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Abstract
Omega ratio, a risk-return performance measure, is defined as the ratio of the expected upside deviation of return
to the expected downside deviation of return from a predetermined threshold described by an investor. Motivated
by finding a solution protected against sampling errors, in this paper, we focus on the worst-case Omega ratio under
distributional uncertainty and its application to robust portfolio selection. Themain idea is to deal with optimization
problems with all uncertain parameters within an uncertainty set. The uncertainty set of the distribution of returns
given characteristic information, including the first two orders of moments and theWasserstein distance, can handle
data problems with uncertainty while making the calculation feasible.

1. Introduction

Optimal investment theory is an important topic in quantitative risk management and involves deter-
mining how to allocate capital among available securities in order to maximize the expected return for a
given level of risk or minimize the associated risk for a given level of return. Markowitz [13] proposed
the first quantitative method for determining the optimal portfolio based on minimizing the portfolio
variance for a given expectation, called mean-variance principle. In classical optimal investment theory,
the distribution obeyed by the data is usually assumed to be known or an empirical distribution function
is used instead of the unknown distribution, whereas in practice, the distribution obeyed by the data
cannot be determined if the complete data is not available or if a small sample of data is obtained and
an empirical distribution function cannot be used. This resulted in other samples performing poorly.

Motivated by this, distributionally robust optimization (DRO) has emerged as a paradigm aimed at
finding a solution that is protected against sampling errors [6]. It seeks for a solution that performs the
best with respect to the most adversarial distribution from a set of distributions, known as ambiguity
set. The DRO identifies the most adversarial distribution, the worst-case distribution, from an ambigu-
ity set, and makes an optimal decision, the optimal portfolio, which minimizes the cost induced by the
worst-case distribution. The choice of a proper ambiguity set is crucial in DRO. Such DRO problem and
its robust decision have been verified to exhibit some desirable properties such as finite-sample guaran-
tee and computational tractability, which are in sharp contract with the classic stochastic optimization
problem. Hence, DRO has been widely applied in data-driven problems arising from many operations
research andmachine learning applications. Among others, in portfolio selection, Blanchet et al. [3] con-
sider DRO based on mean-variance principle. The same principle is also used in Calafiore and Ghaoui
[4], Zhu et al. [22] and Popescu [17], in which a linear-chance-constrained problem, a minimax regret
objective and a portfolio optimization problem are considered, respectively. However, mean-variance
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principle has been criticized for that its measure of risk, variance, is not a monotone measure.
Shadwick and Keating [18] introduced the Omega ratio to analyze information on the distribution of
potential returns. Essentially, it is the ratio of the upside of an investment to the downside. Omega ratio
has been verified to provide a new perspective in the performance evaluation of hedge funds [18] and
build as a useful measure [1]. Therefore, in this paper, we focus on DRO based on the mean-Omega
ratio principle in portfolio selection. Specifically, we first calculate the worst-case Omega ratio from the
ambiguity set and then find the optimal portoflio, which minimizes the worst-case Omega ratio. While
the current paper focuses on mean-Omega ratio principles, we should point out that recently several
other works have explored other measures such as mean-VaR and mean-CVaR in distributionally robust
portfolio selection (see [11, 12] and the references therein).

In addition to the principle employed in DRO, the choice of a proper ambiguity set is crucial in DRO.
In particular, one common way of defining the set F is through specifying the moments of the distribu-
tion (see, e.g., [2, 6, 15, 17, 21]); DRO problems based on moments information has been proved to have
a tractable form in applications. So we will first consider the worst-case Omega ratio based on the mean-
variance information. Motivated by recent advances in data-driven DRO problem, we also consider that
the uncertainty set is theWasserstein ball centred at the empirical distribution. TheWasserstein ball that
is centered at the empirical distribution has become popular as it can make full use of the data, and this
ambiguity set has become an attractive ambiguity set adopted in DRO. To solve a DRO problem, iden-
tifying the most adversarial distribution, the worst-case distribution, from an ambiguity set is essential.
We first study the worst-case distribution and calculate its Omega ratio. The worst-case Omega ratio
is calculated under mean-variance uncertainty set and mean-Wasserstein uncertainty set, respectively.
With aid of the projection result of the two ambiguity sets, we apply the results in the portfolio selection.

The rest of the paper is organized as follows. Section 2 presents the definition of the Omega ratio,
gives explicit expression of the worst-case Omega ratio under mean-variance uncertainty set and aims
to tackle the worst-case Omega ratio under mean-Wasserstein uncertainty set. Section 3 applies the
worst-case Omega ratio under mean-variance uncertainty set and mean-Wasserstein uncertainty set to
the portfolio. In Section 4, we present the simulation and empirical results derived from portfolios
comprised of our strategies, comparing them to those of various alternative models.

Throughout the paper, let d ∈ N and Rd be the d-dimensional Euclidean space. Let P (Rd) be the
set of all distributions on Rd and denote Pp(Rd) by the subset of P (Rd) with finite pth moment for
p ∈ [1,∞). For a random variable (vector) X ∈ P (Rd), denote E[X] by the mean (vector) of the
random variable (vector) X. For a law-invariant1 real-valued mapping d on P (Rd), the notation dF (X)
means the value of d(X), where X has the distribution F, and we omit F for simplicity. Furthermore,
we denote by x+ = max(0, x) and x− = max(0,−x).

2. Worst-case Omega ratio

In this section, we only discuss the case of d = 1. The case of d > 1 is discussed in Section 3, where the
corresponding portfolio selection problem is investigated. One popular measure of investment perfor-
mance in finance is Omega ratio introduced by Shadwick and Keating [18]: the ratio of the upside of
an investment to the downside.

Definition 2.1. (Shadwick and Keating [18]). For a payoff X with distribution F and a sure payoff c,
Omega ratio is defined as

ΩX (c) :=
E [(X − c)+]
E [(c − X)+]

.

1We say a mapping d on P (Rd ) is law-invariant if d(X) = d(Y) whenever X and Y has the same distribution.
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2.1. Mean-variance uncertainty set

We assume that the distribution of X lies in a distribution set where first and second moments are fixed.
Based on this assumption, we consider the following DRO problem for Omega ratio:

ΩX (c, `,f) = inf
F∈S1

ΩF
X (c), ΩX (c, `,f) = sup

F∈S1

ΩF
X (c), (1)

where

S1 := S (`,f) =
{
F ∈ P2(R) :

∫ ∞

−∞
x dF (x) = `,

∫ ∞

−∞
x2 dF (x) = `2 + f2

}
, (2)

and ΩF
X (c) represents the Omega ratio that is calculated under the constraint that the distribution of X

is F. The following theorem gives the explicit solutions of the optimization problem (1).

Theorem 2.2. Given ` ∈ R and f > 0, we have

ΩX (c, `,f) =

0, ` < c,
√
1+S2+S√
1+S2−S

, ` > c,
(3)

and

ΩX (c, `,f) =


√
1+S2+S√
1+S2−S

, ` < c,

∞, ` > c,
(4)

where S =
`−c
f

.

We first present a lemma from [10], which is subsequently used in the proof of Theorem 2.2.

Lemma 2.3. Given ` ∈ R and f > 0, we have

max
F∈S1
EF [(X − c)+] =

1
2

[√
f2 + (` − c)2 + ` − c

]
,

where S1 is defined by Eq. (2).

Proof of Theorem 2.2. Since EF [X−c] = EF [(X−c)+] −EF [(X−c)−] = EF [(X−c)+] −EF [(c−X)+],
the Omega function can be rewritten as

ΩF
X (c) =

EF [(X − c)+]
EF [(c − X)+]

=
EF [(X − c)+]

EF [(X − c)+] − EF [(X − c)] =

{
1 − EF [X] − c
EF [(X − c)+]

}−1
. (5)

We first consider the case of ΩX (c, `,f). If ` > c, then we have

ΩX (c, `,f) = inf
F∈S1

ΩF
X (c) = inf

F∈S1

{
1 − EF [X] − c
EF [(X − c)+]

}−1
=

{
1 − ` − c

maxF∈S1 {EF [(X − c)+]}

}−1
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=

{
1 − ` − c

1
2 [

√
f2 + (` − c)2 + ` − c]

}−1

=

√
1 + S2 + S

√
1 + S2 − S

,

where the second and fourth equalities follow from Eq. (5) and Lemma 2.3, respectively. If ` < c, define
a discrete random variable as follows:

XU =


` − f

√
1 − U

U
, with probability U,

` + f

√
U

1 − U
, with probability 1 − U.

(6)

Let U <
(`−c)2

f2+(`−c)2 . One can check that E[XU] = `, Var(XU) = f2, which implies that FXU
∈ S1. Also

noting that XU < c almost surely, we have

0 6 ΩX (c, `,f) 6 ΩXU
(c) = 0.

Hence, we conclude that ΩX (c, `,f) = 0 for ` < c. This completes the proof of Eq. (3).
Next, we consider the case of ΩX (c, `,f). If ` 6 c, then we have

ΩX (c, `,f) = sup
F∈S1

ΩF
X (c) = sup

F∈S1

{
1 − EF [X] − c
EF [(X − c)+]

}−1
=

{
1 + c − `

maxF∈S1 {EF [(X − c)+]}

}−1
=

{
1 + c − `

1
2 [

√
f2 + (` − c)2 + ` − c]

}−1

=

√
1 + S2 + S

√
1 + S2 − S

,

where the second and fourth equalities follow from Eq. (5) and Lemma 2.3, respectively. If ` > c, recall
the definition of XU in Eq. (6). Let U >

(`−c)2
f2+(`−c)2 . One can check that E[XU] = `, Var(XU) = f2,

which implies that FXU
∈ S1. Also noting that XU > c almost surely, we have

ΩX (c, `,f) > ΩXU
(c) = +∞.

Hence, we have ΩX (c, `,f) = 0 for ` > c. This completes the proof of (4). �

Remark 1. The slope of a straight line tangent to the efficient frontier, consisting of both risky and risk-
free assets, is called the Sharpe ratio [19]. That is, for a random variable X with mean ` and standard
deviation f, Sharpe ratio is defined as SX =

E[X ]−r0√
Var(X )

, where Var represents the variance and r0 is a
reference return rate, typically taken as the risk-free return rate. Theorem 2.2 implies that the upper and
lower bounds of the Omega ratio can be obtained from a given Sharpe ratio, which is included by the
uncertainty set (2). Observing the forms of Eqs. (3) and (4), we find that the robust value increases with
the given Sharpe ratio.
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2.2. Mean-Wasserstein uncertainty set

In this section, we present the worst-case Omega ratio based on Wasserstein uncertainty set. We first
give the definition of Wasserstein Distance from [20].

Definition 2.5. (Wasserstein Distance). The p-Wasserstein distance Wp(G1,G2) between G1,G2 ∈
Pp(Rd) is defined by

Wp(G1,G2) :=

inf
c∈Pp (Rd×Rd )

{(∫
Rd×Rd

‖x − y‖p c(dx, dy)
) 1

p ��� c ∈ Pp(Rd × Rd) s.t.
c(· × Rd) = G1, c(Rd × ·) = G2

}
,

where ‖·‖ is a norm on Rd , whose dual norm is defined as ‖y‖∗ := sup‖x‖61 x>y for y ∈ Rd .

The Wasserstein distance is a natural way to compare two distributions when one is obtained from
the other by perturbation. For a fixed F ∈ Pp(Rd) and Y > 0, the Wasserstein ball centered on F is
defined as follows:

ℬ
p
Y (F) :=

{
G ∈ Pp(Rd)

��Wp(G,F) 6 Y
}
.

For d = 1, we are interested in the worst-case Omega ratio in scenarios where the expected return is
greater than the risk-free return, that is, E[X] > c, where c is the risk-free return. Hence, we consider
the worst-case Omega ratio under the mean and p-Wasserstein uncertainty set:

ΩF
X (c, `, Y) = inf

G∈S2
ΩG

X (c), (7)

where F ∈ Pp(R),

S2 := Sp,Y (`,F) =
{
G ∈ ℬ

p
Y (F)

�� ∫ x dG(x) = `

}
and ΩG

X (c) represents the Omega ratio that is calculated under the constraint that the distribution of X
is G.

We turn to the main result of this section, which indicates that the explicit solution of problem (7) is
obtained for p= 1, and we simplify problem (7) for p> 1.

Theorem 2.6. Given c, `, Y > 0, p ∈ [1,∞) and F ∈ Pp(R), assume ` > c. Let ΩF
X (c, `, Y) be the

optimal value of problem (7) for a given distribution F, `F denote the random variable’s mean under
the distribution F. We have the following results.

(i) For p= 1, `c+
F := EF [(X − c)+], then

ΩF
X (c, `, Y) =


1, if ` ∈ A1 ∪ B1,[
1 − 2(` − c)

` − `F + Y

]−1
, if ` ∈ A2 ∪ B2,

where A1 = {` : ` > `F − `
c+
F , ` > `F − 2`c+

F + Y}, A2 = {` : ` > `F − `
c+
F , ` 6 `F − 2`c+

F + Y},
B1 = {` : ` 6 `F − `

c+
F , ` < `F − Y} and B2 = {` : ` 6 `F − `

c+
F , ` > `F − Y}.

https://doi.org/10.1017/S0269964823000141 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964823000141


Probability in the Engineering and Informational Sciences 323

(i) Otherwise, for p> 1, we have

ΩF
X (c, `, Y) =

(
1 − ` − c

T (`)

)−1
,

where

T (`) := inf
_>0,W∈R

{
_Yp + W(` − `F) + |W |

(
1 − 1

p

) (
|W |
_p

) 1
p−1

+ EF [(X − c1(_, W))+]
}

and

c1(_, W) := c +
(
1 − 1

p

) [(
|W |
_p

) 1
p−1

|W | −
(
|1 − W |
_p

) 1
p−1

|1 − W |
]
.

To simplify problem (7), we need to utilize the following lemma, the proof of which is directly
derived from Theorem 1 of [8].

Lemma 2.7. For p ∈ [1,∞), F ∈ Pp(R), ` ∈ R, Y > 0 and Ψ : R→ R, we have

sup
G∈S2

∫
R
Ψ(b) dG(b) = inf

_>0,W∈R

{
_Yp +

∫
R
sup
b ∈R

[Ψ(b) − Wb − _ |b − Z |p] dF (Z) + W`

}
.

Proof of Theorem 2.6. We know that if EG [X] = `, Omega ratio can be expressed as

ΩG
X (c) =

EG [(X − c)+]
EG [(c − X)+]

=

{
1 − ` − c
EG [(X − c)+]

}−1
.

Denote T (`) = supG∈S2
EG [(X − c)+], for ` > c, we can obtain that

inf
G∈S2

` − c
EG [(X − c)+]

=
` − c
T (`) .

Hence, problem (7) can be reduced as follow:

ΩX (`, c, Y) = inf
G∈S2

ΩG
X (c) = inf

G∈S2

{
1 − ` − c
EG [(X − c)+]

}−1
=

{
1 − inf

G∈S2

` − c
EG [(X − c)+]

}−1
=

{
1 − ` − c

T (`)

}−1
=

T (`)
T (`) − (` − c) .
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Applying Lemma 2.7, denote by

H_,W (y) = sup
x∈R

{(x − c)+ − Wx − _ |x − y|p},

T (`) can be reformulated as

T (`) = sup
G∈S2

EG [(X − c)+] = inf
_>0,W∈R

{
_Yp + EF [

H_,W (Y)
]
+ W`

}
. (8)

To simplify T (`), we calculate the RHS of Eq. (8) in the following steps.

1. Calculate H_,W (y).
Let hy (x) = (x − c)+ − Wx − _ |x − y|p. For x ∈ R\{c, y}, the derivative of hy (x) with respect to x

is

mhy (x)
mx

= I (x > c) − W − sgn(x − y)_p|x − y|p−1.

To calculate the maximum of hy (x), we consider the case of p= 1 and p> 1, respectively.
(i) If p= 1, for x ∈ R\{c, y}, the derivative of hy (x) with respect to x can be written as

mhy (x)
mx

=


1 − W − _, x > max{c, y},
I (x > c) − W − sgn(x − y)_, x ∈ (min{c, y}, max{c, y}),
−W + _, x < min{c, y}.

In the case of _ > 1
2 and 1 − _ 6 W 6 _, if mhy (x)

mx > 0 for x < min{c, y} and mhy (x)
mx 6 0 for

x > max{c, y}, then the maximizer to hy (x) lies in the interval [min{c, y}, max{c, y}]. If y< c,
as mhy (x)

mx 6 0 for x ∈ (y, c), the maximizer to hy (x) is x∗ = y and hy (y) = −Wy. If y > c, as
mhy (x)
mx > 0 for x ∈ (c, y), the maximizer to hy (x) is x∗ = c and hy (c) = −_y+(_−W)c. Otherwise,

it can be verified that

sup
x∈R

hy (x) = max{ lim
x→∞

hy (x), lim
x→−∞

hy (x)} = ∞.

In summary, in the case of p= 1, if _ > 1
2 and 1 − _ 6 W 6 _, the value of H_,W (y) is

H_,W (y) = sup
x∈R

hy (x) =
−Wy, y < c,

−_y + (_ − W)c, y > c;

otherwise, the value of H_,W (y) is ∞.
(ii) If p> 1, for y< c, we have

mhy (x)
mx

=


1 − W − _p|x − y|p−1, x > c,

−W − _p|x − y|p−1, x ∈ (y, c),
−W + _p|x − y|p−1, x < y.
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Conversely, for y > c, then

mhy (x)
mx

=


1 − W − _p|x − y|p−1, x > y,

1 − W + _p|x − y|p−1, x ∈ (c, y),
−W + _p|x − y|p−1, x < c.

Therefore, it is necessary to discuss the classification of W. For W 6 0, we consider the following
three cases.
(a) For y < c −

(
1−W
_p

) 1
p−1 , solving mhy (x)

mx > 0 yields x < y +
(
−W
_p

) 1
p−1 and solving mhy (x)

mx 6 0

yields x > y +
(
−W
_p

) 1
p−1 . As a result, the maximizer to hy (x) is x∗1 = y +

(
−W
_p

) 1
p−1 and

hy (x∗1) = −Wy − W

(
1 − 1

p

) (
−W
_p

) 1
p−1

.

(b) For c−
(
1−W
_p

) 1
p−1
6 y 6 c−

(
−W
_p

) 1
p−1 , we find that mhy (x)

mx > 0 in the cases that x < y+
(
−W
_p

) 1
p−1

or c < x < y +
(
1−W
_p

) 1
p−1 and mhy (x)

mx 6 0 in the cases that y +
(
−W
_p

) 1
p−1
6 x 6 c or

x > y +
(
1−W
_p

) 1
p−1 . Hence, the local maximizers to hy (x) are

x∗1 = y +
(
−W
_p

) 1
p−1

and x∗2 = y +
(
1 − W

_p

) 1
p−1

.

In addition, the local maximum values of hy (x) are

hy (x∗1) = −Wy − W

(
1 − 1

p

) (
−W
_p

) 1
p−1

and

hy (x∗2) = y − Wy − c + (1 − W)
(
1 − 1

p

) (
1 − W

_p

) 1
p−1

.

(c) For y < c −
(
−W
_p

) 1
p−1 , solving mhy (x)

mx > 0 yields x < y +
(
1−W
_p

) 1
p−1 and solving mhy (x)

mx 6 0

yields x > y +
(
1−W
_p

) 1
p−1 . As a result, the maximizer to hy (x) is x∗2 = y +

(
1−W
_p

) 1
p−1 and

hy (x∗2) = y − Wy − c + (1 − W)
(
1 − 1

p

) (
1 − W

_p

) 1
p−1

.

Let

c0(_, W) = c +
(
1 − 1

p

) [(
−W
_p

) 1
p−1

(−W) −
(
1 − W

_p

) 1
p−1

(1 − W)
]
,
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one can easily verify that c −
(
1−W
_p

) 1
p−1
6 c0(_, W) 6 c −

(
−W
_p

) 1
p−1 by mean value theorem.

In addition, y < c0(_, W) implies hy (x1) > hy (x2). Due to the above discussion, if W 6 0,
the maximum value of hy (x) is as follows:

H_,W (y) = sup
x∈R

hy (x) =


−Wy − W

(
1 − 1

p

) (
−W
_p

) 1
p−1 , y < c0(_, W),

y − Wy − c + (1 − W)
(
1 − 1

p

) (
1−W
_p

) 1
p−1 , y > c0(_, W).

Similarly, for 0 < W < 1 and W > 1, we can obtain similar results with only the difference
in the sign of the open root formula. Hence, for W ∈ R and _ > 0, we obtain the value of
H_,W (y) as

H_,W (y) = sup
x∈R

hy (x) =


−Wy + |W |

(
1 − 1

p

) (
|W |
_p

) 1
p−1 , y < c1(_, W),

y − Wy − c + |1 − W |
(
1 − 1

p

) (
|1−W |
_p

) 1
p−1 , y > c1(_, W),

where

c1(_, W) := c +
(
1 − 1

p

) [(
|W |
_p

) 1
p−1

|W | −
(
|1 − W |
_p

) 1
p−1

|1 − W |
]
.

2. Calculate EF [H_,W (Y)].
Denoted f (_, W) = EF [H_,W (Y)]. For p= 1, if _ > 1

2 and 1 − _ 6 W 6 _, we have

f (_, W) = EF [H_,W (Y)]

=

∫ c

−∞
−Wy dF (y) +

∫ +∞

c
−_y + (_ − W)c dF (y)

= −W`F − (_ − W)
∫ +∞

c
(y − c) dF (y)

= −W`F − (_ − W)`c+
F .

Otherwise, f (_, W) = ∞ because H_,W (y) = ∞ for all y ∈ R. For p> 1, we find that

f (_, W) = EF [H_,W (Y)]

=

∫ c1 (_,W)

−∞
−Wy + |W |

(
1 − 1

p

) (
|W |
_p

) 1
p−1

dF (y)

+
∫ +∞

c1 (_,W)
y − Wy − c + |1 − W |

(
1 − 1

p

) (
|1 − W |
_p

) 1
p−1

dF (y)

= −W`F + |W |
(
1 − 1

p

) (
|W |
_p

) 1
p−1

+
∫ +∞

c1 (_,W)
y − c1(_, W) dF (y)

= −W`F + |W |
(
1 − 1

p

) (
|W |
_p

) 1
p−1

+ EF [(Y − c1(_, W))+] .
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Ultimately,

T (`) = sup
G∈S2

EG [(X − c)+]

=


inf_> 1

2 ,1−_6W6_
{
_(Y − `

c+
F ) + W(` − `F + `

c+
F )

}
, p = 1,

inf
_>0,W∈R

{
_Yp + W(` − `F)

+ |W |
(
1 − 1

p

) (
|W |
_p

) 1
p−1

+ EF [(Y − c1(_, W))+]
}
, p > 1.

3. Calculate ΩF
X (c, `, Y) in the case of p= 1.

We denote g(_, W) := _(Y− `
c+
F ) + W(`− `F + `

c+
F ). Fixed _, the partial derivative of g(_, W) with

respect to W is

mg(_, W)
mW

= ` − `F + `
c+
F .

Since ` > `F − `
c+
F yields mg(_,W)

mW
> 0, the minimizer to g(_, W) is W∗ = 1 − _ and

g(_, 1 − _) = _(Y + `F − ` − 2`c+
F ) + (` − `F + `

c+
F ).

One can verify that

mg(_, 1 − _)
m_

= Y + `F − ` − 2`c+
F .

Noting ` > Y + `F − 2`c+
F yields mg(_,1−_)

m_
< 0, the minimizer to g(_, 1 − _) is _∗ = ∞ and the

minimum value of g(_, 1 − _) is −∞. Conversely, if ` 6 Y + `F − 2`c+
F , as mg(_,1−_)

m_
> 0, the

minimizer to g(_, 1−_) is _∗ = 1
2 and g

(
1
2 ,

1
2

)
= 1

2 (`− `F + Y). On the other hand, if ` 6 `F − `
c+
F ,

as mg(_,W)
mW

6 0, the minimizer to g(_, W) is W∗ = _ and

g(_,_) = _(` − `F + Y).

In addition, we have

mg(_,_)
m_

= ` − `F + Y.

Then ` > `F − Y yields mg(_,_)
m_

> 0 and the minimizer to g(_,_) is _∗ = 1
2 and g

(
1
2 ,

1
2

)
=

1
2 (` − `F + Y). If ` < `F − Y, we have mg(_,_)

m_
< 0, then the minimizer to g(_,_) is _∗ = ∞ and the

minimum value of g(_,_) is −∞. To sum up,

T (`) = inf
_> 1

2 ,1−_6W6_
g(_, W) =

−∞, if ` ∈ A1 ∪ B1,
1
2 (` − `F + Y), if ` ∈ A2 ∪ B2,

where A1, A2, B1 and B2 are defined in Theorem 2.6. As a result,
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ΩF
X (c, `, Y) =

(
1 − ` − c

T (`)

)−1
=


1, if ` ∈ A1 ∪ B1,[
1 − 2(`−c)

`−`F+Y

]−1
, if ` ∈ A2 ∪ B2. �

In Theorem 2.6, we provide an explicit solution to problem (7) and derive a more concise opti-
mization problem for p> 1. In the next section, we will apply problems (1) and (7) in portfolio
selection.

3. Application in portfolio selection

In this section, we explore interesting properties of the distributionally robust portfolio optimization
problem under the mean-variance and Wasserstein uncertainty sets. Throughout this section, suppose
that W is a subset of Rd . Let X = (X1, . . . ,Xd)> ∈ P (Rd) and w = (w1, . . . ,wd)> ∈ W, where Xi
represents the return of the ith asset, wi represents the investment weight of the ith asset. The distribution
of w>X is denoted by Fw when the distribution of X is F.

3.1. Mean-variance uncertainty set

We consider the distributionally robust portfolio optimization problem undermean-variance uncertainty
set:

sup
w∈W

inf
F∈S (-,Σ)

ΩF
w>X(c), (9)

where

S (-,Σ) := {F ∈ P2(Rd) : EF [X] = -, VarF (X) = Σ},

and ΩF
w>X(c) represents the Omega ratio of w>X that is calculated under the constraint that the

distribution of X is F.
In the following theorem, we solve the inner problem of (9) and give an equivalent optimization

problem with the same optimal solution as problem (9).

Theorem 3.1. Given c ∈ R, - ∈ Rd and Σ, a positive semidefinite matrix of Rd×d , assuming w>- > c
for w ∈ W, problem (9) is equivalent to the following optimization problem:

sup
w∈W

w>- − c
√

w>Σw
, (10)

in the sense that two problems have the same optimal solution.

To prove Theorem 3.1, we need the following lemma from [5].

Lemma 3.2. For w ∈ Rd , it holds that

S (w, -,Σ) = Sw(-,Σ),

where

S (w, -,Σ) = {Fw ∈ P2(R) : F ∈ S (-,Σ)
Fw is the distribution of w>X when the distribution of X is F}
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and

Sw(-,Σ) = {F ∈ P2(R) : EF [X] = w>-, VarF (X) = w>Σw}.

Proof of Theorem 3.1 The core of the robust optimization problem in portfolio is solving for the internal
worst-case Omega ratio under the uncertainty set S (-,Σ). By Lemma 3.2, we have

inf
F∈S (-,Σ)

ΩF
w>X(c) = inf

Fw∈S (w,-,Σ)
Ω

Fw
w>X(c) = inf

G∈Sw (-,Σ)
ΩG

Y (c).

Hence, for w>- > c, one can verify that

ΩX(w, c, -,Σ) := inf
F∈S (-,Σ)

ΩF
w>X(c) = inf

G∈Sw (-,Σ)
ΩG

Y (c) = min
G∈Sw (-,Σ)

ΩG
Y (c) =

√
1 + S2

w + Sw√
1 + S2

w − Sw

directly by Theorem 2.2, where Sw =
w>-−c√

w>Σw
. The above conclusion gives the worst-case Omega ratio

with respect to the weightw. Themonotonic progression ofΩX(w, c, -,Σ) with respect to Sw is obvious,
implying that the worst-case Omega ratio problem in the portfolio is equivalent to the supremum of the
Sharpe ratio Sw. Thus, we complete the proof. �

Remark 2. We consider the situation where the expected return is greater than the risk-free return, that
is, w>- > c. Therefore, in Theorem 3.1, we simplify problem (9) in the case of w>- > c. For w>- < c,
by Theorem 2.2, ΩX(w, c, -,Σ) = 0, and thus the optimal value of problem (9) is 0.

Remark 3. Given c ∈ R, -1, -2 ∈ Rd and two positive semidefinite matrices Σ1, Σ2 ∈ Rd×d , assume
-1 � -2 , Σ1 � Σ2

2 and w>-1 > c for w ∈ W. If both the mean and covariance matrix are included in
the box uncertainty set, that is,

S1(-1, -2,Σ1,Σ2) := {F ∈ P2(Rd) : -1 � EF [X] � -2,Σ1 � VarF (X) � Σ2},

then we can obtain similar results by applying the result in Theorem 3.1.We consider the distributionally
robust portfolio optimization problem under the new mean-variance uncertainty set:

sup
w∈W

inf
F∈S1 (-1,-2,Σ1,Σ2 )

ΩF
w>X(c), (11)

where ΩF
w>X(c) represents the Omega ratio of w>X that is calculated under the constraint that the

distribution of X is F. One can verify that

inf
F∈S1 (-1,-2,Σ1,Σ2 )

ΩF
w>X(c) = inf

-1�-�-2
Σ1�Σ�Σ2

inf
F∈S (-,Σ)

ΩF
w>X(c) = inf

-1�-�-2
Σ1�Σ�Σ2

√
1 + S2

w + Sw√
1 + S2

w − Sw
,

where Sw =
w>-−c√

w>Σw
. Note that Sw is increasing with respect to - and decreasing with respect to

Σ. Furthermore,
√
1+S2

w+Sw√
1+S2

w−Sw
is increasing with respect to Sw. Thus, problem (11) is equivalent to the

2For two vectors -1, -2 ∈ Rd , the notation -1 � -2 means that each component of -1 is no more than the corresponding component of -2.
For two positive semidefinite matrices Σ1, Σ2 ∈ Rd×d , the notation Σ1 � Σ2 means that Σ2 − Σ1 is a positive semidefinite matrix.

https://doi.org/10.1017/S0269964823000141 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964823000141


330 Q. Li and X. Xie

following optimization problem:

sup
w∈W

w>-1 − c
√

w>Σ2w
, (12)

in the sense that two problems have the same optimal solution.

3.2. Mean-Wasserstein uncertainty set

We consider a distributionally robust portfolio optimization problem based on Omega ratio in the port-
folio under the mean-Wasserstein uncertainty set. Let F ∈ Pp(Rd) be a prespecified distribution used as
a benchmark. Assume the distribution of X, defined at the beginning of Section 3, is G, which satisfies
Wp(F,G) 6 Y. The distribution of w>X is denoted by Gw when the distribution of X is G. Then, we
propose the distributionally robust portfolio optimization problem under mean-Wasserstein uncertainty
set:

sup
w∈W

inf
G∈Sd

p,Y (-,F )
ΩG

w>X(c) (13)

where Y > 0, F ∈ Pp(Rd),

Sd
p,Y (-,F) := {G ∈ ℬ

p
Y (F) : EG [X] = -},

and ΩG
w>X(c) represents the Omega ratio of w>X that is calculated under the constraint that the

distribution of X is G.
In the following theorem, we give the explicit solution to the inner problem of Eq. (13) for p= 1 and

simplify the inner problem of Eq. (13) for p> 1.

Theorem 3.5. For p > 1, let F ∈ Pp(Rd) be a benchmark distribution, EF [X] = - and c be a sure
payoff. Suppose w>- > c for w ∈ W, and denote

sup
w∈W

inf
G∈Sd

p,Y (-,F )
ΩG

w>X(c) := sup
w∈W

ΩF
X(w, c, -, Y). (14)

(i) If p= 1, then we have

ΩF
X(w, c, -, Y) =


1, if w>- ∈ A∗

1 ∪ B∗
1,[

1 − 2(w>- − c)
w>- − `Fw + Y

]−1
, if w>- ∈ A∗

2 ∪ B∗
2,

where A∗
1 = {` : ` > `Fw − `

c+
Fw

, ` > `Fw − 2`c+
Fw

+ Y}, A∗
2 = {` : ` > `Fw − `

c+
Fw

, ` 6
`Fw−2`

c+
Fw
+Y},B∗

1 = {` : ` 6 `Fw−`
c+
Fw

, ` < `Fw−Y} andB∗
2 = {` : ` 6 `Fw−`

c+
Fw

, ` > `Fw−Y}.
(ii) If p> 1, then we have

ΩF
X(w, c, -, Y) =

[
1 − w>- − c

T (w>-)

]−1
,
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where

T (w>-) = inf
_>0,W∈R

{
_(‖w‖∗ Y)p + W(w>- − `Fw)

+ |W |
(
1 − 1

p

) (
|W |
_p

) 1
p−1

+ EF [(w>X − c1(_, W))+]
}
,

and c1(_, W) is defined in Theorem 2.6.

For the benchmark distribution F, define

Fw,p,Y (F) = {Gw>X ∈ Pp(R) : G ∈ ℬ
p
Y (F),

Gw is the distribution of w>X when the distribution of X is G}.

The following lemma can be found in [14], which will be used in the proof of Theorem 3.5.

Lemma 3.6. For Y > 0, p > 1 and w ≠ 0, assume a prespecified distribution F ∈ Pp(Rd), it holds that

Fw,p,Y (F) = ℬ
p
‖w‖∗Y

(Fw),

where ‖·‖∗ is the dual norm of ‖·‖.

Now we use the projection result in Lemma 3.6 to prove Theorem 3.5.

Proof of Theorem 3.5 We focus on a portfolio selection problem where the unknown distribution of X
is in the uncertainty set S4. For F ∈ Pp(Rd), let

Sp,Y (w, -,F) = {Gw ∈ Pp(R) : G ∈ Sd
p,Y (-,F),

Gw is the distribution of w>X when the distribution of X is G}.

By the Lemma 3.6, we have Fw,p,Y (F) = ℬ
p
‖w‖∗Y

(Fw). It directly applies that Sp,Y (w, -,F) =

S1
p,‖w‖∗Y

(w>-,Fw). As a result,

inf
G∈Sd

p,Y (-,F )
ΩG

w>X(c) = inf
Gw∈Sp,Y (w,-,F )

Ω
Gw
w>X(c) = inf

H∈S1
p,‖w‖∗ Y

(w>-,Fw )
ΩH

Y (c).

Hence, for w>- > c, applying Theorem 2.6 to w>X, the result follows immediately. �

In Theorem 3.5, we apply problem (7) in portfolio selection. In Section 3.3, we will discuss finite
sample guarantee based on Wasserstein ball.

3.3. Finite sample guarantee based on Wasserstein ball

In portfolio simulation, the distribution of portfolio assets is unknown, and we often use an empirical
distribution function F̂N to approximate the true distribution of assets. This uncertainty set provides
attractive performance guarantees under the common light tail assumption of generating a distribution
F over unknown data.

https://doi.org/10.1017/S0269964823000141 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964823000141


332 Q. Li and X. Xie

Assumption 3.7. (Light-tailed distribution). For F ∈ Pp(Rd), there exists an exponent a> p such
that

A := EF [exp(‖X‖a)] =
∫
Rd

exp(‖b‖a)F (db) < +∞.

Assumption 3.7 essentially requires that the tails of the distribution F decay at an exponential rate.
Let W1 = {w ∈ Rd : wi > 0, i = 1, . . . , d,

∑d
i=1 wi = 1} and e1/d = (1/d, . . . , 1/d)>. We have

UW1 := supw∈W1
‖w‖∗ = 1 < ∞ and LW1 := infw∈W1 ‖w‖∗ =



e1/d

∗ > 0. For w ∈ W1, F̂w,N is
constructed with i.i.d samples in the population whose true distribution is Fw. We have the following
lemma from Theorem 2 of Fournier and Guillin [7].

Lemma 3.8. If Assumption 3.7 holds, then for any w ∈ W1, N > 1 and Y > 0, we have

PN
(
Wp

(
Fw, F̂w,N

)
> Y

)
6

c1 exp
(
−c2NY2

)
, if Y 6 1,

c1 exp
(
−c2NYa/p) , if Y > 1,

(15)

where c1, c2 are positive constants that only depend on a, A and p.

For fixed w ∈ W1, Lemma 3.8 provides an a priori estimate of the probability that the unknown data
generating distribution Fw lies outside the Wasserstein ball ℬp

Y (F̂w,N ). Equating the RHS of Eq. (15)
to V and solving for Y yields

Yp,N (V) :=


(
log(c1V−1 )

c2N

)1/2
, if N > log(c1V−1 )

c2 ,(
log(c1V−1 )

c2N

)p/a
, if N <

log(c1V−1 )
c2 .

(16)

Thus, we can use Lemma 3.8 to estimate the radius of the smallest Wasserstein ball containing distribu-
tion Fw with 1−V confidence for V ∈ (0, 1). Specifically, if Assumption 3.7 holds, then for any w ∈ W1,
N > 1 and V ∈ (0, 1), we have

PN
(
Wp

(
Fw, F̂w,N

)
6 Yp,N (V)

)
> 1 − V, (17)

where Yp,N (V) is defined in Eq. (16). Then the concentration inequality gives rise to the following finite
sample guarantee.

Theorem 3.9. (Finite sample guarantee). Suppose Assumption 3.7 holds. For V ∈ (0, 1), let Yp,N (V)
be defined in (16). Then we have

PN ©­«ΩF
w>X(c) > inf

G∈ℬp
Yp,N (V)/LW1

(F̂N )
ΩG

w>X(c)
ª®¬ > 1 − V, ∀w ∈ W1.

Proof. Denoted by Y∗ := Yp,N (V)/LW1 . One can verify that Fw ∈ Fw,p,Y∗ (F̂N ) implies that

ΩF
w>X(c) > inf

G∈ℬp
Y∗ (F̂N )

ΩG
w>X(c).
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Then, we have

PN

(
ΩF

w>X(c) > inf
G∈ℬp

Y∗ (F̂N )
ΩG

w>X(c)
)
> PN

(
Fw ∈ Fw,p,Y∗ (F̂N )

)
.

By Lemma 3.6, we obtain

PN
(
Fw ∈ Fw,p,Y∗ (F̂N )

)
= PN

(
Fw ∈ ℬ

p
‖w‖∗Y∗

(F̂w,N )
)
= PN

(
Wp

(
Fw, F̂w,N

)
6 ‖w‖∗ Y∗

)
.

Since Y∗ = Yp,N (V)/LW1 , we have

PN
(
Wp

(
Fw, F̂w,N

)
6 ‖w‖∗ Y∗

)
> PN

(
Wp

(
Fw, F̂w,N

)
6 Yp,N (V)

)
.

Thus, one can verify that

PN ©­«ΩF
w>X(c) > inf

G∈ℬp
Yp,N (V)/LW1

(F̂N )
ΩG

w>X(c)
ª®¬ > 1 − V

directly from inequality (17). �

In this section, we first proposed a concentration inequality for one-dimensionalWasserstein ball. The
concentration inequality provided the finite sample guarantee based on one-dimensional Wasserstein
ball.

4. Numerical experiments

In this section, we examine the performance of our models and compare them with the classical (non-
robust) Omega ratio (OR) model as well as two alternative distributionally robust portfolio optimization
models proposed by [3] and [16], respectively. We first give some notations: `i denotes the expected
return on asset i, r0 denotes the expected rate of return on the portfolio, wi denotes the proportion of
asset Xi in the portfolio (0 6 wi 6 1) and Cov(Xi,Xj) denotes the covariance between the return on
asset Xi and the return on asset Xj for i, j = 1, . . . , d. Let - = (`1, . . . , `d)>, Σ = (Cov(Xi,Xj))d×d and
W1 = {w ∈ Rd : wi > 0, i = 1, . . . , d,

∑d
i=1 wi = 1}. Below we provide the specific expressions for the

models mentioned above to obtain optimal solutions.
Classical (non-robust) OR optimization model:

max
w∈W1

Ωw>X(c) =
∑d

i=1(wi`i − c)+∑d
i=1 (wi`i − c)−

(18)

s.t.
d∑

i=1
wi`i > r0,

d∑
i=1

wi = 1, wi > 0, i = 1, . . . , d. (19)

Distributionally robust Omega ratio optimization based on mean-variance information (DROR-MV)
model (Theorem 3.1):

max
w∈W1

∑d
i=1 wi`i − c√∑d

i=1
∑d

j=1 wiwjCov(Xi,Xj)
s.t. (19) (20)
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Distributionally robust Omega ratio optimization based on mean-Wasserstein ball (DROR-MW) model
(Theorem 3.5): Set p= 2, a= 2 and Y = (logN/N)1/d , where d is the dimension of X and N is the sample
size of the data.

max
w∈W1

Ω
F̂N
X (w, c, -, Y) =

{
1 −

∑d
i=1(wi`i − c)+
T F̂N (w>-)

}−1

s.t. T F̂N (w>-) (21)

= min
_>0,W∈R

_(‖w‖2 Y)2 + W

(
d∑

i=1
`i − `F̂w,N

)
+ W2

4_
+ 1

N

N∑
j=1

[
d∑

i=1
wiXij −

(
c + 2W − 1

4_

)]
+

 ,

d∑
i=1

wi`i > max(r0, c),
d∑

i=1
wi = 1, wi > 0, i = 1, . . . , d.

In general, the objective function Ω
F̂N
X (w, c, -, Y) is not convex with respect to w. Therefore, DROR-

MW model is not a convex optimization problem and may have only locally optimal solutions. We
conduct simulations to obtain the optimal portfolio by selecting different initial values that match the
actual situation and calculating the final combined weight after optimization.

Blanchet et al. [3] proposed the distributionally robust mean-variance portfolio selection problem
with Wasserstein distances. Specifically, the distributionally robust mean-variance (DRMV) model is
given by

min
w∈W1

max
F∈ℬp

Y (F̂N )
w>VarF (X)w (22)

s.t. min
F∈ℬp

Y (F̂N )
EF [w>X] > r0,

d∑
i=1

wi = 1, wi > 0, i = 1, . . . , d. (23)

Neufeld et al. [16] proposed a fully data-driven markov decision problem under Wasserstein uncer-
tainty set. Specifically, the distributionally robust expected return optimization based on Wasserstein
ball (DRER-W) model is given by

sup
w∈W1

inf
F∈ℬp

Y (F̂N )
EF

[ ∞∑
t=1

d∑
i=1

UtwiX i
t+1

]
(24)

s.t.
d∑

i=1
wi = 1, wi > 0, i = 1, . . . , d, (25)

where X i
t represents the return of the ith asset at time t and the empirical distribution F̂N is based on the

training data; see [16] for more details.

4.1. Simulation

The forthcoming simulations aim to evaluate the performance of the DROR-MV and DROR-MW
models, comparing them to the DRMV and DRER-W models as well as the classical non-robust OR
model.

We conduct experiments in the following setting. In each simulation, we generate n realizations
of the normal random vector Xi ∈ Rd (i = 1, . . . , n), which satisfies Xi ∼ N (-,Σ). We set d = 10,
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Table 1. Return performance indices based on different models—Mean, Sharpe ratio, Omega ratio and
their respective variances (×10−2).
Method Mean Sharpe ratio Omega ratio

DROR-MW 0.033 (2.38) 1.22 (0.19) 1.053 (0.082)
DROR-MV 0.030 (1.81) 1.51 (0.14) 1.032 (0.063)
DRER-W 0.039 (3.17) 1.12 (0.62) 1.013 (0.110)
DRMV 0.026 (1.45) 1.57 (0.13) 0.954 (0.032)
OR 0.031 (2.79) 0.98 (0.48) 1.056 (0.096)

Table 2. Return performance indices based on different models—Mean, Sharpe ratio, Omega ratio and
their respective variances (×10−2).
Method Mean Sharpe ratio Omega ratio

DROR-MW 0.054 (2.06) 2.00 (0.35) 1.089 (0.157)
DROR-MV 0.052 (1.72) 2.13 (0.28) 1.074 (0.150)
DRER-W 0.061 (2.96) 1.64 (0.79) 1.027 (0.377)
DRMV 0.038 (1.42) 2.42 (0.16) 1.012 (0.108)
OR 0.047 (2.65) 1.35 (0.73) 1.091 (0.191)

n = 104, - = (0.0297, 0.039, 0.038, 0.026, 0.023, 0.025, 0.026, 0.036, 0.022, 0.028)>, Σ =

diag(1, . . . , 1), c= 0.03. We compute the optimal portfolio of robust models and perform 10 simulation
runs to ensure the stability of the simulation results. In each simulation run, we generate 104 realizations
of standard normal random vectors. All the results are summarized in Table 1. The first column of the
table lists the aforementioned models. The second, third and fourth columns show the mean, Sharpe
ratio and Omega ratio corresponding to each model, respectively, along with their respective variances
denoted within parentheses.

Based on the simulation results, we can draw the following observations: (i) The expected return of
the DROR-MV and DROR-MW models is higher than that of the DRMV model but lower than that
of the DRER-W model. (ii) Based on the variances corresponding to the mean in the table, it can be
inferred that the DROR-MV and DROR-MW models have lower volatility than the DRER-W model
but higher volatility than the DRMV model. (iii) The Sharpe ratio of the DROR-MV and DROR-MW
models is higher than that of the DRER-W model. Moreover, the DROR-MV and DROR-MW models
have higher Omega ratios than other robust models. The results can be attributed to the fact that the
DRMV model aims to minimize variance without considering returns, the DRER-W model aims to
maximize returns, while the DROR-MV and DROR-MW models aim to maximize worst-case Omega
ratio, considering both returns and losses.

Since the previous data were randomly generated frommultivariate normal distributions, but in prac-
tice the data are usually correlated, we generated the data that follows the ARMA(p, q) model, which is
expressed as

Xt = q0 + q1Xt−1 + · · · + qpXt−p + Yt + \1Yt−1 + · · · + \qYt−q,

where {Yi}t
i=1 is an independent identically distributed zero-mean white noise series. In the second

experiment, for each d and n, we generate random variables Xi ∈ Rd , i = 1, . . . , n such that Xt =

dXt−1+9t +\9t−1, where X0 ∼ N (-,Σ), 9i ∼ N (0, 1). We set d = 0.7, \ = 0.01 and the other parameters
were taken to be consistent with the previous simulation.

The results of the simulated data generated based on the ARMA time series are shown in Table 2.
The same column name representation as in Table 2 is used. When the simulated data is generated
based on the ARMAmodel and the initial data follows a normal distribution, the portfolio of our robust
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Table 3. The assets from the US stock market.
Stock
code Return

Stock
code Return

Stock
code Return

Stock
code Return

Stock
code Return

AAPL X1 BAC X2 CVX X3 GOOG X4 JNJ X5
MSFT X6 PEP X7 ADBE X8 TSM X9 WMT X10

Table 4. Means, variances and correlation coefficients of stock returns.
Stock Mean Variance Correlation coefficient

X1 0.00162 0.00080 1 0.42 0.49 0.64 0.38 0.53 0.37 0.53 0.53 0.36
X2 0.00001 0.00341 0.42 1 0.46 0.44 0.39 0.44 0.32 0.5 0.44 0.34
X3 0.00040 0.00059 0.49 0.46 1 0.54 0.65 0.63 0.59 0.6 0.56 0.5
X4 0.00067 0.00061 0.64 0.44 0.54 1 0.47 0.58 0.42 0.59 0.53 0.42
X5 0.00005 0.00017 0.38 0.39 0.65 0.47 1 0.56 0.6 0.52 0.45 0.57
X6 0.00031 0.00057 0.53 0.44 0.63 0.58 0.56 1 0.53 0.64 0.5 0.45
X7 0.00007 0.00023 0.37 0.32 0.59 0.42 0.6 0.53 1 0.52 0.48 0.46
X8 0.00028 0.00078 0.53 0.5 0.6 0.59 0.52 0.64 0.52 1 0.56 0.47
X9 0.00049 0.00083 0.53 0.44 0.56 0.53 0.45 0.5 0.48 0.56 1 0.48
X10 0.00029 0.00027 0.36 0.34 0.5 0.42 0.57 0.45 0.46 0.47 0.48 1

model outperforms other robust models in terms of both return and robustness. This observation seems
to confirm the common denominator.

4.2. Stock market

TheDRO framework has been criticized for being conservative, with a pessimistic bias in its forecasting.
For instance, Hu et al. [9] trained models that minimize adversarial reweighting and account for worst-
case distribution changes. However, the model’s predictions are based on the training data performed
pessimistically on the test set. To determine whether the proposed framework is overly conservative in
the up-trending market and more effective in controlling losses during the down-trending market, we
run the aforementioned models separately in bear and bull markets.

We focus on the stock market between 2007 and 2020. The global financial crisis, triggered by the
subprime crisis in 2008, led to an overall decline in the stock market, characterized by a bear market.
For our analysis, we selected data from 2007 to 2009. In the remaining period (2010 to 2020), the stock
market as a whole rose and behaved as a bull market.

4.2.1. Bear market

We consider a selection of well-known stocks from various industry sectors of the US stock market for
the empirical analysis, with the selected stock codes shown in Table 3, where X = (X1, . . . ,X10)> is a
10-dimensional vector, where Xi represents the ith stock return for i = 1, . . . , 10.

The daily returns of ten stocks were recorded as the dataset for the numerical experiment. The sample
period for these historical return values is from 1 January 2007 to 31 December 2009, with 755 valid
observations, that is, N = 755. Table 4 gives the means, variances and the correlation coefficients for the
ten stocks.

Due to the limited sample size, it is impossible to determine the accurate distribution of stock returns.
In this paper, the ambiguous distribution of stock returns is estimated from several observations in
the dataset. More specifically, the central distribution of the Wasserstein uncertainty set is a discrete
empirical distribution, while the radius of the Wasserstein uncertainty set represents the imprecision
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Figure 1. Cumulative returns of optimal portfolio strategies under different models over the period
2007 to 2009.

of the distribution. We derive some theoretical results under the proposed mean-variance uncertainty
set and the mean-Wasserstein uncertainty set in Sections 2 and 3, respectively. Theorems 3.1 and 3.5,
respectively, give the investment weights for maximizing the worst-case Omega ratio under the mean-
variance uncertainty set and the mean-Wasserstein uncertainty set, reducing the worst-case impact in
the portfolio. Furthermore, the robust optimization problem in Theorems 3.1 and 3.5 is solved to obtain
the optimal portfolio strategy.

Based on data from the US bear market, we employed a 30-day sliding time window with an initial
wealth of 1. Using the data from the first 30 days, we selected the best-weighted portfolio for day 31
and calculated the returns obtained under the DROR-MV and DROR-MW models. We also considered
the DRER-W and DRMV models, the non-robust OR model and the classical 1/n portfolio model
for comparison. The 1/n portfolio model, also known as the equal weighting model, is a strategy that
allocates equal capital to each asset in the portfolio and is a simple yet effective approach. The results
are shown in Figure 1.

Figure 1 shows the cumulative portfolio returns under the six models. The figure demonstrates that,
in terms of model robustness, the DROR-MV and DROR-MW models are more effective at controlling
losses during economic decline, followed by the DRMV and 1/n models, and lastly, the DRER-W and
OR models. This is because the DROR-MV and DROR-MW models aim to maximize the worst-case
Omega ratio, which considers both returns and losses. While the DRER-W model performed the best
in cumulative returns, it does not account for losses and is less stable in volatile market. The DRMV
model minimizes variance, which can result in lower overall returns for portfolios with constant returns
and zero variance.

4.2.2. Bull market

We have selected the same 10 stocks with a total of 2,515 valid observations from 2010 to 2020.
Table 5 gives important characteristics of the returns of the 10 stocks, including the means, variances
and correlation coefficients.

We used the data of the first 30 days for portfolio selection of the best weight for day 31 and calculated
the change in returns under different models, and the results are shown in Figure 2.

As shown in Figure 2, in terms of the final cumulative returns of the six models, the DRER-W and
DROR-MW models lead by a substantial margin. The second-tier league includes the DROR-MV, OR
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Table 5. Means, variances and correlation coefficients of stock returns.
Stock Mean Variance Correlation coefficient

X1 0.00103 0.00026 1 0.36 0.35 0.46 0.29 0.45 0.26 0.39 0.42 0.23
X2 0.00053 0.00042 0.36 1 0.48 0.39 0.35 0.43 0.27 0.41 0.38 0.25
X3 0.00026 0.00018 0.35 0.48 1 0.37 0.43 0.44 0.35 0.37 0.41 0.28
X4 0.00069 0.00024 0.46 0.39 0.37 1 0.35 0.54 0.3 0.48 0.43 0.24
X5 0.00037 0.00009 0.29 0.35 0.43 0.35 1 0.4 0.49 0.38 0.33 0.35
X6 0.00075 0.00021 0.45 0.43 0.44 0.54 0.4 1 0.38 0.55 0.46 0.31
X7 0.00036 0.00008 0.26 0.27 0.35 0.3 0.49 0.38 1 0.31 0.3 0.39
X8 0.00103 0.00031 0.39 0.41 0.37 0.48 0.38 0.55 0.31 1 0.43 0.26
X9 0.00077 0.00025 0.42 0.38 0.41 0.43 0.33 0.46 0.3 0.43 1 0.24
X10 0.00037 0.00012 0.23 0.25 0.28 0.24 0.35 0.31 0.39 0.26 0.24 1

Figure 2. Cumulative returns of optimal portfolio strategies under different models over the period
2010 to 2020.

and DRMV models. The classical equal-weighting model lags behind. This is due to the DRER-W
model, which aims to maximize portfolio returns and obviously outperforms the other models. In con-
trast, the DROR-MV and DROR-MW models maximize the worst-case Omega ratio, while the DRMV
model aims to minimize variance, which is not monotonic with respect to returns.

In summary, the DROR-MW and DROR-MVmodels perform well in a bear market as they consider
loss and robustness, controlling losses more than classical non-robust models during large price swings.
At the same time, the DROR-MV and DROR-MW models have higher returns than the classical non-
robust models in a robust long-term bull market and perform less conservatively.

4.2.3. The Influence of the Wasserstein Radius Y

The parameter Y represents the radius of the Wasserstein uncertainty set, and its value determines the
size of a Wasserstein ball. In other words, as Y increases, the Wasserstein ball becomes larger.

To obtain a relatively suitable Wasserstein radius, we refer to relevant literature to choose the value
of the radius for numerical experiments. Typically, we take Y0 = (logN/N)1/d as the radius. In the
numerical experiments, we calculate the portfolio return results for the cases Y = 0, Y0/2, 3Y0/4 and Y0.
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Figure 3. Cumulative returns of optimal portfolio strategies under different Y.

The calculation results show that small changes in Y can have a large impact on the solution of the
model. Thus, the optimal solution for the investment weights is highly sensitive to the parameter Y. The
calculation results of the portfolio strategy’s returns for different values of Y are presented in Figure 3.
The results show that the optimal portfolio allocation varies based on the radius Y of the Wasserstein
uncertainty set, and we obtain a relatively diversified portfolio strategy.
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