Sp(v) S07 a3 = gy T (e
~ = Sy Sean =@ mod .
Therefore

a.=b-0b" mod P
LemMma 6. Let Z be a cyclic unramified extension of K such that the residue
class field of Z is separable over that of K and let ¢ be a generator of the Galois
group & of Z/K. Then, for an element a in Oz in order to be
Spzix(a) =0 mod 7,
it is necessary and sufficient that there is an element b in Oz such that
a=b-b" mod P7.

o”=

2
Proof. Put as=1, as=a, ar=a+a’, ..., an-1=a+a’+ ...a° , where

n denotes the order of . Then o' - ax satisfies the condition of the preceding

lemma. The converse is obvious.
TueoreM 1. Let S=(ry, Z, o). Then

I:{O} for r=1 mod n

H' (s, Ox ; Os/P5) :
(Ds, Ok s/ Bs l?-—’ Ox/PBx  (as Ox-module) otherwise.”

Proof. O;=9x[1, w, 0%, ..., 0" 1]
Let D& D(DOs, Ox 5 Ds/P5) and let

n=1

D(w) = X'y, 7€ Os.
i=0

azl i i .

Put D a'9i(w— ") =y. Then since w—w® £ 0(Ps) for 1 ¢ < n—1, we get
i=1

r€ Os. Let D' be the inner derivation defined by

Diax)=yea—arr mod P§.
Then

n=-1 . n=1 3 i
D'(w)=r0—wr= D rno—0")"to - S er (o —w0”)™ mod B
i=1 i=1

n—1 n=-1
. . . i ;
= gn'[m(w— )0 =0 (0 —0") = ‘2171"77:'-

2) Y. Kawada [3], Theorem 1.
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Moreover D' € D(Ds, Ok 3 Os/P5). We set D'=D-—I, then D"(w)=m
mod B, 7 € Oz. Hence the restriction of D' on O is a derivation of £ into
0z/0z NP5, moreover clearly the restriction of D" belongs to ®(Dz, Ok ;
07/9: N PE).  Therefore, since Z/K is unramified we get D"(a) =0 for any
a € Dz,” which shows that

H'(Ds, Ok 3 Os/PBs) = D(Ds, Oz 3 Os/B5)/ D(Ds, Oz 5 Os/BHN
N S(Ds, Ok s Ds/%re)

By Lemma 2 and Lemma 4, there is a derivation D in D(Ds, Dz ; Os/Bs)

satisfying
D(n) =2 mod B
if and only if
=né, &z, where

o sz/Kf =0 mod SB:,

and moreover in this case D& 3(Qs, Ok ; Os/Ps) if and only if Spzx(6) =0
mod P57Y, for if Spzx(2) =0(P5™Y), in virtue of Lemma 6, there is an element
7 in Oz such that £=%—%"° mod P5 ', hence - (yx—my) =n(yp—17") ==& mod
B%; conversely if D is inner defined by D(a)=ra—ar, r=y+mn+ ...
4+ 7" p-1, then since D& D(Ds, Oz ; Vs/PY), D(w) =10 — 01 = mp(w — 0°)

an—1

+ .7 petlw— 0" ) =0 mod Ps, therefore we get »=r mod PB: and
D(z)=rnt=n(y—~%") mod B, which concludes that Sp,x&=0 mod PE .
Further as the residue class field of Z is separable over that of K, we have
Spzix(Dz) = Ok. Therefore the mapping D - Spzx(§) induces the isomorphism
between D(Ds, Oz ; Os/P5)/D(Ds, Dz 5 Vs/Ps) N 3(Ds, Ox 5 Os/P5) and the
module of all the elements @ mod PBi%, @ € Ok satisfying moa =0 mod Ps. From

this we get our theorem.

TaEOREM 2. H'Y(Os, Or 5 Os/Br)/ H(Ds, Ok 3 Os/PBs) = H' (Ox, Or 3 Ox/Ox
NP = DOk, Ok ; Dx/Ox N P3) (as Ox-module) for r such that BE|IPE,
where ‘Bﬁ denotes the different of K with respect to k.

Proof. As in the proof of Theorem 1 every class of H'(Ds, Ok ; Os/P5)
contains a derivation D such that D(w) =« mod P5, a € Oz. By Lemma 2 the
restriction of D on Ok is a derivation D' of Ok into Ox/Ox N P Moreover if

D is inner, D' is zero derivation. Therefore it is easily seen that the mapping

3} M. Moriya [4], Satz 5.
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D - D' is a homomorphism of H'(Ds, Or; Os/P5) into D(Ox, Ok ; Ox/Ox
NP), and obviously its kernel is H'(Ds, Ox ; Os/Ps), hence H'(Dy, Ok ;
Os/B5)/ H (Ds, Ok 3 Os/Ws) is isomorphic to a submodule of D(Ox, O ; Ox/Ox
N FTL).
Now we assume Py | Pi™" Then if D' D(Dx, Or ; Ox/Ox N PL),
D’(Tto) =0 (S»BK).‘“
Therefore there is an element » in Ok satisfying

mon = D'(my) mod Ps.

Hence by Lemma 4 there is a derivation D in D(Ds, Ok ; Os/P5) which is an

extension of D', which shows that

HI(DS, Ok 5 Ds/%g)/Hl(Ds, Orx 5 DS/SBZ) E’@(DR, Ok 5 Ox/Ox NPS).

THEOREM 3. Let A be a full matrix ring in any division algebra S over k.

Let 4 be a maximal order of A and Ba the two-sided prime ideal of Oa. Then

HY (D4, Or; D4/B0) = H'(Ds. Op 5 /PO

Proof. Let ej (i, j=1,..., m) denote a system of matrix units of A.
Then we can assume that D= >1e;Os. and Pa= > e Ps.”
i o
Let D be in D(D4, Ok 5 O4/Pa) and put

2= Elei,D(eli) mod Pi.
p

Then

m

m
entz — zens = >entein Diey) — €0t D(ey) ent
i-1 i=

m

= gehteilD(eli) - geilD(Qlieht) + ._IeileliD(eht)
= D(ent) mod B.
Let D' be an inner derivation defined by

D'(a)=az—z2a, ac€ O,
4 Let T be the inertial subfield of K over k& and let f(X) be the irreducible polynomial
in T[X] such that f(mo)=0. Then f'(7m0)0x =%% and D'(a)=0(P%) for acsDr. Therefore
f'(mo) D'(m0)=0 mod P} and hence D'(mo)=0 mod Bx.
5) v, Kawada [3], Theorem 2.
6) H. Hasse [5].
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Then (D—D')(en) =0 mod P, (h, t=1,..., m) and hence if a=D)enan.
h,t
an € s,
(D-D")Ya=2> enD(an) mod ¥.
h, t

Moreover, for a € Os

(D—-D"(epa) =en(D— D) a)
=(D - D")(aen) =(D— D) a)en mod .

Therefore we must have

m

(D—D’)(a)zgeuﬁfﬁ mod %, BE Os.

It follows that (D — D') induces on Os a derivation of Os into Ds/Bs.

On the other hand, for any derivation D of Qs into Ds/P%, there is
uniquely determined derivation D* of O, into £.4/%% such that D* is an ex-
tension of D and D*(en) =0(PR%), namely D*(Sentan) =D ens D(ane). This

proves our theorem.

Now we consider an algebra U= (7,,., W) =;uaW such that wu,u-
=70, <Use, and usau;' =a® for « € W, where W is an unramified Galois ex-
tension of K and 7., is a factor set of units in W. Moreover we assume that
k = K and the residue class field of W is separable over that of .. Then ¢
=20]u0 Ow is a maximal order of U and U/K is unramified.”

Let S= (m, Z, o) considered before. Then the product D4 of Qv and Os
is a maximal order of A =U XxS. We identify « = a X 1 for « € U and denote
B=1xp for BES; any element of . has the form hX‘, .ucwé'ﬁja)"aohji,
a-nji € Ok where (1, wo, @i, . . .) is a base of Ow over 5K,,]’f'urther we can
assume that (1, wo, ws, . . .) is an integral base of the maximal inertial subfield

of W over k. It is known that any simple algebra A over %k such that the
residue class field of A4 is separable over that of %, is similar toa U X S, where
)

U and S are algebras such as stated above;” in this case we can assume that

7,,- belong to the maximal inertial subfield of W over k.

TueoREM 4. HYDi, Or ; Di/Pu) = H(Ds, Ok 5 Os/BL), where Di is a

maximal order of A and Vi is the two-sided prime ideal of Oi.

" T. Nakayama [6], or O. F. G. Schilling [7], p. 151-156.

https://doi.org/10.1017/50027763000023382 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000023382

DERIVATIONS IN MAXIMAL ORDERS OF SIMPLE ALGEBRAS 155

Proof. In virtue of Theorem 3, to prove this it is enongh to prove that

HY D4, Or s O4/Ba) = H(Os, Or 5 Os/BY). Let D be a derivation in D(D., Ok ;
0.4/PB%), and put

i
D(wo) = 2l thoto, To= 2) 00T @ Qohji, Gohji € Ok,
o h, 3,2 :
6y—1 __ r .
where we may assume #.=1. We put X #s7.(wo— w) "=t mod P, since
oxe

wy — wy is not divisible by P..
Let D' be the inner derivation defined by D'(«a) = ta — at. Then
D'(wo) =two — wot = EuGTO(U)O - wg)—lwo - ZwouoTo(wo - woo)_l
oxe oxe
= D tore(wo— 03) " wy — Eeuaro(wo —w) 0§ = D ssvo.
o%

ocx€ ox€

Hence

(D - D" wo) =7e mod .

Now let T=k(w) and let F(X) be the irreducible polynomial with coef-
ficients in % such that F(wo) =0. Then T/k is unramified and we get F'(w,) =0
mod Ps. Since (D — D')(w) is commutable with wo, it holds that

(D~ D")(F(wo)) = F'(wo) (D= D) w) mod Ph.

Therefore we have
(D~D)(w) =0 (B ).

Moreover since w; € T we get
(D-D')w3) =0 (B,
Therefore we may assume without loss of generality that

D(wy) =0 (), D(w3) =0 (P%).
Next we put

D(u,) = ET]u:r:.
Then since #;0) = wo#s and w; is commutable with 7., we have
D(ss) w5 — wo D(us) = gur T<wo — gwou:n
s%]urrr(w{,’—wg)so mod P.
As we can see from this that

Dtr-=0 mod %,

TFO
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we get

D(ua) EUsTo, Te= zlaojiﬁjai, Aoji E Ow.
=
Therefore
D(stot4z) = D(tho) ths + 116 D(t2) = tho D i ¥ @ the + tho U 2 @i ¥ &
i e

—_ T, ] 1 —7 —i
= Uo s D) AGj T D+ Uo Uz 2 Aji T D
53 I

On the other hand, since all 7,,. belong to the maximal inertial subfield T of
W over k&, 7,,- € ZDkwé, D(7,,:) =0, so that

D(uo u‘:) = D(fo,tuc'z) = Ta,tuo‘tza‘orjiﬁj o' mod m;.
P

Therefore we get

o, thor 20 (a5ji + Arji— aorji) @' =0 mod ()
28
hence,
(agji + @ji — Aorji) ' =0 mod P
Qoji + Qi = Aonji mod P~

Therefore, in virtue of Lemma 5 there exist ;i in Ow such that
asji = Bji — Bfi mod P’
ajiT o =T o - BT & mod P,
NaiF o' =D o — D pEA o mod B.
i P Jrk
D(uo) = uazaojiﬁjt—[)i = uo(z_ﬁjiﬁjai) - (2 ﬁiiﬁj@i) Us
PR i 5
D(wo) = 0 Bjiw 0') — (B &' )wo = 0.
Therefore by considering the equivalence by inner derivations, we can assume

D(u;)=0  mod P

(1) D(wy) =0 mod P

Now let A2 be an element in Os and let

D(—X) = ziachji Uo (t)(’)z _ﬁj J}i mod SBZ.

ohjg
Then, since Awo = wok
) h —F =1\
S5 08 (S @onji 7 5') w0 — w0 20 tho 0 (S @onji ¥ @) =0 (B%)
5, i o, n G,i

S tto 0t (w0 — 0) (X aonii® @) =0 (B).
6, h Jst
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From this it follows that
D) = E’;wg(gahji'ﬁj@i) mod P
Similarly, since #s4 =1%o,
%uo(a}g - (wé')")(gahﬁﬁj@") =0 (P
%(Eh](wz'— (o) ani)) @' =0 (P2)

S (w0 = (o)) anji = 0(PL7).
h%0

As | wo— w5, wo— (03)% .., wo ' = ()" |
T 2 T\2 7n-1 T\Nn-1
wo— wy, we— (w3)? oo, 0f '~ (ws)
! 0 0y 0 0)9 ’ 0 0 $0 (%A)
]

1}

we see that

mod B57  (h=0).

lif
o

Qhji
‘Therefore

D) = Zaojiﬁji)i mod P’
j,l

Hence D(1) belongs to Os mod Ps (=DOsNPL) for each element A in Os.
Conversely for any derivation D in D(Ds, Ok ; Os/P5s), there exists a deri-
vation in D(D., Or; O4/P%) which is uniquely determined extension of D
satisfying (1); therefore our theorem is proved.
Let A be a simple algebra over a complete field with respect to a valu-
ation, considered above. The length of composition series of HYOi, O

04/P%) as Ox-module shall be called the dimension of H (D1, O ; Oi/B5).Y

THEOREM 5. Let SBZ’; denote the different of K with respect to k. Then
the maximal dimension of H' (D1, Or ; Oi/Bs) is

I=d+1 if A/K is ramified.
| =d if A/K is unramified.

The largest two-sided ideal D(A/k) such that H'(Oz, Or ; D(A/R)) gives the

maximal dimension is

8) M. Moriya [4].
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f PPy if A/K is ramified.
l P if A/K is unramified.

Proof. 1t is known that the maximal dimension of D(Dx, Or, Ox/Ox
NPx) is d® Our theorem follows immediately from Theorems 1, 2, 3 and 4.

Remark. D(A/ k) is also characterized by the property that H(Dzi, Ok ;

D(A/E)) gives the maximal dimension as Or-module.

3. Let A be a simple algebra over a field 2 which is the quotient field of
a Dedekind ring © and 4 a maximal order of A with respect to ©. Let %A
be a two-sided ideal of 4. Then it is known that % is a product of prime
ideals U = II P, and D,;/?Izg ® O.4/B. Let K be the center of A and let

Ox be the ring of all integral elements of K and r=9. Let Ag be the %-
adic extension of A and let Og, B, Agp be the P-adic extension of D4, P and
A respectively. We assume that D./P is separable over Or/p (po=P N Or)
for any . .

Lemma 7. HYOu4, ks D4/ =@ H(Da, Ok 5 Da/BP)
Proof. Since D4/A =>1® O4/PB", we can prove easily this lemma.

Lemma 8. HYDu, Or; 04/ =23@® H'O4, Or 5 D4/P), and the di-
mension of H' (D4, Or; O4/B7) as D‘K-module is equal to the dimension of
H' (O, Opy 3 O/ PBP) as Oyp-module, where Oy, and Op, are the po-adic ex-
tens on of Ok and the pi-adic extension of Ox(pi=Pi N Ok).

Proof. By the preceding lemma H'(D., Ok ; O4/A) =@ H' (D4, Ok 5

D.4/B7), moreover we can prove that
H'(D4, Or 5 Op/P") = H'(Ogp, Oy, ; Op/P")  (as Og-module).

For, let D € D(Ogp, Op, ; Op/B") and let « € Op. Then a can be written by

the form
a=B+7rr, BEDs, rEDOp, misa prime element in Og.
Then for sufficiently large ¢
D(zir) =0  mod "

9 M. Moriya [4], p. 134, Satz 5.
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Therefore D is determined by the restriction of D on ..

Further we can easily see that the length of composition series of
H' (D4, O ; Op/P") as Op-module is equal to that of H'(D4, Ok ; D4/B") as
Dr-module.

Let ® =D(A/E) be the largest two-sided ideal of D4, such that H'(Dk, Or ;
0.4/®) gives the maximal dimension (as Ox-module). Then H (D4, Ok ; D4/D)

also gives the maximal dimension as Or-module.

THEOREM 6. The B-contribution of ® is Bp°, where p* is the p-contribution
of the different of K/k, and

[0 when B does not ramify over K.

e=
l2 when B ramifies over K.

Proof. From Theorem 5 and Lemma 8 we can prove easily.

CoROLLARY. B devides D(A/E) if and only if B ramifies over k. Moreover,
let L be any subfield of the center of A. Then D(A/E) =D(A/L)D(L/E).

Let B be a semi-simple algebra over k. Then B is the direct sum of
simple algebras A; and we see easily that each maximal order O of B is the
direct sum of maximal orders ; of A;. Moreover every ideal A of © is the
direct sum of ideals U; of i, and a prime ideal of O is the direct sum of a
prime ideal B; of O; and O; (= 1), denoted by B;. Let U=IIR". Then
HI(D, 00 DA =28 HD, Dp 3 /B, H(D, Op 3 O/B) =3 ® H(D,
Dk 5 0i/B7) = H' (D4, Or s 0i/PBP™) ; hence HI(D, Ok ; Q/m);%]@Hl(Di/Qk;
£;/P).  Therefore if ® =T (B/E) denotes the largest two sided ideal of DO,
such that HY D, O ; O/P) gives the maximal dimension, then the same

properties as Theorem 6 and its corollary also hold for ®(B/k).
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