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Abstract
A new reciprocity formula for Dirichlet L-functions associated to an arbitrary primitive Dirichlet character of prime
modulus q is established. We find an identity relating the fourth moment of individual Dirichlet L-functions in
the t-aspect to the cubic moment of central L-values of Hecke–Maaß newforms of level at most 𝑞2 and primitive
central character 𝜓2 averaged over all primitive nonquadratic characters 𝜓 modulo q. Our formula can be thought
of as a reverse version of recent work of Petrow–Young. Direct corollaries involve a variant of Iwaniec’s short
interval fourth moment bound and the twelfth moment bound for Dirichlet L-functions, which generalise work of
Jutila and Heath-Brown, respectively. This work traverses an intersection of classical analytic number theory and
automorphic forms.
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1. Introduction

Estimating moments of families of L-functions is a central problem in analytic number theory not only
due to their substantial applications, but also since they give an insight into the behaviour of L-functions
in the critical strip. Our interests lie in the 2𝑘th moments of the Riemann zeta and Dirichlet L-functions:

Z𝑘 (𝑔) =
∫ ∞

−∞

����𝜁 (1
2
+ 𝑖𝑡

)����2𝑘

𝑔(𝑡)𝑑𝑡, Z𝑘 (𝑔; 𝜒) =
∫ ∞

−∞

����𝐿 (1
2
+ 𝑖𝑡, 𝜒

)����2𝑘

𝑔(𝑡)𝑑𝑡,

where 𝑘 � 1 is an integer and the test function g is of rapid decay. The initial cases 𝑘 = 1, 2 have been
successfully studied for Z𝑘 (𝑔), and the other cases have remained untouched thus far. In this article,
we establish Motohashi’s formula (also known as a spectral reciprocity formula) for the fourth moment
of Dirichlet L-functions, which was unsolved since being posed as a question of study by Motohashi in
1992.

1.1. Overview and motivation

In the 1990s, Motohashi [55, Theorem 4.2] pondered a mysterious identity relating the smoothed fourth
moment of the Riemann zeta function 𝜁 (1/2+𝑖𝑡) to a spectral cubic moment of automorphic L-functions
associated to the group SL2 (Z). We assume a fixed test function g to be of Schwartz class, and we denote
by B(𝑞, 𝜒) the set of Hecke–Maaß forms of level q and central character 𝜒; we write B(Γ0(𝑞)) as usual
when 𝜒 is principal. His formula then asserts that the following spectral decomposition holds up to an
explicit description of holomorphic, Eisenstein and residual contributions that we shall elide here:∫ ∞

−∞

����𝜁 (1
2
+ 𝑖𝑡

)����4𝑔(𝑡)𝑑𝑡� ∑
𝑓 ∈B(Γ0 (1))

𝐿

(
1
2
, 𝑓

)3
𝑔̌(𝑡 𝑓 ), (1.1)

where 𝑔̌ is an elaborate integral transform of g involving the Gauß hypergeometric function. The right-
hand side of equation (1.1) must be understood as a complete integral over the full spectrum of level
1 automorphic forms, including holomorphic, discrete and continuous spectra. Motohashi has given
several approaches in the spirit of analytic number theory and representation theory. Note that all of his
methods are in the framework of relative trace formulæ. On the other hand, Michel–Venkatesh ([49,
§4.3.3], [50, §4.5.3]) suggested an elegant geometric and spectral stratagem to substantiate equation
(1.1). Following their perspective, Nelson [58] studied the cubic moment of automorphic L-functions
on PGL2 via the use of the regularised diagonal periods of products of Eisenstein series. We also refer
the reader to work of Wu et al. [4, 68].
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In terms of automorphic representation theoretic language, the spectral reciprocity formula in equa-
tion (1.1) is a connection between the fourth moment of GL1 𝐿-functions (geometric side) and the cubic
moment of GL2 𝐿-functions (spectral side). These sides are derived from an application of the relative
trace formula. The advancement toward Motohashi’s formula is summarised in the following table.1

L-functions Individual Character average

Riemann zeta function Bruggeman–Motohashi [19, 53, 55] n/a
Dirichlet L-functions Theorem 1.1 Blomer et al. [10]
Dedekind zeta functions Bruggeman–Motohashi [17, 18, 54] unknown

These works share similar structure to Motohashi’s formula in equation (1.1) (compare [56]). In partic-
ular, the heuristics of Blomer et al. [10] establishes that the character average of the smoothed fourth
moment of Dirichlet L-functions weighted by 𝜒(𝑎)𝜒(𝑏) is expressed by means of a cubic moment of
L-functions associated to Hecke–Maaß newforms of level 𝑎𝑏. Their method relies on brute force cal-
culations and is cleverer than in [55] in the sense that their reasoning is rather symmetric and utilises
additive reciprocity. There exist several articles in the antecedent literature on such a fourth moment
problem; see [30, 41, 69]. Although these achievements address the problem of obtaining an asymptotic,
one must go through a harder route to prove Motohashi’s formula.

There are two versions of spectral reciprocity formulæ: GL4 ×GL2 � GL4 ×GL2 and GL2 ×GL2 �
GL3 ×GL2. The former instance involves work of Andersen–Kıral [1], Blomer–Khan [11, 12], Blomer–
Li–Miller [13], Humphries–Khan [33], Jana–Nunes [40], Kuznetsov [47], Nunes [59] and Zacharias
[71]. The latter involves work of Blomer et al. [10], Nelson [58], Petrow [62], Petrow–Young [63, 64],
Wu [68] and Young [69]. It behooves one to touch on the article in preparation due to Humphries–Khan
to deduce GL3 ×GL2 � GL4 ×GL1 reciprocity. This renders an extension of Motohashi’s formula in
equation (1.1).

1.2. Statement of main result

Let 𝜒 be an arbitrary primitive Dirichlet character modulo an integer q, and letR+
4 be a subdomain ofC4,

where all four parameters have real parts greater than one. In this article, we update the progress toward
spectral reciprocity formulæ and extend equation (1.1) to the fourth moment of individual Dirichlet L-
functions associated to 𝜒 in the t-aspect. Thus the setup that we build upon is as follows. For 𝑞 ∈ N, we
consider

Z2 (𝑔; 𝜒) =
∫ ∞

−∞

����𝐿 (1
2
+ 𝑖𝑡, 𝜒

)����4𝑔(𝑡)𝑑𝑡. (1.2)

This is seen as a character analogue of equation (1.1). The twist by 𝜒 substantially complicates our
analysis, and we will encounter various intricate character sums. If g is a sufficiently nice test function,
then we define

Z2 (𝑠1, 𝑠2, 𝑠3, 𝑠4; 𝑔; 𝜒) =
∫ ∞

−∞
𝐿(𝑠1 + 𝑖𝑡, 𝜒)𝐿(𝑠2 + 𝑖𝑡, 𝜒)𝐿(𝑠3 − 𝑖𝑡, 𝜒)𝐿(𝑠4 − 𝑖𝑡, 𝜒)𝑔(𝑡)𝑑𝑡, (1.3)

where the parameters or shifts satisfy (𝑠1, 𝑠2, 𝑠3, 𝑠4) ∈ R+
4 . In order to establish Motohashi’s formula for

the fourth moment in equation (1.2), we initially work with equation (1.3) by exploiting Dirichlet series
expansions for the integrand in the region of absolute convergence, and we take the limit (𝑠1, 𝑠2, 𝑠3, 𝑠4) →
(1/2, 1/2, 1/2, 1/2) after the meromorphic continuation as in the original work of Motohashi [55].

1The character average for the fourth moment of Dedekind zeta functions should be meant only for quadratic number fields. In
this scenario, the problem could be solved with classical technology, although this has not been worked out anywhere.
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We proceed to the rigorous statement of our reciprocity formula, which requires a bit of notation.
For simplicity, we assume that q is prime. The classification of automorphic forms is convenient in the
sequel:

◦ Cuspidal holomorphic newforms f of weight 𝑘 ≡ 𝜅(𝜓) = 𝜅(mod 2), level q, central character 𝜓 and
Hecke eigenvalues 𝜆 𝑓 (𝑛) ∈ C; we denote the set of such forms by B∗

𝑘 (𝑞, 𝜓);
◦ Cuspidal Maaß newforms f of spectral parameter 𝑡 𝑓 ∈ R ∪ [−𝑖𝜗, 𝑖𝜗], weight 𝜅 = (1 − 𝜓(−1))/2,

level q, central character 𝜓 and Hecke eigenvalues 𝜆 𝑓 (𝑛) ∈ C, where at the current state of
knowledge, 𝜗 = 7/64 can be taken (see [45]; although 𝜗 = 0 is expected); we denote the set of such
forms by B∗

𝜅 (𝑞, 𝜓);
◦ Unitary Eisenstein series 𝐸 (𝑧, 𝑠, 𝑓 ), where 𝑠 = 1/2 + 𝑖𝑡 with 𝑡 ∈ R \ {0} and B(𝜓1, 𝜓2) � 𝑓 with
𝜓 = 𝜓1𝜓2 is a certain finite set depending upon 𝜓1, 𝜓2 corresponding to an orthonormal basis in the
space of the induced representation constructed out of (𝜓1, 𝜓2). Their nth Hecke eigenvalue is
written as 𝜆 𝑓 (𝑛, 𝑡) =

∑
𝑎𝑏=𝑛 𝜓1 (𝑎)𝑎𝑖𝑡𝜓2(𝑏)𝑏−𝑖𝑡 for (𝑛, 𝑞) = 1.

Let 𝜏(𝜒) and 𝐽 (𝜒, 𝜓) be the Gauß sum and the Jacobi sum, respectively, so that we define H±(𝜒, 𝜓) =
𝜓(∓1)𝜏(𝜓)𝜏(𝜒𝜓)𝐽 (𝜓, 𝜓). For a test function as in Convention 1.10, we define the spectral mean values2

J Maaß
± �

𝑞𝑠2−𝑠1−2

𝜏(𝜒)
∑
𝑑 |𝑞

𝜇(𝑑)
𝑑

∑#

𝜓 (mod 𝑞)
H±(𝜒, 𝜓)

∑
𝑓 ∈B∗

𝜅 (𝑑𝑞,𝜓2)
𝜖 (1∓1)/2

𝑓

×
𝐿
(

1−𝑠1+𝑠2+𝑠3−𝑠4
2 , 𝑓 ⊗ 𝜓

)
𝐿
(

1−𝑠1+𝑠2−𝑠3+𝑠4
2 , 𝑓 ⊗ 𝜓

)
𝐿
(

𝑠1+𝑠2+𝑠3+𝑠4−1
2 , 𝑓 ⊗ 𝜓

)
𝐿(1,Ad2 𝑓 )

Φ±
s (𝑖𝑡 𝑓 ),

J Eis
± �

2𝑞𝑠2−𝑠1−1

𝜏(𝜒)𝜑(𝑞)
∑
𝑑 |𝑞

𝜇(𝑑)
𝑑

∑#

𝜓 (mod 𝑞)
H±(𝜒, 𝜓)

×
∑

𝜓1 𝜓2=𝜓2

∑
𝑓 ∈B(𝜓1 ,𝜓2)

∫ ∞

−∞

S 𝑓 (𝑡; 𝑠1, 𝑠2, 𝑠3, 𝑠4)
|𝐿(1 + 2𝑖𝑡, 𝜓1𝜓2) |2

Φ±
s (𝑖𝑡)

𝑑𝑡

2𝜋
,

J hol
+ �

𝑞−2

𝜏(𝜒)

(
2𝜋
𝑞

)𝑠1−𝑠2

cos
(
𝜋(𝑠3 − 𝑠4)

2

)∑
𝑑 |𝑞

𝜇(𝑑)
𝑑

∑#

𝜓 (mod 𝑞)
H+(𝜒, 𝜓)

∑
𝑘>𝜅

𝑘≡𝜅 (mod 2)

∑
𝑓 ∈B∗

𝑘 (𝑑𝑞,𝜓2)
𝑖𝑘

×
𝐿
(

1−𝑠1+𝑠2+𝑠3−𝑠4
2 , 𝑓 ⊗ 𝜓

)
𝐿
(

1−𝑠1+𝑠2−𝑠3+𝑠4
2 , 𝑓 ⊗ 𝜓

)
𝐿
(

𝑠1+𝑠2+𝑠3+𝑠4−1
2 , 𝑓 ⊗ 𝜓

)
𝐿(1,Ad2 𝑓 )

Ξs

(
𝑘 − 1

2

)
,

where J Maaß
± and J hol

± involve the cubic moment of twisted automorphic L-functions and the continuous
term J Eis

± should be regarded as the sixth moment of Dirichlet L-functions. Here, # on the sum signifies
that the sum runs over all primitive nonquadratic characters modulo q, and we define

S 𝑓 (𝑡; 𝑠1, 𝑠2, 𝑠3, 𝑠4) = 𝐿
(

1 − 𝑠1 + 𝑠2 + 𝑠3 − 𝑠4
2

+ 𝑖𝑡, 𝜓𝜓2

)
𝐿

(
1 − 𝑠1 + 𝑠2 + 𝑠3 − 𝑠4

2
− 𝑖𝑡, 𝜓𝜓1

)
× 𝐿

(
1 − 𝑠1 + 𝑠2 − 𝑠3 + 𝑠4

2
+ 𝑖𝑡, 𝜓𝜓2

)
𝐿

(
1 − 𝑠1 + 𝑠2 − 𝑠3 + 𝑠4

2
− 𝑖𝑡, 𝜓𝜓1

)
× 𝐿

(
𝑠1 + 𝑠2 + 𝑠3 + 𝑠4 − 1

2
+ 𝑖𝑡, 𝜓𝜓2

)
𝐿

(
𝑠1 + 𝑠2 + 𝑠3 + 𝑠4 − 1

2
− 𝑖𝑡, 𝜓𝜓1

)
.

(1.4)

2These are the main spectral contributions to the cubic moment side. One should take care of degenerate terms stemming from
the principal and quadratic Dirichlet characters in the proof of Theorem 1.1, but they are in principle the same size as the main
spectral contributions in terms of estimations. Hence one can disregard them when using Motohashi’s formula to deduce certain
moment bounds and asymptotic estimations.
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The factor 𝜖 𝑓 in the summand denotes the parity of a Maaß form f. In addition, Φ±
s and Ξs are introduced

in equations (3.26), (3.27) and (3.28), respectively. The Dirichlet series expansions of the adjoint square
L-function 𝐿(𝑠,Ad2 𝑓 ), and the twisted automorphic L-function 𝐿(𝑠, 𝑓 ⊗ 𝜓) in �(𝑠) > 1 (that serve as
a definition of these functions) are given in equations (2.24) and (2.25), respectively. We are now ready
to describe the reciprocity formula to which we have alluded previously.

Theorem 1.1. Let 𝜒 be a primitive Dirichlet character modulo a prime q, and let s = (𝑠1, 𝑠2, 𝑠3, 𝑠4)
with s = (𝑠3, 𝑠4, 𝑠2, 𝑠1). Let (𝑠1, 𝑠2, 𝑠3, 𝑠4) ∈ C4 be such that |𝑠1 |, |𝑠2 |, |𝑠3 |, |𝑠4 | < 𝐵 with B sufficiently
large. If a test function g satisfies the basic assumption in Convention 1.10, then we have that

Z2(s; 𝑔; 𝜒) = N(s; 𝑔; 𝜒) +
∑
±

(
J±(s; 𝑔; 𝜒) + E±(s; 𝑔; 𝜒) + J±(s; 𝑔; 𝜒) + E±(s; 𝑔; 𝜒)

)
, (1.5)

where N is an explicitly computable main term, and we decompose

J±(s; 𝑔; 𝜒) = {J Maa
± + J Eis

± + 𝛿±=+J hol
+ }(s; 𝑔; 𝜒),

E±(s; 𝑔; 𝜒) = {E Maa
± + E Eis

± + 𝛿±=+E hol
+ }(s; 𝑔; 𝜒).

Here E±(s; 𝑔; 𝜒) is the degenerate term defined in Section 3.5.2, which has similar shape to J±(s; 𝑔; 𝜒).

It should be feasible to generalise Theorem 1.1 to the case of any positive integer q. If q is not prime,
we need to utilise a general version of the transformation formula due to Blomer–Milićević [15, (2.2)]:∑

(𝑐,𝑞)=1
𝜒(𝑐)𝑆(𝑚, 𝑛; 𝑐)ℎ(𝑐) = 𝜒1(𝑚)

𝜏(𝜒1)
∑
𝑑 |𝑞

𝜇(𝑑)
∑

𝑑𝑞1 |𝑐
𝑆𝜒1 (𝑚, 𝑛𝑞2

1; 𝑐)ℎ
(
𝑐

𝑞1

)
. (1.6)

This is valid for an arbitrary Dirichlet character modulo q induced from a primitive character 𝜒1 modulo
𝑞1 | 𝑞 and for every (𝑚, 𝑞1) = 1. The formula in equation (1.6) translates Kloosterman sums associated
to the (∞, 0) cusp-pair into twisted Kloosterman sums associated to the (∞,∞) cusp-pair. The bottleneck
is that the Kloosterman sum on the right-hand side of equation (1.6) involves 𝑞2

1 instead of 𝑞2.

Remark 1.2. In the author’s recent work [44], the second moment of the product of the Riemann zeta
and Dirichlet L-functions was contemplated:∫ ∞

−∞

����𝜁 (1
2
+ 𝑖𝑡

)
𝐿

(
1
2
+ 𝑖𝑡, 𝜒

)����2𝑔(𝑡)𝑑𝑡. (1.7)

If one replaces the Riemann zeta function with a Dirichlet L-function, this is in accordance with equation
(1.2). Although the definition in equation (1.2) is similar to equation (1.7), the cubic moment side in
Theorem 1.1 has a quite different shape. This is due to the occurrence of additional character sums when
we consider the fourth moment of Dirichlet L-functions. However, the resulting form of an integral
transform of g never becomes altered.

1.3. Quantitative applications

We are able to provide various quantitative applications of Theorem 1.1. A hybrid fourth moment bound
of interval H for individual Dirichlet L-functions is initially proven.

Corollary 1.3. Let 𝑇1/2 � 𝐻 � 𝑇 (log𝑇)−1. For any primitive Dirichlet character 𝜒 modulo a prime q,
we have ∫ 𝑇 +𝐻

𝑇

����𝐿 (1
2
+ 𝑖𝑡, 𝜒

)����4𝑑𝑡 �𝜖 𝐻
1+𝜖 𝑞 𝜖 +

(
𝑞𝑇
√
𝐻

)1+𝜖

. (1.8)

https://doi.org/10.1017/fms.2022.33 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2022.33


6 Ikuya Kaneko

The proof of Corollary 1.3 looks circular at first glance: we use work of Petrow–Young [63] on cubic
moments; they show that bounds for these cubic moments follow from bounds for the fourth moment of
Dirichlet L-functions. Nonetheless, this is not circular: Petrow–Young arrive at a long fourth moment
that can be bounded optimally via approximate functional equations and the spectral large sieve, whereas
our short fourth moment can never be bounded optimally via the spectral large sieve, and it never implies
subconvexity. We need to initially apply Motohashi’s formula and then use the large sieve afterward.

Balancing in Corollary 1.3 leads one to a variant of Iwaniec’s [35] short interval fourth moment
bound.

Corollary 1.4. Let 𝑞 � 𝑇1/2−𝜖 . For any primitive Dirichlet character 𝜒 modulo a prime q, we have∫ 𝑇 +(𝑞𝑇 )2/3

𝑇

����𝐿 (1
2
+ 𝑖𝑡, 𝜒

)����4𝑑𝑡 �𝜖 (𝑞𝑇)2/3+𝜖 . (1.9)

Jutila [42, Theorem 3] obtained the fourth moment bound∑
𝜒(mod 𝐷)

∫ 𝑇 +𝑇 2/3

𝑇

����𝐿 (1
2
+ 𝑖𝑡, 𝜒

)����4𝑑𝑡 �𝜖 𝐷
1+𝜖𝑇2/3+𝜖 . (1.10)

This implies a bound for individual characters of the form 𝑞1+𝜖𝑇2/3+𝜖 . In the range 𝑞 � 𝑇1/2, our result
improves upon this bound for individual characters to (𝑞𝑇)2/3+𝜖 . There exists a fundamental obstruction
that the parameter H in Corollary 1.3 cannot exceed T, and the optimisation of H in the bound in equation
(1.8) in turn gives some restriction on q. Indeed, there is a weaker version where one has no restriction on
the conductor, which can be deduced from the choice 𝐻 = 𝑇2/3 in Corollary 1.3. It therefore follows that∫ 𝑇 +𝑇 2/3

𝑇

����𝐿 (1
2
+ 𝑖𝑡, 𝜒

)����4𝑑𝑡 �𝜖 𝑞
1+𝜖𝑇2/3+𝜖 .

This is similar to equation (1.10) but eventually yields weaker subconvexity bounds for Dirichlet L-
functions.

Corollary 1.4 is equivalent to the claim that Dirichlet L-functions cannot sustain large values, namely

#
{
𝑡 ∈

[
𝑇,𝑇 + (𝑞𝑇)2/3

]
:
����𝐿 (1

2
+ 𝑖𝑡, 𝜒

)���� � 𝑉} �𝜖 (𝑞𝑇)2/3+𝜖𝑉−4.

It follows that𝑉 � (𝑞𝑇)1/6+𝜖 , which yields Weyl-strength subconvexity bounds for Dirichlet L-functions
when 𝑞 � (1 + |𝑡 |)1/2−𝜖 (the exponent 1/6 often reoccurs in modern incarnations of these problems):

𝐿

(
1
2
+ 𝑖𝑡, 𝜒

)
�𝜖 (𝑞(1 + |𝑡 |))1/6+𝜖 .

This is covered in Petrow–Young [63, 64], who have shown Weyl-strength subconvexity bounds for
twisted automorphic L-functions, which are hybrid in both the t and the q-aspect. We also establish the
following:

Corollary 1.5. Assume that (𝑞𝑇)1/2+𝜖 � 𝑇0 � (𝑞𝑇)2/3 with 𝑞 � 𝑇1/2−𝜖 and 𝑇 � 𝑡1 < · · · < 𝑡𝑅 � 2𝑇
with 𝑡𝑟+1 − 𝑡𝑟 � 𝑇0. For any primitive Dirichlet character 𝜒 modulo a prime q, we then have that

𝑅∑
𝑟=1

∫ 𝑡𝑟+𝑇0

𝑡𝑟

����𝐿 (1
2
+ 𝑖𝑡, 𝜒

)����4𝑑𝑡 �𝜖

(
𝑅𝑇0 + 𝑞𝑇

√
𝑅

𝑇0

)
(𝑞𝑇) 𝜖 .

This kind of fourth moment bound is occasionally seen in the antecedent literature; we mention work
of Iwaniec [35] and Jutila–Motohashi [41] to name two. Since one wants to prove Corollary 1.5 as an
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application of Theorem 1.1, one exploits the method outlined in the Appendix in Jutila–Motohashi [41].
They were unable to show Motohashi’s formula for the fourth moment of Dirichlet L-functions averaged
over primitive Dirichlet characters, but for the second moment of Estermann zeta functions. The proof
of Corollary 1.5 is nearly identical to that of Corollary 1.3; however, one must detect cancellations in
the spectral sum, which was executed by Ivić–Motohashi [34]. We mention that Jutila–Motohashi [41]
established with the same notation as in Corollary 1.5 that

∑
𝜒 (mod 𝐷)

𝑅∑
𝑟=1

∫ 𝑡𝑟+𝑇0

𝑡𝑟

����𝐿 (1
2
+ 𝑖𝑡, 𝜒

)����4𝑑𝑡 �𝜖

(
𝐷𝑅𝑇0 + 𝐷2(1+𝜗)/3(𝑅𝑇)2/3

)
𝑇 𝜖

with 0 � 𝜗 � 7/64 denoting an admissible exponent toward the Ramanujan–Petersson conjecture.

Corollary 1.6. Let 𝑞 � 𝑇1/2−𝜖 . For any primitive Dirichlet character 𝜒 modulo a prime q, we have∫ 𝑇

0

����𝐿 (1
2
+ 𝑖𝑡, 𝜒

)����12
𝑑𝑡 �𝜖 (𝑞𝑇)2+𝜖 . (1.11)

This extends work of Heath-Brown [29], who obtained the twelfth moment bound∫ 𝑇

0

����𝜁 (1
2
+ 𝑖𝑡

)����12
𝑑𝑡 �𝜖 𝑇

2+𝜖 . (1.12)

One should point out that Heath-Brown deduced equation (1.12) in an entirely different manner via
the combination of van der Corput’s method with the Halász–Montgomery inequality. Our method is
fundamentally limited in this regard due to the fact that an average over characters is not included; we
cannot hope to prove subconvexity bounds for 𝐿(1/2 + 𝑖𝑡, 𝜒) in the q-aspect with t fixed, since we are
averaging over too small a family. The result that would be of most interest includes an average over
Dirichlet characters modulo q, namely the conjectural upper bound

∑
𝜒 (mod 𝑞)

∫ 𝑇

0

����𝐿 (1
2
+ 𝑖𝑡, 𝜒

)����12
𝑑𝑡 �𝜖 (𝑞𝑇)2+𝜖 .

This is a new proof of Weyl-strength subconvexity. If 𝑞 = 1, this is Heath-Brown’s bound for the twelfth
moment of the Riemann zeta function. If 𝑇 � 1 and q is a smooth squarefree modulus, this estimate is
due to Nunes [60], although his method does not work for arbitrary q. Meurman [48] proved the weaker
bound O𝜖 (𝑞3+𝜖𝑇2+𝜖 ), which implies Weyl-strength subconvexity in the t-aspect but convexity in the
q-aspect. Jutila–Motohashi [41] established that

∑
𝑞�𝑄

∑
𝜒 (mod 𝑞)

∫ 𝑇

0

����𝐿 (1
2
+ 𝑖𝑡, 𝜒

)����12
𝑑𝑡 �𝜖 𝑄

3+𝜖𝑇2+𝜖 .

Milićević–White [51] have studied this problem when 𝑇 � 1 and q is growing in the depth aspect.

Remark 1.7. It would be interesting to see what happens if we average the fourth moment of individual
Dirichlet L-functions over primitive characters modulo q. By brute force, we deduce∑∗

𝜒 (mod 𝑞)

H±(𝜒, 𝜓)
𝜏(𝜒) = 𝜓(±1)𝐽 (𝜓, 𝜓)
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and this is of absolute value √
𝑞, since 𝜓 is not quadratic. The final bound looks like

∑∗

𝜒 (mod 𝑞)

∫ 𝑇 +𝐻

𝑇

����𝐿 (1
2
+ 𝑖𝑡, 𝜒

)����4𝑑𝑡 �𝜖 (𝐻𝑞)1+𝜖 +
(
𝑇
√
𝑞

√
𝐻

)1+𝜖

.

Note that this is not completely inconceivable as it does not give any subconvexity bounds, but only the
convexity bound due to the presence of the main term. However, there is no hope of getting (𝑞𝑇)2+𝜖 for
the twelfth moment, since the bound for the moment in a short interval does not produce subconvexity.
In order to circumvent this drawback, the key idea is the following. In the T-aspect, the trick is to divide
the integral into shorter intervals and bound each one individually. With an additional sum over Dirichlet
characters modulo q, we break this sum into a sum over short cosets. A similar idea is underlying work
of Petrow–Young [63]. We reserve such pursuits for future work.

Finally, Topaçoğullari [67] has manifested an asymptotic formula for the fourth moment of individual
Dirichlet L-functions. By the specification of a test function g in Theorem 1.1 and a sequence of standard
manipulations such as a spectral large sieve, one may arrive at an asymptotic formula of the same quality.

Corollary 1.8 (Topaçoğullari [67, Theorem 1.1]). Let 𝜖 > 0, which is not necessarily the same at each
occurrence. Let 𝜒 be any primitive Dirichlet character modulo q. Then we have for 𝑇 � 1 that∫ 𝑇

0

����𝐿 (1
2
+ 𝑖𝑡, 𝜒

)����4𝑑𝑡 = ∫ 𝑇

0
𝑃𝜒 (log 𝑡)𝑑𝑡 + O𝜖 (𝑞2−3𝜗𝑇1/2+𝜗+𝜖 + 𝑞𝑇2/3+𝜖 ), (1.13)

where 𝑃𝜒 is a polynomial of degree 4 whose coefficients depend only on q.

We omit the proof of Corollary 1.8 since our method is quite analogous to that of Topaçoğullari [67].
Improving upon the error term in equation (1.13) in the q-aspect requires some additional manoeuvres.

1.4. Sketch of modus operandi

We here render a heuristic overview of the genesis of the automorphic reciprocity shown in Theorem 1.1.
This is a high-level sketch geared toward experts. For the sake of argument, we may rely on approximate
tools, although our proof is based upon more precise inspection of L-functions in the region of absolute
convergence. We must also ignore all correction factors, degenerate terms, polar terms and the t-average.

An astute reader understands our stratagem from the shape of Motohashi’s formula in equation (1.5).
The overall ideas are essentially inspired by Motohashi’s seminal work [55, §4.3–4.7] that enables one to
prove fairly explicit spectral identities. We would like to study what happens if we replace the Riemann
zeta function 𝜁 (1/2+ 𝑖𝑡) in his argument with a Dirichlet L-function 𝐿(1/2+ 𝑖𝑡, 𝜒), and we observe that
the presence of the Dirichlet character substantially complicates our analysis. In a single phrase, we first
open the four zeta values as Dirichlet series, apply Atkinson’s dissection and then handle the shifted
convolution sums via an application of the Voronoı̆ summation formula, followed by the Kloosterman
summation formula (Kuznetsov formula) attached to Atkin–Lehner cusps. An initial shape of the off-
diagonal term looks like∑

𝑛,𝑚�√𝑞

𝜒(𝑛)𝜒(𝑛 + 𝑚)𝜏(𝑛)𝜏(𝑛 + 𝑚) =
∑

𝑎,𝑏(mod 𝑞)
𝜒(𝑎)𝜒(𝑎 + 𝑏)

∑
𝑛,𝑚�√𝑞

𝑛≡𝑎 (mod 𝑞)
𝑚≡𝑏 (mod 𝑞)

𝜏(𝑛)𝜏(𝑛 + 𝑚). (1.14)

This sum has naturally arisen in the antecedent literature such as [64, 67, 69], and 𝜏(𝑚) must be replaced
with the divisor function 𝜎𝜆(𝑚) in our proof due to the convergence issue. One sifts out the congruence
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conditions on the right-hand side of equation (1.14) via primitive additive characters. We can use the
orthogonality of the Ramanujan sum

𝛿𝑛≡𝑎 (mod 𝑞) =
1
𝑞

∑
𝑐 |𝑞
𝑟𝑐 (𝑛 − 𝑎).

In order to spectrally expand equation (1.14), it is necessary to separate the two variables in 𝜏(𝑛 + 𝑚).
We thus make use of the approximate functional equation for the divisor function

𝜎𝜆(𝑚) =
∑

(ℓ,𝑞)=1

𝑆(𝑚, 0; ℓ)
ℓ1−𝜆

𝜛𝜆

(
ℓ

√
𝑚

)
+ 𝑚𝜆

∑
(ℓ,𝑞)=1

𝑆(𝑚, 0; ℓ)
ℓ1+𝜆

𝜛−𝜆

(
ℓ

√
𝑚

)
, (1.15)

where in the notation of Young [69], we set

𝜛𝜆(𝑥) =
1

2𝜋𝑖

∫
(𝑎)
𝑥−𝑤 𝜁𝑞 (1 − 𝜆 + 𝑤)𝐺 (𝑤)

𝑤
𝑑𝑤.

The formula in equation (1.15) is a simple alternative to the 𝛿-symbol method of Duke–Friedlander–
Iwaniec [22] and plays a rôle in eliminating the pole of the Riemann zeta function 𝜁 (𝑠) appearing in the
original Ramanujan expansion. In our actual proof, we create a zero that like a deus ex machina kills the
pole from the Riemann zeta function. One then applies the GL2 Voronoı̆ summation formula to the sum
over n. In other words, the functional equation of the Estermann zeta function is used. Letting 𝑞𝑞 ≡ 1
(mod ℓ), ℓℓ ≡ 1(mod 𝑞) and 𝜏(𝜓) be the normalised Gauß sum, we are led to sums of the product of
Kloosterman sums3∑

(ℓ,𝑞)=1

𝑆(𝑚𝑞,±𝑛𝑞; ℓ)𝑆(𝑎ℓ,±𝑛ℓ; 𝑞)
ℓ

≈
∑

𝜓 (mod 𝑞)
𝜓(±𝑎𝑛𝑚)𝜏(𝜓)2

∑
(ℓ,𝑞)=1

𝜓(ℓ)2 𝑆(𝑚𝑞,±𝑛𝑞; ℓ)
ℓ

. (1.16)

Here the second Kloosterman sum 𝑆(𝑎ℓ,±𝑛ℓ; 𝑞) was encoded via the orthogonality relation for Dirichlet
characters modulo q, and the character 𝜓(𝑚) was also added on the right-hand side for technical brevity.
Be aware of the great similarity between equation (1.16) and Motohashi’s conjecture written down
in [54]. One decomposes the 𝜓-sum into the sum over primitive nonquadratic characters and others,
followed by the application of the transformation formula due to Blomer–Milićević [15]. We are in a
position to use the Kloosterman summation formula of level at most 𝑞2 and (∞,∞) cusp-pair. In this
way, we obtain three automorphic L-functions with an explicit calculation of the resulting sums over m
and n, thereby deriving∫ ∞

−∞

����𝐿 (1
2
+ 𝑖𝑡, 𝜒

)����4𝑔(𝑡)𝑑𝑡�∑
±

∑
𝑑 |𝑞

𝜇(𝑑)
𝑑

∑#

𝜓 (mod 𝑞)
H±(𝜒, 𝜓)

×
∑

𝑓 ∈B∗
𝜅 (𝑑𝑞,𝜓2)

𝜖 (1∓1)/2
𝑓

𝐿(1/2, 𝑓 ⊗ 𝜓)3

𝐿(1,Ad2 𝑓 )
𝑔̌(𝑡 𝑓 ), (1.17)

where the character sum H±(𝜒, 𝜓) was defined in Section 1.2 and the transform 𝑔̌ involves the hyperge-
ometric function and depends on ±. The contribution of the quadratic characters is similarly described.
A benefit of using Motohashi’s classical method is that one can achieve an explicit formulation of 𝑔̌,
which would be alluring from an aesthetic point of view. If 𝜓 is a primitive character modulo q and
𝑓 ∈ B∗

𝜅 (𝑑𝑞, 𝜓2), then 𝑓 ⊗ 𝜓 has trivial central character and conductor dividing 𝑞2 (Theorem A.1).

3In this sketch, we use the symbol ≈ to mean that the left-hand side may roughly be written as an expression resembling the
right-hand side with an acceptable error term.
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There is some structural beauty in our reciprocity equation (1.17), since we were forced to decom-
pose the 𝜓-sum in terms of whether 𝜓 is primitive nonquadratic or not. The condition that 𝑓 ⊗ 𝜓 has
the trivial central character is decisive as we may rely on the result of Guo [27], which guarantees that
𝐿(1/2, 𝑓 ⊗𝜓) � 0. We can then evaluate the cubic moment in equation (1.17) using a standard positivity
argument.

There is also a noteworthy plan to contemplate the fourth moment of individual Dirichlet L-functions.
Fix a primitive Dirichlet character𝜓modulo q. We take 𝑏 = 1 in [10, Theorem 1], multiply T𝑎,𝑏,𝑞 (𝑠, 𝑢, 𝑣)
by 𝜓(𝑎) and then sum over 𝑎(mod 𝑞) with the application of the orthogonality relation. As an aside,
this process necessitates a little modification since a is supposed to be squarefree there. Nevertheless,
this assumption was only to keep their formulæ cleaner, and hence their method works more gen-
erally when a is not squarefree. It is believed that the substantial simplification of [10, (1.14)] will
happen. We remark that the argument in [10] relies essentially on the isobaric sum 4 = 3 + 1 and
dualises 3 afterward. Its chief novelty is the use of the twisted multiplicativity of Kloosterman sums,
enabling us to circumvent the manipulation of Kloosterman sums associated to various Atkin–Lehner
cusps.

Remark 1.9. This work is relevant to the sixth moment of the Riemann zeta function (see [43]) whose
calculations were initially contained in this article, but the author decided to remove this part since they
are heuristics.

1.5. Organisation of the article

We devote Section 2 to compiling a preparatory toolbox in particular the evaluation of various multi-
plicative functions followed by the GL2 Voronoı̆ summation formula and the Kloosterman summation
formula. We also equip the reader with an exhaustive exposition of Kloosterman sums at various cusps.
In Section 3, we prove Theorem 1.1 via a shifted convolution problem. In Section 4, we establish Corol-
laries 1.3, 1.4, 1.5 and 1.6. The methods involve a combination of classical analytic number theory and
automorphic forms. Moreover, the size of the conductor for twists of Maaß newforms is evaluated in
Appendix A.

1.6. Basic notation and conventions

Throughout this article, the letter 𝜖 represents an arbitrarily small positive quantity, not necessarily the
same at each occurrence. An implicit constant may depend on 𝜖 , but this will often be suppressed from
the notation. The Vinogradov symbol 𝐴 � 𝐵 or the big O notation 𝐴 = O(𝐵) signifies that |𝐴| � 𝐶 |𝐵 |
for some constant C. We use the notation 𝑒(𝜁) � exp(2𝜋𝑖𝜁) and 𝑒𝛼 (𝜁) � 𝑒(𝜁/𝛼) with 𝜁 ∈ C and
𝛼 ∈ R. We assume that a test function g satisfies the following assumptions:

Convention 1.10. The function g is real valued on R, and there exists a large positive constant A such
that 𝑔(𝑡) is holomorphic and � (1+ |𝑡 |)−𝐴 on a sufficiently wide horizontal strip |�(𝑡) | � 𝐴. All implicit
constants in Vinogradov symbols and big O notation may possibly depend on A (where applicable).

2. Arithmetic and automorphic tools

We compile background materials that we shall need afterward to establish Theorem 1.1. For starters,
we prepare elementary lemmata that are suitable for evaluating the character sums arising in this work.
Our focus is on the simplification of sums involving multiplicative characters, which are akin to [64,
§6.1]. Second, we introduce the Estermann zeta function and demonstrate its properties such as a
functional equation. Finally, we present automorphic machinery as well as a preliminary exposition of
Kloosterman sums. An exhaustive account of the theoretical background is found in [9, 21, 23] and
references therein.
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2.1. Manipulations of character sums

The orthogonality relation asserts that∑
𝑎(mod 𝑞)

𝜒(𝑎) =
{
𝜑(𝑞) if 𝜒 = 𝜒0,

0 otherwise,

∑
𝜒 (mod 𝑞)

𝜒(𝑎) =
{
𝜑(𝑞) if 𝑎 ≡ 1(mod 𝑞),
0 otherwise.

(2.1)

For any Dirichlet character 𝜒 modulo q, let

𝜏(𝜒, ℎ) =
∑

𝑏(mod 𝑞)
𝜒(𝑏)𝑒

(
𝑏ℎ

𝑞

)
(2.2)

denote the Gauß sum associated to characters on residue classes modulo q. One writes 𝜏(𝜒) = 𝜏(𝜒, 1)
as usual. Multiplying equation (2.2) by 𝜒(𝑎) and summing over 𝜒, we derive via orthogonality equation
(2.1) that

𝑒

(
𝑎ℎ

𝑞

)
=

1
𝜑(𝑞)

∑
𝜒 (mod 𝑞)

𝜒(𝑎)𝜏(𝜒, ℎ) if (𝑎, 𝑞) = 1. (2.3)

This is the Fourier expansion of additive characters in terms of the multiplicative ones. One can evaluate
Gauß sums for general Dirichlet characters.

Lemma 2.1. Let 𝜒 be a nontrivial Dirichlet character modulo q induced by the primitive character 𝜒∗
modulo 𝑞∗. For an integer 𝑛 � 1, we have that

𝜏(𝜒, 𝑛) = 𝜏(𝜒∗)
∑

𝑑 | (𝑛,𝑞/𝑞∗)
𝑑𝜒∗

( 𝑛
𝑑

)
𝜒∗
(
𝑞

𝑑𝑞∗

)
𝜇

(
𝑞

𝑑𝑞∗

)
.

Proof. See [38, Lemma 3.2], which is corrected in the list of errata on Kowalski’s website. �

We indicate by 𝑟𝑐 (𝑛) and 𝑆(𝑚, 𝑛; 𝑐) the Ramanujan sum and Kloosterman sum, respectively, as
follows:

𝑟𝑐 (𝑛) �
∑∗

𝑎(mod 𝑐)
𝑒
( 𝑎𝑛
𝑐

)
=

∑
𝑑 | (𝑛,𝑐)

𝑑𝜇
( 𝑐
𝑑

)
, 𝑆(𝑚, 𝑛; 𝑐) �

∑∗

𝑑(mod 𝑐)
𝑒

(
𝑚𝑑 + 𝑛𝑑

𝑐

)
, (2.4)

where the asterisk means that the summation is restricted to a reduced system of residues. We have the
Weil bound

|𝑆(𝑚, 𝑛; 𝑐) | � (𝑚, 𝑛, 𝑐)1/2𝑐1/2𝜏(𝑐). (2.5)

This gives the best possible bound for individual Kloosterman sums, whereas we are apt to make use
of the Kuznetsov formula (Theorem 2.11) to obtain additional savings from the sum over the moduli c.
Indeed, various arithmetic problems can be transformed into bounding sums of Kloosterman sums. The
twisted multiplicativity for Kloosterman sums is occasionally exploited. We also use the Jacobi sum

𝐽 (𝜒, 𝜓) =
∑

𝑎 (mod 𝑞)
𝜒(𝑎)𝜓(1 − 𝑎).

In particular, when 𝜒 and 𝜓 are of the same modulus and 𝜒𝜓 is primitive, the relation between the Gauß
sum and Jacobi sum is illustrated as (see [38, (3.18)])

𝐽 (𝜒, 𝜓) = 𝜏(𝜒)𝜏(𝜓)
𝜏(𝜒𝜓) . (2.6)
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In general, we can establish the following lemma:

Lemma 2.2. Assume that q is prime. Suppose that 𝜓1, 𝜓2 are primitive characters modulo q satisfying
𝜓1 ≠ 𝜓2, and let 𝑎, 𝑏, 𝑐, 𝑑 ∈ Z with (𝑎, 𝑐, 𝑞) = 1. Then∑

𝑡 (mod 𝑞)
𝜓1 (𝑎𝑡 + 𝑏)𝜓2(𝑐𝑡 + 𝑑) = 𝜓1 (𝑐)𝜓2(𝑎)𝜓1𝜓2(𝑎𝑑 − 𝑏𝑐)

𝜏(𝜓1)𝜏(𝜓1𝜓2)
𝜏(𝜓2)

. (2.7)

Moreover, when 𝜓1 = 𝜓2 = 𝜓, we have that∑
𝑡 (mod 𝑞)

𝜓(𝑎𝑡 + 𝑏)𝜓(𝑐𝑡 + 𝑑) = 𝜓(𝑎)𝜓(𝑐)𝑟𝑞 (𝑎𝑑 − 𝑏𝑐). (2.8)

Proof. The sum vanishes unless (𝑎, 𝑞) = (𝑐, 𝑞) = 1 as in [64, Page 455]. We assume (𝑎, 𝑞) = (𝑐, 𝑞) = 1
in what follows. To prove the first assertion, we initially expand the character 𝜓1 into exponentials:

𝜓1(𝑎𝑡 + 𝑏) =
1

𝜏(𝜓1)

∑
𝑥 (mod 𝑞)

𝜓1 (𝑥)𝑒𝑞 ((𝑎𝑡 + 𝑏)𝑥).

We would like to calculate the t-sum to reduce the problem to the manipulation of the x-sum. Then∑
𝑡 (mod 𝑞)

𝜓2 (𝑐𝑡 + 𝑑)𝑒𝑞 (𝑎𝑡𝑥) =
∑

𝑡 (mod 𝑞)
𝜓2 (𝑡)𝑒𝑞 (𝑎𝑐(𝑡 − 𝑑)𝑥) = 𝜓2 (𝑎𝑥)𝜓2 (𝑐)𝑒𝑞 (−𝑎𝑐𝑑𝑥)𝜏(𝜓2).

On the other hand, one has∑
𝑥 (mod 𝑞)

𝜓1𝜓2(𝑥)𝑒𝑞 (𝑥(𝑏 − 𝑎𝑐𝑑)) = 𝜓1𝜓2 (𝑎𝑑 − 𝑏𝑐)𝜓1𝜓2 (−𝑐)𝜏(𝜓1𝜓2).

Gathering the above identities together, we arrive at

∑
𝑡 (mod 𝑞)

𝜓1 (𝑎𝑡 + 𝑏)𝜓2(𝑐𝑡 + 𝑑) = 𝜓1 (𝑐)𝜓2(𝑎)𝜓1𝜓2(𝑏𝑐 − 𝑎𝑑)
𝜏(𝜓2)𝜏(𝜓1𝜓2)

𝜏(𝜓1)
.

Applying the relations 𝜏(𝜓1) = 𝜓1(−1)𝜏(𝜓1)−1𝑞 and 𝜏(𝜓2) = 𝜓2 (−1)𝜏(𝜓2)−1𝑞, the desired expression
follows. The second claim is the same as in [64, Lemma 6.3]. �

As mentioned in the introduction, we will encounter sums of the product of Kloosterman sums. One
should resolve ℓ inside the argument of the Kloosterman sum, and the following lemma is helpful when
we expand 𝑆(𝑎ℓ,±𝑛ℓ; 𝑞) into multiplicative characters.

Lemma 2.3. Assume that 𝑞 � 1 and 𝑎, 𝑏 ∈ Z. We write 𝑎 = 𝑎0𝑎
′ and 𝑏 = 𝑏0𝑏

′, where 𝑎0𝑏0 | 𝑞∞ and
(𝑎′𝑏′, 𝑞) = 1. Then

𝑆(𝑎, 𝑏; 𝑞) = 1
𝜑(𝑞)

∑
𝜓 (mod 𝑞)

𝜏(𝜓, 𝑎0)𝜏(𝜓, 𝑏0)𝜓(𝑎′𝑏′), (2.9)

where the sum runs over all Dirichlet characters modulo q and 𝜑(𝑞) is Euler’s totient function.
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Proof. We exploit equation (2.3) so that the Kloosterman sum 𝑆(𝑎, 𝑏; 𝑞) equals

∑∗

𝑑(mod 𝑞)
𝑒

(
𝑎0𝑑 + 𝑏0𝑎

′𝑏′𝑑

𝑞

)
=

1
𝜑(𝑞)

∑∗

𝑑(mod 𝑞)
𝑒

(
𝑎0𝑑

𝑞

) ∑
𝜓 (mod 𝑞)

𝜓(𝑎′𝑏′𝑑)𝜏(𝜓, 𝑏0)

=
1
𝜑(𝑞)

∑
𝜓 (mod 𝑞)

𝜏(𝜓, 𝑎0)𝜏(𝜓, 𝑏0)𝜓(𝑎′𝑏′).

This finishes the proof of the lemma. �

Direct corollaries of Lemma 2.3 include

Corollary 2.4. Suppose that 𝑞 � 1 and 𝑎, 𝑏 ∈ Z. For (𝑎𝑏, 𝑞) = 1, we then have

𝑆(𝑎, 𝑏; 𝑞) = 1
𝜑(𝑞)

∑
𝜓 (mod 𝑞)

𝜏(𝜓)2𝜓(𝑎𝑏).

This idea of separation of variables traces back to celebrated work of Blomer–Milićević in [15]. The
number of the Gauß sums is the crux in Lemma 2.3 as the nth power determines the hyper-Kloosterman
sum of n variables. A variation of Lemma 2.3 was employed by Petrow–Young [64, Lemma 8.8], where
they handled the hyper-Kloosterman sum Kl3(𝑥, 𝑦, 𝑧; 𝑞).

2.2. Double Estermann zeta function

We introduce the divisor function

𝜎𝑤 (𝑚) =
∑
𝑑 |𝑚

𝑑𝑤 .

As far as we know, the proof of the Hecke relation for 𝜎𝑤 (𝑚) has not appeared in the antecedent
literature.

Lemma 2.5. The divisor function satisfies the following multiplicativity relation:

𝜎𝑤 (𝑚𝑛) =
∑

𝑐 | (𝑚,𝑛)
𝜇(𝑐)𝑐𝑤𝜎𝑤

(𝑚
𝑐

)
𝜎𝑤

(𝑛
𝑐

)
. (2.10)

Proof. If𝑚 = 𝑝𝑘1
1 𝑝

𝑘2
2 · · · 𝑝𝑘𝑟

𝑟 , 𝑛 = 𝑝ℓ1
1 𝑝

ℓ2
2 · · · 𝑝ℓ𝑟

𝑟 and such a formula is shown for powers of primes, then

𝜎𝑤 (𝑚𝑛) = 𝜎𝑤 (𝑝𝑘1+ℓ1
1 )𝜎𝑤 (𝑝𝑘2+ℓ2

2 ) · · ·𝜎𝑤 (𝑝𝑘𝑟+ℓ𝑟
𝑟 )

=
𝑟∏

𝑖=1

min(𝑘𝑖 ,ℓ𝑖)∑
𝑗=0

𝜇(𝑝 𝑗
𝑖 )𝑝

𝑗𝑤
𝑖 𝜎𝑤 (𝑝𝑘𝑖− 𝑗

𝑖 )𝜎𝑤 (𝑝ℓ𝑖− 𝑗
𝑖 )

=
∑

𝑐 | (𝑚,𝑛)
𝜇(𝑐)𝑐𝑤𝜎𝑤

(𝑚
𝑐

)
𝜎𝑤

(𝑛
𝑐

)
.

(2.11)

By multiplicativity, it suffices to prove the result for 𝑚 = 𝑝𝑘 , 𝑛 = 𝑝ℓ . The formula is obvious if
min(𝑘, ℓ) = 0, so we assume both the variables are at least 1. Setting 𝑋 = 𝑝𝑤 , we find that the right-
hand side of equation (2.11) reads
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RHS = 𝜎𝑤 (𝑝𝑘 )𝜎𝑤 (𝑝ℓ ) − 𝑝𝑤𝜎𝑤 (𝑝𝑘−1)𝜎𝑤 (𝑝ℓ−1)
= (1 + 𝑋 + · · · + 𝑋 𝑘 ) (1 + 𝑋 + · · · + 𝑋ℓ) − 𝑋 (1 + 𝑋 + · · · + 𝑋 𝑘−1) (1 + 𝑋 + · · · + 𝑋ℓ−1)

=
𝑋 𝑘+ℓ+1 − 1
𝑋 − 1

= (1 + 𝑝𝑤 + 𝑝2𝑤 + · · · + 𝑝 (𝑘+ℓ)𝑤 ) = 𝜎𝑤 (𝑝𝑘+ℓ).

This establishes Lemma 2.5. �

For positive integers ℎ, ℓ with (ℎ, ℓ) = 1 and �(𝑠) > 1, we define the double Estermann zeta function
as

𝐷2

(
𝑠, 𝜆;

ℎ

ℓ

)
=

∞∑
𝑛=1
𝜎𝜆 (𝑛)𝑒

(
𝑛ℎ

ℓ

)
𝑛−𝑠 . (2.12)

Most of the analytic properties of 𝐷2 (𝑠, 𝜆; ℎ/ℓ) follow from the identity

𝐷2

(
𝑠, 𝜆;

ℎ

ℓ

)
= ℓ𝜆−2𝑠

∑
𝑎,𝑏(mod ℓ)

𝑒

(
𝑎𝑏ℎ

ℓ

)
𝜁
(
𝑠,
𝑎

ℓ

)
𝜁

(
𝑠 − 𝜆, 𝑏

ℓ

)
,

where for 𝛼 ∈ R and �(𝑠) > 1,

𝜁 (𝑠, 𝛼) �
∑

𝑛+𝛼>0
(𝑛 + 𝛼)−𝑠

is the Hurwitz zeta function. It has meromorphic continuation to the entire complex plane C with a
simple pole at 𝑠 = 1 of residue 1 and satisfies the functional equation

𝜁 (𝑠, 𝛼) =
∑
±
𝐺∓(1 − 𝑠)𝜁 (±𝛼) (1 − 𝑠), (2.13)

where 𝐺±(𝑠) = (2𝜋)−𝑠Γ(𝑠)𝑒(±𝑠/4) and 𝜁 (𝛼) (𝑠) is a meromorphic continuation of
∑

𝑛�1 𝑒(𝛼𝑛)𝑛−𝑠 . For
𝛼 ∈ Q, the formula in equation (2.13) is a restatement of the Poisson summation in residue classes.
Hence, as a function of the single variable s, the Estermann zeta function in equation (2.12) also has
meromorphic continuation to all 𝑠 ∈ C with two simple poles at 𝑠 = 1 and 𝑠 = 1 + 𝜆 with respective
residues ℓ𝜆−1𝜁 (1 − 𝜆) and ℓ−𝜆−1𝜁 (1 + 𝜆), provided 𝜆 ≠ 0. In the case of 𝜆 = 0, there is a double pole at
𝑠 = 1, and the Laurent expansion is given by

𝐷2

(
𝑠, 0;

ℎ

ℓ

)
=

1/ℓ
(𝑠 − 1)2 + 2(𝛾 − log ℓ)/ℓ

(𝑠 − 1) + · · · ,

where 𝛾 is the Euler–Mascheroni constant. The functional equation for 𝐷2 (𝑠, 𝜆; ℎ/ℓ) reads as follows:

Theorem 2.6 ([55, Lemma 3.7]). The Estermann zeta function satisfies the functional equation

𝐷2

(
𝑠, 𝜆;

ℎ

ℓ

)
= 2(2𝜋)2𝑠−𝜆−2ℓ1+𝜆−2𝑠Γ(1 − 𝑠)Γ(1 + 𝜆 − 𝑠)

×
[
𝐷2

(
1 − 𝑠,−𝜆;

ℎ

ℓ

)
cos

(
𝜋𝜆

2

)
− 𝐷2

(
1 − 𝑠,−𝜆;− ℎ

ℓ

)
cos

(
𝜋

(
𝑠 − 𝜆

2

))]
, (2.14)

where ℎ is the multiplicative inverse of h modulo ℓ: that is, ℎℎ ≡ 1(mod ℓ).

The formula in equation (2.14) was first proven by Hecke and Estermann in connection with an
integral representation of the Hurwitz zeta function. We already find fragments of the Kloosterman
sum in equation (2.14), which incline us to apply the Kloosterman summation formula. The functional
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equation of the Estermann zeta function 𝐷2 is essentially equivalent to Voronoı̆ summation. Indeed, the
Estermann zeta function involves a divisor function instead of Hecke eigenvalues, and this corresponds
to the standard Eisenstein series.

2.3. Kloosterman sums at singular cusps

Our presentation of cusps and scaling matrices is inspired by [37]. We restrict our attention to cusps
with respect to the Hecke congruence subgroup

Γ = Γ0(𝑞) �
{(
𝑎 𝑏
𝑐 𝑑

)
∈ SL2(Z) : 𝑐 ≡ 0(mod 𝑞)

}
.

Let 𝑞0 | 𝑞. In the following, the letter 𝜓 denotes a Dirichlet character modulo 𝑞0 with 𝜅 = (1−𝜓(−1))/2
such that 𝜓(−1) = (−1)𝜅 . Then we extend 𝜓 via the identification

𝜓

((
𝑎 𝑏
𝑐 𝑑

))
= 𝜓(𝑑) = 𝜓(𝑎).

The group Γ acts transitively on P1 (Q) by fractional linear transformations. An element 𝔞 ∈ P1 (Q)
is called a cusp. Two cusps 𝔞 and 𝔟 are termed equivalent under Γ if there exists 𝛾 ∈ Γ satisfying
𝔞 = 𝛾𝔟. We write 𝑞 = 𝑟𝑠 with (𝑟, 𝑠) = 1 and 𝑞0 | 𝑠. Then we call a cusp of the form 𝔞 = 1/𝑟 an Atkin–
Lehner cusp. The Atkin–Lehner cusps are equivalent to ∞ under the Atkin–Lehner operator as in [46,
Definition 2.4]. Motohashi [57] singled out the scaling matrices corresponding to the Atkin–Lehner
operators and this is crucial since the Fourier coefficients around the cusp 1/𝑟 are proportional to the
Fourier coefficients around the cusp ∞ for an eigenform of the Atkin–Lehner operators.

Let Γ𝔞 = {𝛾 ∈ Γ : 𝛾𝔞 = 𝔞} be the stabiliser of the cusp 𝔞 in Γ. A matrix 𝜎𝔞 ∈ SL2(R), satisfying

𝜎𝔞∞ = 𝔞 and 𝜎−1
𝔞 Γ𝔞𝜎𝔞 = Γ∞ =

{
±
(
1 𝑛
0 1

)
: 𝑛 ∈ Z

}
is called a scaling matrix for the cusp 𝔞. Since the scaling matrix 𝜎𝔞 is not uniquely determined, the
choice of 𝜎𝔞 will be important in our subsequent discussions.

Definition 2.7. Let 𝔞, 𝔟 be cusps and 𝜎𝔞 , 𝜎𝔟 be scaling matrices. The set

C(𝔞, 𝔟) =
{
𝑐 > 0 :

(
∗ ∗
𝑐 ∗

)
∈ 𝜎−1

𝔞 Γ𝜎𝔟

}
is called the set of allowed moduli.

For a cusp 𝔞 and a scaling matrix 𝜎𝔞 , let 𝑢𝔞 be such that 𝜎−1
𝔞 𝑢𝔞𝜎𝔞 =

( 1 1
1
)
. If 𝜓 satisfies 𝜓(𝑢𝔞) = 1,

then we say that 𝔞 is singular with respect to 𝜓. It behooves one to mention the following proposition:

Proposition 2.8 ([46, Proposition 2.6]). Assume that 𝑞 = 𝑟𝑠 with (𝑟, 𝑠) = 1 with 𝑞0 | 𝑠, where 𝑞0 is the
modulus of 𝜓. The two cusps ∞ and 1/𝑟 are then singular with respect to 𝜓. We choose a scaling matrix
𝜎1/𝑟 associated to the Atkin–Lehner cusp 1/𝑟 to be an Atkin–Lehner operator, namely

𝜎1/𝑟 = 𝜏𝑟 𝜈𝑠 with 𝜏𝑟 =

(
1 (𝑠𝑠 − 1)/𝑟
𝑟 𝑠𝑠

)
, 𝜈𝑠 =

(√
𝑠

1/
√
𝑠

)
with 𝑠𝑠 ≡ 1(mod 𝑟). Then the set of allowed moduli is given by

C(∞, 1/𝑟) = {𝛾 = 𝑐
√
𝑠 : 𝑐 ≡ 0(mod 𝑟), (𝑐, 𝑠) = 1}.
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An important example is when 𝑟 = 1 and 𝑠 = 𝑞. In this case, one has

C(∞, 0) = {𝑐√𝑞 : 𝑐 � 1, (𝑐, 𝑞) = 1}.

We now define Kloosterman sums with respect to a pair of cusps and general central character.

Definition 2.9. If 𝔞, 𝔟 are singular cusps for 𝜓 modulo 𝑞0, then the Kloosterman sum associated to 𝔞, 𝔟
and 𝜓 with modulus c is defined as

𝑆𝔞𝔟 (𝑚, 𝑛; 𝑐;𝜓) =
∑

𝛾=
(
𝑎 𝑏
𝑐 𝑑

)
∈Γ∞\𝜎−1

𝔞 Γ𝜎𝔟/Γ∞

𝜓(sgn(𝑐))𝜓(𝜎𝔞𝛾𝜎−1
𝔟 )𝑒

(
𝑎𝑚 + 𝑑𝑛

𝑐

)
. (2.15)

The occurrence of −𝐼 ∈ Γ∞ indicates that the lower-left entry c is only defined up to± sign, so that the
factor 𝜓(sgn(𝑐)) accounts for this. Definition 2.9 is sensitively dependent upon the choice of 𝜎𝔞 and 𝜎𝔟.
Moreover, if |𝑐 | ∉ C(𝔞, 𝔟), then the sum appearing in equation (2.15) is empty, thus 𝑆𝔞𝔟 (𝑚, 𝑛; 𝑐;𝜓) = 0.
If we stick to the case of 𝔞 = ∞ and 𝔟 = 0, we know the identity (see [46, (2.20)])

𝑆∞0 (𝑚, 𝑛; 𝑐
√
𝑞;𝜓) = 𝜓(𝑐)𝑆(𝑚, 𝑛𝑞; 𝑐) (2.16)

with (𝑐, 𝑞) = 1 and 𝑞𝑞 ≡ 1(mod 𝑐). This differs from the one shown in [36, Page 58] by an additive
character, which is due to a different choice of the scaling matrix. In the formula in equation (2.16),
the presence of the character 𝜓(𝑐) is a nice feature of the (∞, 0) cusp-pair as opposed to the (∞,∞)
cusp-pair:

𝑆∞∞(𝑚, 𝑛; 𝑐;𝜓) = 𝑆𝜓 (𝑚, 𝑛; 𝑐) =
∑∗

𝑑(mod 𝑐)
𝜓(𝑑)𝑒

(
𝑚𝑑 + 𝑛𝑑

𝑐

)
. (2.17)

2.4. Normalisation and Hecke eigenvalues

In order to formulate our Kloosterman summation formula, we borrow the normalisation from [9, 23].
We refer the reader to [65] for an exposition in the case of general multiplier systems. Let Γ\H be the
modular surface, where Γ = Γ0(𝑞) is the Hecke congruence subgroup and H = {𝑧 ∈ C : �(𝑧) > 0} is
the upper half-plane. There exist various self-adjoint and pairwise commuting operators acting on the
space 𝐿2 (Γ\H): the hyperbolic Laplacian

Δ = −𝑦2
(
𝜕2

𝜕𝑥2 + 𝜕2

𝜕𝑦2

)
+ 𝑖𝜅𝑦 𝜕

𝜕𝑥
,

the Hecke operators (the non-archimedean counterparts of Δ)

(𝑇𝑛 𝑓 ) (𝑧) =
1
√
𝑛

∑
𝑎𝑑=𝑛

𝜓(𝑎)
∑

𝑏(mod 𝑑)
𝑓

(
𝑎𝑧 + 𝑏
𝑑

)
, (2.18)

and the reflection operator (𝑇−1 𝑓 ) (𝑧) = 𝑓 (−𝑧), which flips positive and negative Fourier coefficients.
As shall be explained later, we have the spectral decomposition of 𝐿2 (Γ\H) in terms of pure point
spectrum, residual spectrum and continuous spectrum, namely

𝐿2 (Γ\H) = 𝐿2
cusp (Γ\H) ⊕ 𝐿2

res (Γ\H) ⊕ 𝐿2
cont (Γ\H).

https://doi.org/10.1017/fms.2022.33 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2022.33


Forum of Mathematics, Sigma 17

For an integer 𝑘 > 0 with 𝑘 ≡ 𝜅(mod 2), we choose a basis B𝑘 (𝑞, 𝜓) of holomorphic cusp forms. It
is taken orthonormal with respect to the weight k Petersson inner product

〈ℎ1, ℎ2〉 =
∫
Γ\H

ℎ1 (𝑧)ℎ2(𝑧)𝑦𝑘 𝑑𝑥𝑑𝑦

𝑦2 , (2.19)

where 𝑧 = 𝑥 + 𝑖𝑦. We let B𝜅 (𝑞, 𝜓) denote a basis of the space of Maaß cusp forms. In particular, they
are eigenfunctions on H, are automorphic of weight 𝜅 ∈ {0, 1}, are square-integrable on a fundamental
domain and vanish at all the cusps. Moreover, they are eigenfunctions of the 𝐿2-extension of the
hyperbolic Laplacian Δ . For 𝑓 ∈ B𝜅 (𝑞, 𝜓), we write Δ 𝑓 = 𝑠(1 − 𝑠) 𝑓 with 𝑠 = 1/2 + 𝑖𝑡 𝑓 and 𝑡 𝑓 ∈
R ∪ 𝑖[−1/2, 1/2]. One may choose the basis B𝜅 (𝑞, 𝜓) orthonormal with respect to the weight zero
Petersson inner product introduced above. We define

𝜗 � sup
𝑓 ∈B𝜅 (𝑞,𝜓)

|�𝑡 𝑓 |.

Then the Selberg eigenvalue conjecture asserts 𝜗 = 0, whereas Selberg only established the upper
bound 𝜗 � 1/4. The current world record is 𝜗 � 7/64 due to Kim–Sarnak [45] (see Blomer–Brumley
[7] for the treatment in a more general scenario). The decomposition of the space of square-integrable,
weight 𝜅 automorphic forms on H with respect to the eigenspaces of the hyperbolic Laplacian involves
the Eisenstein spectrum E(𝑞, 𝜓), which is the orthogonal complement to the space of Maaß cusp forms.
It is explicitly described in terms of the Eisenstein series 𝐸𝔞 (𝑧, 1/2 + 𝑖𝑡), where 𝔞 runs over singular
cusps and 𝑡 ∈ R. In this article, instead of using the classical Eisenstein series indexed by singular cusps
as a basis of the continuous spectrum, we use another basis of Eisenstein series indexed by a set of
parameters of the form

{(𝜓1, 𝜓2, 𝑓 ) : 𝜓1𝜓2 = 𝜓, 𝑓 ∈ B(𝜓1, 𝜓2)},

where (𝜓1, 𝜓2) ranges over the pairs of characters of modulus q such that 𝜓1𝜓2 = 𝜓 and B(𝜓1, 𝜓2) is
a certain finite set dependent on (𝜓1, 𝜓2). We do not need to be more explicit here, and we refer the
reader to [24] for an accurate definition of these parameters. The principal advantage of such a basis is
that the Eisenstein series are eigenforms of the Hecke operators 𝑇𝑛 with (𝑛, 𝑞) = 1: we have

𝑇𝑛𝐸 (𝑧, 1/2 + 𝑖𝑡, 𝑓 ) = 𝜆 𝑓 (𝑛, 𝑡)𝐸 (𝑧, 1/2 + 𝑖𝑡, 𝑓 )

with

𝜆 𝑓 (𝑛, 𝑡) =
∑
𝑎𝑏=𝑛

𝜓1 (𝑎)𝑎𝑖𝑡𝜓2(𝑏)𝑏−𝑖𝑡 .

For convenience, we introduce the ad hoc notation

𝑖(𝑔, 𝑧) = 𝑐𝑧 + 𝑑, 𝑗 (𝑔, 𝑧) = (𝑐𝑧 + 𝑑) |𝑐𝑧 + 𝑑 |−1, 𝑔 =

(
∗ ∗
𝑐 𝑑

)
∈ SL2 (R).

We write the Fourier expansion of 𝑓 ∈ B𝑘 (𝑞, 𝜓) around a singular cusp 𝔞 with a scaling matrix 𝜎𝔞 as

𝑖(𝜎𝔞 , 𝑧)−𝑘 𝑓 (𝜎𝔞𝑧) =
(
(4𝜋)𝑘

Γ(𝑘)

)1/2 ∞∑
𝑛=1

𝜌 𝑓 𝔞 (𝑛)𝑛(𝑘−1)/2𝑒(𝑛𝑧).

Let 𝑓 ∈ B𝜅 (𝑞, 𝜓) be an orthonormal basis of the space of Maaß cusp forms of weight 𝜅 with respect to
Γ0(𝑞) and central character 𝜓. As is customary, we assume that each f is either even or odd depending
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on whether 𝑇−1 𝑓 = 𝑓 or 𝑇−1 𝑓 = − 𝑓 . If we denote the corresponding spectral parameter by 𝑡 𝑓 ,
we have

𝑗 (𝜎𝔞 , 𝑧)−𝜅 𝑓 (𝜎𝔞𝑧) =
√

cosh(𝜋𝑡 𝑓 )
∑
𝑛≠0

𝜌 𝑓 𝔞 (𝑛)
|𝑛|1/2 𝑊

𝑛
|𝑛|

𝜅
2 ,𝑖𝑡 𝑓 (4𝜋 |𝑛|𝑦)𝑒(𝑛𝑥)

with𝑊𝛼,𝛽 the standard Whittaker function. For an Eisenstein series 𝐸 (𝑧, 1/2 + 𝑖𝑡, 𝑓 ), we write

𝑗 (𝜎𝔞 , 𝑧)−𝜅𝐸 (𝜎𝔞𝑧, 1/2 + 𝑖𝑡, 𝑓 ) = 𝑐1, 𝑓 ,𝔞 (𝑡)𝑦1/2+𝑖𝑡 + 𝑐2, 𝑓 ,𝔞 (𝑡)𝑦1/2−𝑖𝑡

+
√

cosh(𝜋𝑡)
∑
𝑛≠0

𝜌 𝑓 𝔞 (𝑛, 𝑡)
|𝑛|1/2 𝑊 𝑛

|𝑛|
𝜅
2 ,𝑖𝑡 (4𝜋 |𝑛|𝑦)𝑒(𝑛𝑥).

Now let B∗
𝜅 (𝑞, 𝜓) be an orthonormal basis consisting of Hecke–Maaß newforms of level q and

central character 𝜓(mod 𝑞0) normalised so that 𝜆 𝑓 (1) = 1, and we define similarly B∗
𝑘 (𝑞, 𝜓). By

Atkin–Lehner–Li theory [2, 3], we have the following direct sum decomposition as in [15]:

B𝜅 (𝑞, 𝜓) =
⊔

𝑞1𝑞2=𝑞

⊔
𝑓 ∈B∗

𝜅 (𝑞1 ,𝜓)
S�𝑞2 ( 𝑓 ), (2.20)

where an element of the orthonormal basisS�𝑞2 ( 𝑓 ) = { 𝑓(𝑑) (𝑧) : 𝑑 | 𝑞2} is written as a linear combination
of 𝑓 (𝑐𝑧) with 𝑐 | 𝑑. A description of this linear combination is given by Iwaniec–Luo–Sarnak [39] for
the squarefree level and principal nebentypus. Blomer–Milićević [14] subsequently orthonormalised
the collection of Maaß forms { 𝑓 (𝑑𝑧) : 𝑑 | 𝑞2} for a newform f and an integer 𝑞2 � 1, which is
not necessarily squarefree. Their scheme focuses on the principal nebentypus, but the generalisation
to nontrivial central characters is feasible; see [31]. There are the Atkin–Lehner–Li theory for the
continuous spectrum and a decomposition into spaces of oldforms analogous to equation (2.20) due to
Young [70]. We make use of equation (2.20) to apply Hecke relations and the proportionality of Fourier
coefficients to the Hecke eigenvalues.

In what follows, we make an abuse of notation 𝜌 𝑓 ∞(𝑛) = 𝜌 𝑓 (𝑛) and 𝜌 𝑓 ∞(𝑛, 𝑡) = 𝜌 𝑓 (𝑛, 𝑡). We
consider the Fourier coefficients 𝜌 𝑓 𝔞 (𝑛) in more detail, and we stick to the case of 𝔞 ∼ ∞. Let
𝑓 ∈ B𝜅 (𝑞, 𝜓) be any Hecke eigenform, and let 𝜆 𝑓 (𝑛) denote the corresponding eigenvalue for 𝑇𝑛,
namely 𝑇𝑛 𝑓 = 𝜆 𝑓 (𝑛) 𝑓 . Then we often use the Hecke multiplicativity relations for (𝑚𝑛, 𝑞) = 1:

𝜆 𝑓 (𝑚𝑛) =
∑

𝑑 | (𝑚,𝑛)
𝜇(𝑑)𝜓(𝑑)𝜆 𝑓

(𝑚
𝑑

)
𝜆 𝑓

( 𝑛
𝑑

)
, 𝜆 𝑓 (𝑚)𝜆 𝑓 (𝑛) =

∑
𝑑 | (𝑚,𝑛)

𝜓(𝑑)𝜆 𝑓

(𝑚𝑛
𝑑2

)
. (2.21)

We see some structural beauty of equation (2.21) in Section 3.5 along with the formula 𝜆 𝑓 (𝑛) =
𝜓(𝑛)𝜆 𝑓 (𝑛) for (𝑛, 𝑞) = 1. Notice that the relation in equation (2.21) is valid for all 𝑚, 𝑛 � 1 if f is a
newform. We invoke the bounds for the Hecke eigenvalues: if f belongs to B𝑘 (𝑞, 𝜓) or is an Eisenstein
series, there follows that

|𝜆 𝑓 (𝑛) | � 𝜏(𝑛) �𝜖 𝑛
𝜖

for any 𝜖 > 0. For 𝑓 ∈ B𝜅 (𝑞, 𝜓), the general upper bound is available in the form

|𝜆 𝑓 (𝑛) | � 𝜏(𝑛)𝑛𝜗 �𝜖 𝑛
𝜗+𝜖 . (2.22)

There is a connection between the Fourier coefficients and the Hecke eigenvalues

𝜌 𝑓 (𝑛) = 𝜌 𝑓 (1)𝜆 𝑓 (𝑛), |𝜌 𝑓 (1) |2 =
𝜑(𝑞)
2𝑞2

1
𝐿(1,Ad2 𝑓 )

(2.23)
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for (𝑛, 𝑞) = 1. We refer the reader to [23, (6.14)] for the former and to [6, (2.10)] for the latter. Here the
adjoint square L-function is defined as

𝐿(𝑠,Ad2 𝑓 ) = 𝜁 (2𝑠)
∞∑

𝑛=1

𝜆 𝑓 (𝑛2)
𝑛𝑠

. (2.24)

The formula in equation (2.23) is valid for all 𝑛 � 1 if f is a newform.

Remark 2.10. If 𝜋 is an automorphic representation of GL𝑛 with a contradradient representation 𝜋̃,
then it holds that 𝐿(𝑠, 𝜋̃) = 𝐿(𝑠, 𝜋). In particular, the Dirichlet series coefficients of 𝐿(𝑠, 𝜋) are real if
and only if 𝜋 � 𝜋̃. If 𝑛 = 2, we have 𝜋̃ � 𝜋 ⊗ 𝜔−1, where 𝜔 denotes the central character of 𝜋. Hence
the Hecke eigenvalues are not necessarily real in our context.

The aforementioned formulæ for Hecke operators acting on holomorphic and Maaß cusp forms apply
to the Eisenstein series since 𝜌 𝑓 (𝑛, 𝑡) are proportional to the Hecke eigenvalues 𝜆 𝑓 (𝑛, 𝑡) (compare [23,
(7.13)]). We also derive the relation

𝜌 𝑓 (−𝑛, 𝑡) =
Γ(𝑠 + 𝜅/2)
Γ(𝑠 − 𝜅/2) 𝜌 𝑓 (𝑛, 𝑡).

In Section 3, we are mainly interested in primitive Dirichlet characters 𝜓2 for primitive nonquadratic
characters 𝜓 modulo a prime. In this case, one observes that 𝜅(𝜓2) = 0, obtaining in particular that

|𝜌 𝑓 (𝑛, 𝑡) |2 =
|𝜆 𝑓 (𝑛, 𝑡) |2

𝑞 |𝐿(1 + 2𝑖𝑡, 𝜓1𝜓2) |2
.

We also need to define the twisted automorphic L-function

𝐿(𝑠, 𝑓 ⊗ 𝜓) �
∞∑

𝑛=1

𝜓(𝑛)𝜆 𝑓 (𝑛)
𝑛𝑠

, �(𝑠) > 1, (2.25)

which has meromorphic continuation to the whole complex plane C.

2.5. A version of the Kuznetsov formula

A spectral summation formula that we deploy here is an asymmetric trace formula relating sums of
Kloosterman sums to Fourier coefficients of automorphic forms in the sense that the spectral side
and the geometric side have a quite different shape. This technology is able to establish that there are
considerable cancellations in sums of Kloosterman sums. Moreover, it provides a separation of variables
m and n in the sum

∑
𝑐 𝑆(𝑚, 𝑛; 𝑐)/𝑐, which is conducive to obtaining additional savings in summations

over m and n.
For 𝑥 > 0, we introduce the three integral kernels

H+(𝑥, 𝑡) � 2𝜋𝑖𝑡𝜅

sinh(𝜋𝑡) (𝐽2𝑖𝑡 (𝑥) − (−1)𝜅 𝐽−2𝑖𝑡 (𝑥)),

H−(𝑥, 𝑡) � 2𝜋𝑖1−𝜅

sinh(𝜋𝑡) (𝐼2𝑖𝑡 (𝑥) − 𝐼−2𝑖𝑡 (𝑥)) = 8𝑖−𝜅 cosh(𝜋𝑡)𝐾2𝑖𝑡 (𝑥),

H hol(𝑥, 𝑘) � 4𝑖𝑘𝐽𝑘−1(𝑥), 𝑘 ∈ 2N,
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where we have borrowed the normalisation from [67]. We decided to suppress 𝜓 from the notation, and
we adopt this kind of abuse of notation unless otherwise specified. For 𝐹 ∈ C∞𝑐 (R+), we introduce

ℒ�𝐹 =
∫ ∞

0
H� (𝜂, ·)𝐹 (𝜂) 𝑑𝜂

𝜂

for � ∈ {+,−, hol}. With the whole notation set up, we formulate the Kloosterman summation formula,
which in our case reads as follows:

Theorem 2.11 ([67, Theorem 3.2]). Assume 𝐹 ∈ 𝐶3(0,∞) satisfies 𝑥 𝑗𝐹 ( 𝑗) (𝑥) � min(𝑥, 𝑥−3/2) for
0 � 𝑗 � 3. Let 𝔞, 𝔟 be singular cusps and 𝜓(mod 𝑞0) be a Dirichlet character, and let 𝑚, 𝑛 � 1. Then
we have that

O𝑞
𝔞𝔟 (𝑚,±𝑛; 𝐹;𝜓) = A Maa

𝔞𝔟 (𝑚,±𝑛;ℒ±𝐹;𝜓) +A Eis
𝔞𝔟 (𝑚,±𝑛;ℒ±𝐹;𝜓) + 𝛿±=+A hol

𝔞𝔟 (𝑚, 𝑛;ℒ hol𝐹;𝜓).

Here we set

O𝑞
𝔞𝔟 (𝑚,±𝑛; 𝐹;𝜓) �

∑
𝑐∈C(𝔞,𝔟)

𝑆𝔞𝔟 (𝑚,±𝑛; 𝑐;𝜓)
𝑐

𝐹

(
4𝜋

√
𝑚𝑛

𝑐

)
, (2.26)

A Maa
𝔞𝔟 (𝑚,±𝑛; 𝐹;𝜓) �

∑
𝑓 ∈B𝜅 (𝑞,𝜓)

𝜌 𝑓 𝔞 (𝑚)𝜌 𝑓 𝔟 (±𝑛)𝐹 (𝑡 𝑓 ), (2.27)

A Eis
𝔞𝔟 (𝑚,±𝑛; 𝐹;𝜓) �

∑
𝜓1 𝜓2=𝜓

∑
𝑓 ∈B(𝜓1 ,𝜓2)

∫ ∞

−∞
𝜌 𝑓 𝔞 (𝑚, 𝑡)𝜌 𝑓 𝔟 (𝑛, 𝑡)𝐹 (𝑡)

𝑑𝑡

4𝜋
, (2.28)

A hol
𝔞𝔟 (𝑚, 𝑛; 𝐹;𝜓) �

∑
𝑘>𝜅

𝑘≡𝜅(mod 2)

∑
𝑓 ∈B𝑘 (𝑞,𝜓)

𝜌 𝑓 𝔞 (𝑚)𝜌 𝑓 𝔟 (𝑛)𝐹 (𝑘), (2.29)

where the sum over c on the right-hand side of equation (2.26) runs over all positive real numbers for
which the Kloosterman sum 𝑆𝔞𝔟 (𝑚,±𝑛; 𝑐;𝜓) is non-empty.

The above formulation mimics the Kuznetsov formula that Motohashi [55] utilised to show a spectral
reciprocity for the smoothed fourth moment of the Riemann zeta function. The name of the Kloosterman
summation formula stems from the fact that it expresses certain sums of Kloosterman sums weighted by
a function F in terms of certain sums over automorphic forms weighted by transformed functions ℒ�𝐹
with � ∈ {+,−, hol}. We emphasise that there is no delta term in the Kloosterman summation formula.

3. Proof of Theorem 1.1

In this section, we prove Theorem 1.1 by applying the triad of Ramanujan–Voronoı̆–Kuznetsov to attack
the shifted divisor sum in equation (1.14) for a primitive Dirichlet character 𝜒 modulo a prime q.

3.1. Dissection argument of Atkinson

Recall equation (1.3) and Convention 1.10. Let R+
4 (respectively, R−

4 ) be the subdomain of C4, where
all four parameters have real parts larger than (respectively, less than) one. To wit, we define

R+
4 � {(𝑠1, 𝑠2, 𝑠3, 𝑠4) ∈ C4 : �(𝑠𝑖) > 1, 1 � 𝑖 � 4},

R−
4 � {(𝑠1, 𝑠2, 𝑠3, 𝑠4) ∈ C4 : �(𝑠𝑖) < 1, 1 � 𝑖 � 4}.
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For convenience, we write Z2 � Z2(s; 𝑔; 𝜒) = Z2(𝑠1, 𝑠2, 𝑠3, 𝑠4; 𝑔; 𝜒) for a vector s = (𝑠1, 𝑠2, 𝑠3, 𝑠4).
In the domain R+

4 , we open up the Dirichlet series to recast Z2 as∫ ∞

−∞

∞∑
𝑛1=1

∞∑
𝑛2=1

∞∑
𝑛3=1

∞∑
𝑛4=1

𝜒(𝑛1𝑛2)𝜒(𝑛3𝑛4)
𝑛𝑠1

1 𝑛
𝑠2
2 𝑛

𝑠3
3 𝑛

𝑠4
4

(
𝑛1𝑛2
𝑛3𝑛4

)−𝑖𝑡

𝑔(𝑡)𝑑𝑡

=
∞∑

𝑚=1

∞∑
𝑛=1

𝜒(𝑚)𝜒(𝑛)𝜎𝑠1−𝑠2 (𝑚)𝜎𝑠3−𝑠4 (𝑛)
𝑚𝑠1𝑛𝑠3

𝑔̂

(
1

2𝜋
log

𝑚

𝑛

)
, (3.1)

where 𝑔̂ is the Fourier transform4

𝑔̂(𝜉) =
∫ ∞

−∞
𝑔(𝑡)𝑒(−𝜉𝑡)𝑑𝑡.

Shifting the contour in equation (1.3) yields that Z2 is meromorphic over the domain

B4 = {(𝑠1, 𝑠2, 𝑠3, 𝑠4) ∈ C4 : |𝑠1 |, |𝑠2 |, |𝑠3 |, |𝑠4 | < 𝐵},

where 𝐵 = 𝑐𝐴 and c is a small positive constant so that B is sufficiently large. Although it is possible to
make B tend to infinity, we deal with the regimeB4 for technical convenience. Since we are assuming that
𝜒 is primitive, the fourth moment Z2 is holomorphic in the vicinity of the point s = (1/2, 1/2, 1/2, 1/2).
As an initial manipulation, we apply Atkinson’s dissection, decomposing the double sum in equation
(3.1) into three parts. It therefore follows that

Z2 = D4 +OD†
4 +OD‡

4, (3.2)

where D4 is the diagonal contribution corresponding to the terms with 𝑚 = 𝑛, whereas OD†
4 (respec-

tively, OD‡
4) is the off-diagonal contribution corresponding to the terms with 𝑚 > 𝑛 (respectively,

𝑚 < 𝑛). Note that the case of 𝑚 < 𝑛 is symmetric to the case of 𝑚 > 𝑛 as follows:

OD‡
4(𝑠1, 𝑠2, 𝑠3, 𝑠4; 𝑔; 𝜒) = OD†

4 (𝑠3, 𝑠4, 𝑠1, 𝑠2; 𝑔; 𝜒). (3.3)

Breaking the summation in this manner leads one to certain sums of Kloosterman sums and ultimately
to automorphic forms. For an explanation of the reason this is not as surprising as it initially seems, we
refer the reader to the discussion in [55, §4.2].
Lemma 3.1. With the notation as above, we have that

D4 = 𝑔̂(0) 𝜁
𝑞 (𝑠1 + 𝑠3)𝜁𝑞 (𝑠1 + 𝑠4)𝜁𝑞 (𝑠2 + 𝑠3)𝜁𝑞 (𝑠2 + 𝑠4)

𝜁𝑞 (𝑠1 + 𝑠2 + 𝑠3 + 𝑠4)
,

where, for any L-function, the notation 𝐿𝑞 signifies the removal of the Euler factor at primes dividing q.
Proof. It suffices to calculate

D4 = 𝑔̂(0)
∑

(𝑚,𝑞)=1

𝜎𝑠1−𝑠2 (𝑚)𝜎𝑠3−𝑠4 (𝑚)
𝑚𝑠1+𝑠3

,

where the Dirichlet series coefficient is a multiplicative function. Since the sum is over positive integers
coprime to q, one can apply Ramanujan’s identity (see [28, §17.8, Theorem 305])

∞∑
𝑚=1

𝜎𝛼 (𝑚)𝜎𝛽 (𝑚)
𝑚𝑠

=
𝜁 (𝑠)𝜁 (𝑠 − 𝛼)𝜁 (𝑠 − 𝛽)𝜁 (𝑠 − 𝛼 − 𝛽)

𝜁 (2𝑠 − 𝛼 − 𝛽) ,

omitting the Euler factors dividing q. This formula is valid as long as �(𝑠𝑖) > 1/2. �

4A slightly different definition of the Fourier transform was used in Motohashi’s monograph [55].
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Note that 𝑔̂(0) =
∫ ∞
−∞ 𝑔(𝑡)𝑑𝑡 is the mass of the weight function 𝑔̂𝑇 (0) = 𝑇𝑔̂(0), where 𝑔𝑇 (𝑥) = 𝑔(𝑥/𝑇)

with 𝑇 > 0. Hence, if g is compactly supported on the interval [1, 2], then supp(𝑔𝑇 ) ⊆ [𝑇, 2𝑇]. Since
D4 has a pole of order 4 at s = (1/2, 1/2, 1/2, 1/2), we should have cancellation with a similar term
coming from the off-diagonal terms. This is a common feature in the study of moment problems.
The continuation of the off-diagonal contribution necessitates the full machinery of spectral theory of
automorphic forms associated to Hecke congruence subgroups. We handle the second term in equation
(3.2) due to the symmetry in equation (3.3), and the contribution from the third term will be incorporated
at the end.

3.2. Evaluation of off-diagonal terms

For notational convenience, we call

𝐺 (𝑦, 𝑠) = (1 + 𝑦)−𝑠 𝑔̂

(
1

2𝜋
log(1 + 𝑦)

)
=
∫
(1+𝛿)

𝑔̊(𝜏, 𝑠)𝑦−𝜏 𝑑𝜏

2𝜋𝑖
(3.4)

for suitable 𝛿 > 0, where 𝑔̊ is the Mellin transform

𝑔̊(𝜏, 𝑠) =
∫ ∞

0
𝑦𝜏−1(1 + 𝑦)−𝑠 𝑔̂

(
1

2𝜋
log(1 + 𝑦)

)
𝑑𝑦 = Γ(𝜏)

∫ ∞

−∞

Γ(𝑠 − 𝜏 + 𝑖𝑡)
Γ(𝑠 + 𝑖𝑡) 𝑔(𝑡)𝑑𝑡, (3.5)

provided �(𝑠) > �(𝜏) > 0. The following lemma is useful:

Lemma 3.2. As a function of two complex variables, 𝑔̊(𝜏, 𝑠)/Γ(𝜏) is entire in 𝜏 and s. In addition,
𝑔̊(𝜏, 𝑠) is of rapid decay in 𝜏 as long as s and �(𝜏) are bounded, say

𝑔̊(𝜏, 𝑠) � (1 + |𝜏 |)−𝐴.

Proof. Shifting the contour �(𝑡) = 0 in equation (3.5) downward appropriately, we obtain the first
assertion. The second claim is a consequence of an upward shift. See [55, Lemma 4.1] for an analogous
statement. �

We now embark on the computation of OD†
4 to resolve the shifted convolution problem. Pulling the

Dirichlet characters out of the summations, one sees that

OD†
4 =

∑
𝑎,𝑏(mod 𝑞)

𝜒(𝑎)𝜒(𝑎 + 𝑏)
∑

𝑛≡𝑎 (mod 𝑞)
𝑚≡𝑏 (mod 𝑞)

𝜎𝑠3−𝑠4 (𝑛)𝜎𝑠1−𝑠2 (𝑛 + 𝑚)
𝑛𝑠1+𝑠3

𝐺
(𝑚
𝑛
, 𝑠1

)
. (3.6)

We invoke the Ramanujan expansion (also known as the Ramanujan formula) for the divisor function,
which is a precise formulation of equation (1.15). For any integers 𝑛, 𝑞 with (𝑛, 𝑞) = 1 and �(𝜉) < 0,
we have that

𝜎𝜉 (𝑛) = 𝜁𝑞 (1 − 𝜉)
∑

(ℓ,𝑞)=1
ℓ 𝜉−1𝑟ℓ (𝑛). (3.7)

This follows from the formula 𝑟ℓ (𝑛) =
∑

𝑑 | (ℓ,𝑛) 𝑑𝜇(ℓ/𝑑) and a reversal of summations. Hence, we
appeal to the fact that the divisor function emerges in the Fourier expansion of the Eisenstein series for
SL2 (Z). On account of the presence of 𝜒(𝑎 + 𝑏), we can assume (𝑛+𝑚, 𝑞) = 1. Upon applying equation
(3.7), the right-hand side of equation (3.6) equals

𝜁𝑞 (1 − 𝑠1 + 𝑠2)
∑

𝑎,𝑏(mod 𝑞)
𝜒(𝑎)𝜒(𝑎 + 𝑏)

∑
(ℓ,𝑞)=1

ℓ𝑠1−𝑠2−1
∑

𝑛≡𝑎 (mod 𝑞)
𝑚≡𝑏 (mod 𝑞)

𝑟ℓ (𝑛 + 𝑚)𝜎𝑠3−𝑠4 (𝑛)
𝑛𝑠1+𝑠3

𝐺
(𝑚
𝑛
, 𝑠1

)
.
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In order to simplify the innermost sums over m and n, we detect the congruences modulo q in an additive
manner, obtaining

OD†
4 = 𝜁𝑞 (1 − 𝑠1 + 𝑠2)𝑞−2

∑
𝑎,𝑏(mod 𝑞)

𝜒(𝑎)𝜒(𝑎 + 𝑏)
∑

(ℓ,𝑞)=1
ℓ𝑠1−𝑠2−1

×
∞∑

𝑚=1

∞∑
𝑛=1

∑∗

ℎ(mod ℓ)

∑
𝑟 |𝑞

∑∗

𝑐(mod 𝑟 )

∑
𝑑(mod 𝑞)

𝑒𝑟 (𝑐(𝑛 − 𝑎))𝑒𝑞 (𝑑 (𝑚 − 𝑏))𝑒ℓ (ℎ(𝑛 + 𝑚))
𝜎𝑠3−𝑠4 (𝑛)
𝑛𝑠1+𝑠3

𝐺
(𝑚
𝑛
, 𝑠1

)
.

The reason for the occurrence of the sum over r is to make subsequent formulæ cleaner. If we execute
the change of variables (𝑎, 𝑏) ↦→ (−𝑎,−𝑏), then the sum does not change according to whether 𝜒 is
even or odd, and we use equation (3.4) to show that

OD†
4 = 𝜁𝑞 (1 − 𝑠1 + 𝑠2)𝑞−2

×
∑

𝑎,𝑏(mod 𝑞)

∑
𝑟 |𝑞

∑∗

𝑐(mod 𝑟 )

∑
𝑑(mod 𝑞)

𝜒(𝑎)𝜒(𝑎 + 𝑏)𝑒𝑟 (𝑎𝑐)𝑒𝑞 (𝑏𝑑)
∑

(ℓ,𝑞)=1
ℓ𝑠1−𝑠2−1

×
∑∗

ℎ(mod ℓ)

∫
(1+𝛿)

𝑔̊(𝜏, 𝑠1)𝜁 (ℎ/ℓ+𝑑/𝑞) (𝜏)𝐷2

(
𝑠1 + 𝑠3 − 𝜏, 𝑠3 − 𝑠4;

ℎ

ℓ
+ 𝑐
𝑟

)
𝑑𝜏

2𝜋𝑖
, (3.8)

where the right-hand side of equation (3.8) is absolutely convergent in a suitable domain such as

R4, 𝛿 = {(𝑠1, 𝑠2, 𝑠3, 𝑠4) ∈ R+
4 : �(𝑠1 + 𝑠3) > 2 + 2𝛿, �(𝑠1) + 1 < �(𝑠2), |𝑠3 − 𝑠4 | < 𝛿}

for an arbitrary but fixed constant 𝛿. We then want to shift the contour to the right. In anticipation of the
future application of the functional equation of the Estermann zeta function (Theorem 2.6), we define

E4 =

{
(𝑠1, 𝑠2, 𝑠3, 𝑠4) ∈ B4 : �(𝑠1 + 𝑠3) <

𝐵

3
, �(𝑠1 + 𝑠4) <

𝐵

3
, �(𝑠1 + 𝑠2 + 𝑠3 + 𝑠4) > 3𝐵

}
. (3.9)

We ascertain that R4, 𝛿 ∩ E4 ≠ ∅ if 𝛿 is small and confine the variables (𝑠1, 𝑠2, 𝑠3, 𝑠4) to be in the
codomain E4, and then our shift of the contour in equation (3.8) to �(𝜏) = 𝐵 results in

∑∗

ℎ(mod ℓ)

{ ∫
(1+𝛿)

−
∫
(𝐵)

}
𝑔̊(𝜏, 𝑠1)𝜁 (ℎ/ℓ+𝑑/𝑞) (𝜏)𝐷2

(
𝑠1 + 𝑠3 − 𝜏, 𝑠3 − 𝑠4;

ℎ

ℓ
+ 𝑐
𝑟

)
𝑑𝜏

2𝜋𝑖

= (ℓ𝑟)𝑠3−𝑠4−1𝜁 (1 − 𝑠3 + 𝑠4)𝑔̊(𝑠1 + 𝑠3 − 1, 𝑠1)
∞∑

𝑛=1
𝑟ℓ (𝑛)𝑒𝑞 (𝑛𝑑)𝑛1−𝑠1−𝑠3

+ (ℓ𝑟)𝑠4−𝑠3−1𝜁 (1 + 𝑠3 − 𝑠4)𝑔̊(𝑠1 + 𝑠4 − 1, 𝑠1)
∞∑

𝑛=1
𝑟ℓ (𝑛)𝑒𝑞 (𝑛𝑑)𝑛1−𝑠1−𝑠4 . (3.10)

Since the above polar terms do not contain the parameter c, one may express the sum over c in equation
(3.8) as 𝑟𝑟 (𝑎), which leads one to a further simplification of them. At this stage, we notice that∑

𝑎,𝑏(mod 𝑞)
𝜒(𝑎)𝜒(𝑎 + 𝑏)𝑒𝑞 (𝑎𝑐 + 𝑏𝑑) = 𝜏(𝜒, 𝑑)𝜏(𝜒, 𝑑 − 𝑐) = 𝜒(𝑑)𝜒(𝑑 − 𝑐)𝑞 (3.11)
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when 𝑟 = 𝑞. This evaluation will not be used as the expanded sums are more amenable. Consequently,
after some rearrangements, our formula is transformed into

OD†
4 = (Polar Terms) + 𝑞−2

∑
𝑎,𝑏,𝑑 (mod 𝑞)

∑
𝑟 |𝑞
𝜁𝑟 (1 − 𝑠1 + 𝑠2)

∑∗

𝑐(mod 𝑟 )
𝜒(𝑎)𝜒(𝑎 + 𝑏)𝑒𝑟 (𝑎𝑐)𝑒𝑞 (𝑏𝑑)

×
∑

(ℓ,𝑟 )=1
ℓ𝑠1−𝑠2−1

∑∗

ℎ(mod ℓ)

∫
(𝐵)
𝑔̊(𝜏, 𝑠1)𝜁 (ℎ/ℓ+𝑑/𝑞) (𝜏)𝐷2

(
𝑠1 + 𝑠3 − 𝜏, 𝑠3 − 𝑠4;

ℎ

ℓ
+ 𝑐
𝑟

)
𝑑𝜏

2𝜋𝑖
,

which is now in shape to make use of Poisson summation twice, namely Voronoı̆ summation once. This
is because we have �(𝑠1+ 𝑠3−𝜏) < 0 and �(𝑠1+ 𝑠4−𝜏) < 0; so we replace the Estermann zeta function
𝐷2 (𝑠1 + 𝑠3 − 𝜏, 𝑠3 − 𝑠4; ℎ/ℓ + 𝑐/𝑟) with the absolutely convergent series exhibited by equation (2.14).

3.3. Utilisation of Voronoı̆ summation

This subsection aims at applying the functional equation to the sum over m and simplifying the resulting
expression to a certain sum of Kloosterman sums of the form 𝑆𝔞𝔟 (𝑚,±𝑛; 𝑐;𝜓). To this end, the following
elementary formula is necessary: if we set 𝑣 = ℎ𝑟 + 𝑐ℓ with (𝑣, ℓ𝑟) = 1, then

𝑣 = ℎ𝑟 + 𝑐ℓ ≡ ℎ𝑟𝑟2 + 𝑐ℓℓ2 (mod ℓ𝑟) (3.12)

with ℎℎ ≡ 1, 𝑟𝑟 ≡ 1(mod ℓ) and 𝑐𝑐 ≡ 1, ℓℓ ≡ 1(mod 𝑟). This holds under the assumption (ℓ, 𝑟) = 1.
The application of Theorem 2.6 hence leads one to

OD†
4 = (Polar Terms) + 2𝑞−2

∑
𝑎,𝑏,𝑑 (mod 𝑞)

∑
𝑟 |𝑞

𝜁𝑟 (1 − 𝑠1 + 𝑠2)
𝑟

∑∗

𝑐(mod 𝑟 )
𝜒(𝑎)𝜒(𝑎 + 𝑏)𝑒𝑟 (𝑎𝑐)𝑒𝑞 (𝑏𝑑)

×
∑

(ℓ,𝑟 )=1
ℓ𝑠1−𝑠2−2

∑∗

ℎ(mod ℓ)

∫
(𝐵)

(
2𝜋
ℓ𝑟

)2𝑠1+𝑠3+𝑠4−2𝜏−2
𝜁 (ℎ/ℓ+𝑑/𝑞) (𝜏)Γ(1 + 𝜏 − 𝑠1 − 𝑠3)

× Γ(1 + 𝜏 − 𝑠1 − 𝑠4)
{
𝐷2

(
1 + 𝜏 − 𝑠1 − 𝑠3, 𝑠4 − 𝑠3;

ℎ𝑟2

ℓ
+ 𝑐ℓ

2

𝑟

)
cos

(
𝜋(𝑠3 − 𝑠4)

2

)
− 𝐷2

(
1 + 𝜏 − 𝑠1 − 𝑠3, 𝑠4 − 𝑠3;− ℎ𝑟

2

ℓ
− 𝑐ℓ

2

𝑟

)
cos

(
𝜋
( 𝑠3 + 𝑠4

2
+ 𝑠1 − 𝜏

))}
𝑔̊(𝜏, 𝑠1)

𝑑𝜏

2𝜋𝑖
.

We expand the integrand as the Dirichlet series once again so that the sums over c and h boil down to
two Kloosterman sums, whence we are left with

OD†
4 = (Polar Terms) + 2(2𝜋)𝑠1−𝑠2−1𝑞−2

∑
𝑎,𝑏,𝑑 (mod 𝑞)

𝜒(𝑎)𝜒(𝑎 + 𝑏)𝑒𝑞 (𝑏𝑑)

×
∑
𝑟 |𝑞
𝑟𝑠2−𝑠1 𝜁𝑟 (1 − 𝑠1 + 𝑠2)

∞∑
𝑚=1

∞∑
𝑛=1
𝑚 (1−𝑠1−𝑠2−𝑠3−𝑠4)/2𝑛(𝑠1−𝑠2+𝑠3−𝑠4−1)/2

× 𝑒𝑞 (𝑚𝑑)𝜎𝑠4−𝑠3 (𝑛)
∑
±

∑
(ℓ,𝑟 )=1

1
ℓ
𝑆(𝑚,±𝑛𝑟2; ℓ)𝑆(𝑎,±𝑛ℓ2

; 𝑟)Ψ±
s

(
4𝜋

√
𝑚𝑛

ℓ𝑟

)
,

(3.13)

where

Ψ+
s (𝑥) � cos

(
𝜋(𝑠3 − 𝑠4)

2

) ∫
(𝐵)

( 𝑥
2

)𝑠1+𝑠2+𝑠3+𝑠4−1−2𝜏
Γ(1 + 𝜏 − 𝑠1 − 𝑠3)Γ(1 + 𝜏 − 𝑠1 − 𝑠4)𝑔̊(𝜏, 𝑠1)

𝑑𝜏

2𝜋𝑖
,

(3.14)
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Ψ−
s (𝑥) � −

∫
(𝐵)

( 𝑥
2

)𝑠1+𝑠2+𝑠3+𝑠4−1−2𝜏
cos

(
𝜋
( 𝑠3 + 𝑠4

2
+ 𝑠1 − 𝜏

))
× Γ(1 + 𝜏 − 𝑠1 − 𝑠3)Γ(1 + 𝜏 − 𝑠1 − 𝑠4)𝑔̊(𝜏, 𝑠1)

𝑑𝜏

2𝜋𝑖
. (3.15)

The expression in equation (3.13) affirmatively answers Motohashi’s conjecture spelled out in his article
[54] on the reciprocity formula for the second moment of Dedekind zeta functions. One ascertains that
the integrand in equation (3.14) has rapid decay in 𝜏, whereas the definition in equation (3.15) requires
the properties shown in Lemma 3.2. Convention 1.10 therefore applies to control Ψ−

s (𝑥), which involves
the opposite sign case of Kloosterman sums. This dominates the bulk of the evaluation of OD†

4. We
ensure this phenomenon in Proposition 3.5.

We then manage to simplify the product of the Kloosterman sums appearing in equation (3.13). It is
desirable to collapse the second Kloosterman sum to perform the separation of variables. To this end,
we write 𝑛 = 𝑛0𝑛

′ with 𝑛0 | 𝑟∞ and (𝑛′, 𝑟) = 1. We are in a position to use Lemma 2.3, getting

𝑆(𝑎,±𝑛ℓ2
; 𝑟) = 1

𝜑(𝑟)
∑

𝜓 (mod 𝑟 )
𝜓(ℓ)2𝜓(±𝑎𝑛′)𝜏(𝜓)𝜏(𝜓, 𝑛0), (3.16)

where the condition (𝑎, 𝑟) = 1 was used in view of the appearance of the character 𝜒(𝑎) and 𝜏(𝜓) is the
Gauß sum associated to 𝜓. Dropping the primes for notational simplicity, we observe that OD†

4 equals
the polar terms plus (note that the condition (𝑛, 𝑟) = 1 is encoded by 𝜓(𝑛))

2(2𝜋)𝑠1−𝑠2−1𝑞−2
∑

𝑎,𝑏,𝑑 (mod 𝑞)
𝜒(𝑎)𝜒(𝑎 + 𝑏)𝑒𝑞 (𝑏𝑑)

∑
𝑟 |𝑞

𝑟1−𝑠1+𝑠2

𝜑(𝑟) 𝜁𝑟 (1 − 𝑠1 + 𝑠2)
∑
±

∑
𝜓 (mod 𝑟 )

×
∞∑

𝑚=1

∞∑
𝑛=1

∑
𝑛0 |𝑟∞

𝜓(±𝑎𝑛)𝜏(𝜓)𝜏(𝜓, 𝑛0)𝑒𝑞 (𝑚𝑑)𝜎𝑠4−𝑠3 (𝑛0𝑛)
𝑚 (𝑠1+𝑠2+𝑠3+𝑠4−1)/2(𝑛0𝑛) (1−𝑠1+𝑠2−𝑠3+𝑠4)/2

∑
(ℓ,𝑟 )=1

𝜓(ℓ)2 𝑆(𝑚,±𝑛0𝑛𝑟
2; ℓ)

ℓ𝑟
Ψ±
s

(4𝜋√𝑚𝑛0𝑛

ℓ𝑟

)
,

(3.17)

In order to adapt the Kloosterman summation formula in its suitable form, there are two roads to
proceed. The first route is to represent 𝑆(𝑚,±𝑛0𝑛𝑟

2; ℓ) by means of the Kloosterman sum associated to
the (∞, 0) cusp-pair and apply Theorem 2.11 to the sum over ℓ. The second is to extract the principal and
quadratic character from the 𝜓-sum in equation (3.16) and then replace 𝑆(𝑚,±𝑛0𝑛𝑟

2; ℓ) with the twisted
Kloosterman sum; namely, we make use of the formula due to Blomer–Milićević [15, black(2.2)]:

∑
(ℓ,𝑟 )=1

𝜓(ℓ)2 𝑆(𝑚,±𝑛0𝑛𝑟
2; ℓ)

ℓ𝑟
Ψ±
s

(4𝜋√𝑚𝑛0𝑛

ℓ𝑟

)
=
𝜓(𝑚)2

𝜏(𝜓2)

∑
𝑑 |𝑟
𝜇(𝑑)

∑
𝑑𝑟 |𝑐

𝑆𝜓2 (𝑚,±𝑛0𝑛; 𝑐)
𝑐

Ψ±
s

(4𝜋√𝑚𝑛0𝑛

𝑐

)
,

(3.18)

where 𝑆𝜓 (𝑚, 𝑛; 𝑐) is defined in equation (2.17) and𝜓 denotes a primitive nonquadratic character modulo
r so that 𝜓2 is primitive. This is where the assumption of q being prime is used, since the square of
a nonquadratic character is not necessarily primitive (see Remark 3.4). Nevertheless, one may remove
this assumption via the use of an extended form of equation (3.18). Note that equation (3.18) is only
available when (𝑚, 𝑟) = 1. As shall be seen later, the Dirichlet character 𝜓(𝑚) arises if we calculate
the character sums in equation (3.17). We need to take the second route for technical simplicity. The
off-diagonal term OD†

4 is thus equal to the polar terms plus
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2(2𝜋)𝑠1−𝑠2−1𝑞−2
∑

𝑎,𝑏,𝑐(mod 𝑞)
𝜒(𝑎)𝜒(𝑎 + 𝑏)𝑒𝑞 (𝑏𝑐)

∑
𝑟 |𝑞

𝑟1−𝑠1+𝑠2

𝜑(𝑟) 𝜁𝑟 (1 − 𝑠1 + 𝑠2)

×
∑
±

{ ∑#

𝜓 (mod 𝑟 )

𝜓(±𝑎)𝜏(𝜓)
𝜏(𝜓2)

∞∑
𝑚=1

∞∑
𝑛=1

∑
𝑛0 |𝑟∞

𝜓(𝑚)2𝜓(𝑛)𝜏(𝜓, 𝑛0)𝑒𝑞 (𝑚𝑐)𝜎𝑠4−𝑠3 (𝑛0𝑛)
𝑚 (𝑠1+𝑠2+𝑠3+𝑠4−1)/2(𝑛0𝑛) (1−𝑠1+𝑠2−𝑠3+𝑠4)/2

×
∑
𝑑 |𝑟
𝜇(𝑑)

∑
𝑑𝑟 |𝑐

𝑆𝜓2 (𝑚,±𝑛0𝑛; 𝑐)
𝑐

Ψ±
s

(4𝜋√𝑚𝑛0𝑛

𝑐

)
+R

}
,

where # on the 𝜓-sum means that the sum ranges over all primitive nonquadratic characters modulo r
and R serves as the remainder term

R =
∑♭

𝜓 (mod 𝑟 )

∞∑
𝑚=1

∞∑
𝑛=1

∑
𝑛0 |𝑟∞

𝜓(±𝑛𝑎)𝜏(𝜓)𝜏(𝜓, 𝑛0)𝑒𝑞 (𝑚𝑐)𝜎𝑠4−𝑠3 (𝑛0𝑛)
𝑚 (𝑠1+𝑠2+𝑠3+𝑠4−1)/2(𝑛0𝑛) (1−𝑠1+𝑠2−𝑠3+𝑠4)/2

×
∑

(ℓ,𝑟 )=1

𝑆(𝑚,±𝑛0𝑛𝑟
2; ℓ)

ℓ𝑟
Ψ±
s

(4𝜋√𝑚𝑛0𝑛

ℓ𝑟

)
.

Here ♭ on the 𝜓-sum means that the sum ranges over the principal and the quadratic character modulo
r. Since it follows that 𝜏(𝜓, 𝑛0) = 𝜓(𝑛0)𝜏(𝜓) in the case where 𝜓 is a primitive nonquadratic character,
we can take 𝑛0 = 1 due to the condition 𝑛0 | 𝑟∞. In order to reduce the character sums over 𝑎, 𝑏, 𝑐, we
start with simplifying the c-sum, obtaining∑

𝑎,𝑏,𝑐(mod 𝑞)
𝜒(𝑎)𝜓(𝑎)𝜒(𝑎 + 𝑏)𝑒𝑞 ((𝑏 + 𝑚)𝑐) = 𝜓(−1)𝑞

∑
𝑎(mod 𝑞)

𝜒(𝑎)𝜓(𝑎)𝜒(𝑎 + 𝑚).

When 𝜒𝜓 is primitive, one can set 𝜓1 = 𝜒𝜓 and 𝜓2 = 𝜒 in Lemma 2.2. To be more general, we deduce∑
𝑎(mod 𝑞)

𝜒(𝑎)𝜓(𝑎)𝜒(𝑎 + 𝑚) = 1
𝜏(𝜒)

∑
𝑎,𝑏(mod 𝑞)

𝜒(𝑎𝑏)𝜓(𝑎)𝑒
(
(𝑎 + 𝑚)𝑏

𝑞

)
=
𝜏(𝜒𝜓)𝜏(𝜓, 𝑚)

𝜏(𝜒) .

Since the sum over primitive nonquadratic characters is empty when 𝑟 = 1, we have proven the following:

Proposition 3.3. For any primitive Dirichlet character 𝜒 modulo a prime q, the function OD†
4 can be

meromorphically continued to the domain E4, and there we have

OD†
4 = P +

∑
±
{J± + E±}.

Here for the multiplicative function

𝐴𝑞 (𝑠1, 𝑠2, 𝑠3, 𝑠4) �
1
𝑞

∑
𝑐 |𝑞
𝜇(𝑐)𝑐2−𝑠1−𝑠2−𝑠3−𝑠4

∑
𝑑 |𝑞/𝑐

𝜇
( 𝑞
𝑐𝑑

)
𝑑2−𝑠1−𝑠3𝜎𝑠1−𝑠2+𝑠3−𝑠4−1(𝑑),

we set

P = 𝐴𝑞 (𝑠1, 𝑠2, 𝑠3, 𝑠4)𝑔̊(𝑠1 + 𝑠3 − 1, 𝑠1)
𝜁𝑞 (1 − 𝑠1 + 𝑠2)𝜁𝑞 (1 − 𝑠3 + 𝑠4)𝜁 (𝑠2 + 𝑠4)𝜁 (𝑠1 + 𝑠3 − 1)

𝜁𝑞 (𝑠2 + 𝑠4 − 𝑠1 − 𝑠3 + 2)

+ 𝐴𝑞 (𝑠1, 𝑠2, 𝑠4, 𝑠3)𝑔̊(𝑠1 + 𝑠4 − 1, 𝑠1)
𝜁𝑞 (1 − 𝑠1 + 𝑠2)𝜁𝑞 (1 + 𝑠3 − 𝑠4)𝜁 (𝑠2 + 𝑠3)𝜁 (𝑠1 + 𝑠4 − 1)

𝜁𝑞 (𝑠2 + 𝑠3 − 𝑠1 − 𝑠4 + 2) ,
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J± =
2𝜁𝑞 (1 − 𝑠1 + 𝑠2)
𝜏(𝜒)𝜑(𝑞)𝑞

(
2𝜋
𝑞

)𝑠1−𝑠2−1 ∑#

𝜓 (mod 𝑞)
𝜓(∓1)𝜏(𝜓)𝜏(𝜒𝜓)𝐽 (𝜓, 𝜓)

∑
𝑑 |𝑞

𝜇(𝑑)

×
∞∑

𝑚=1

∞∑
𝑛=1
𝜓(𝑚)𝜓(𝑛)𝑚 (1−𝑠1−𝑠2−𝑠3−𝑠4)/2𝑛(𝑠1−𝑠2+𝑠3−𝑠4−1)/2𝜎𝑠4−𝑠3 (𝑛)O

𝑑𝑞
∞∞(𝑚,±𝑛;Ψ±

s ;𝜓2), (3.19)

E± =
2(2𝜋)𝑠1−𝑠2−1

𝜏(𝜒)𝑞
∑
𝑟 |𝑞

𝑟1−𝑠1+𝑠2

𝜑(𝑟) 𝜁𝑟 (1 − 𝑠1 + 𝑠2)
∑♭

𝜓 (mod 𝑟 )
𝜓(∓1)𝜏(𝜓)𝜏(𝜒𝜓)

∞∑
𝑚=1

∞∑
𝑛=1

∑
𝑛0 |𝑟∞

𝜓(𝑛)

× 𝜏(𝜓, 𝑚)𝜏(𝜓, 𝑛0)𝑚 (1−𝑠1−𝑠2−𝑠3−𝑠4)/2(𝑛0𝑛) (𝑠1−𝑠2+𝑠3−𝑠4−1)/2𝜎𝑠4−𝑠3 (𝑛0𝑛)O𝑟2

∞0(𝑚,±𝑛0𝑛;Ψ±
s ;𝜓0), (3.20)

where O𝑞
𝔞𝔟 (𝑚,±𝑛;Ψ±

s ;𝜓) is defined in Theorem 2.11.

Remark 3.4. The square of a primitive nonquadratic Dirichlet character of composite modulus having
at least two prime factors is not primitive. For instance, one may choose a primitive quadratic character
𝜓1 (respectively, nonquadratic character 𝜓2) modulo 3 (respectively, modulo 5) and combine them to
obtain a character 𝜓1𝜓2 modulo 15 as follows:

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

𝜓1 (𝑛) 1 −1 0 1 −1 0 1 −1 0 1 −1 0 1 −1 0
𝜓2 (𝑛) 1 i −𝑖 −1 0 1 i −𝑖 −1 0 1 i −𝑖 −1 0
𝜓1 𝜓2 (𝑛) 1 −𝑖 0 −1 0 0 i i 0 0 −1 0 −𝑖 1 0

The multiplication of Dirichlet characters of different moduli gives a Dirichlet character modulo a
least common multiple. We define 𝜓 = 𝜓1𝜓2, which is nonquadratic since it involves i and −𝑖 as values
and is primitive since it cannot be induced from a Dirichlet character modulo 1, 3, or 5. However,
𝜓2 = 𝜓2

1𝜓
2
2 is induced from a quadratic character modulo 5. This is why we assume that q is prime in

this work.

Proof. For the first assertion, one can check that both series in equations (3.19) and (3.20) converge
absolutely and uniformly in E4, proving the meromorphic continuation of OD†

4 to C4. A remarkable
point is that we only need the Weil bound in equation (2.5) for Kloosterman sums. For the second
assertion, it suffices to compute the polar terms. We decompose P = P1 + P2, where P1 (respectively,
P2) stems from the first term (respectively, second term) on the right-hand side of equation (3.10). First
of all, we remark that the polar contribution P is expressed as

𝜁𝑞 (1 − 𝑠1 + 𝑠2)𝑞−2
∑

𝑎,𝑏(mod 𝑞)

∑
𝑟 |𝑞

∑∗

𝑐(mod 𝑟 )

∑
𝑑(mod 𝑞)

𝜒(𝑎)𝜒(𝑎 + 𝑏)

× 𝑒𝑟 (𝑎𝑐)𝑒𝑞 (𝑏𝑑)
∑

(ℓ,𝑞)=1
ℓ𝑠1−𝑠2−1 × (RHS of equation (3.10)).

In the following lines, we deal with P1. The sum over ℓ is reduced to∑
(ℓ,𝑞)=1

ℓ𝑠1−𝑠2+𝑠3−𝑠4−2𝑟ℓ (𝑛) = 𝜁𝑞 (𝑠2 + 𝑠4 − 𝑠1 − 𝑠3 + 2)−1𝜎𝑠1−𝑠2+𝑠3−𝑠4−1(𝑛).

We are in a position to manipulate the exponential sums. The sum over d gives rise to∑
𝑑(mod 𝑞)

𝑒𝑞 ((𝑏 + 𝑛)𝑑) =
{
𝑞 if 𝑏 ≡ −𝑛(mod 𝑞),
0 otherwise.
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This renders ∑
𝑎(mod 𝑞)

𝜒(𝑎)𝜒(𝑎 − 𝑛)𝑟𝑟 (𝑎) =
𝜇(𝑟)
𝜏(𝜒)

∑
𝑎,𝑏(mod 𝑞)

𝜒(𝑎𝑏)𝑒𝑞 ((𝑎 + 𝑛)𝑏) = 𝜇(𝑟)𝑟𝑞 (𝑛).

In this manner, the sums over 𝑎, 𝑏, 𝑐, 𝑑 can be eliminated. In general, the sum over r turns into∑
𝑟 |𝑞
𝜇(𝑟)𝑟𝑠3−𝑠4−1 =

∏
𝑝 |𝑞

(
1 − 1

𝑝1−𝑠3+𝑠4

)
,

which yields 𝜁𝑞 (1 − 𝑠3 + 𝑠4) when combined with 𝜁 (1 − 𝑠3 + 𝑠4). We hence obtain

P1 =
𝑔̊(𝑠1 + 𝑠3 − 1, 𝑠1)

𝑞

𝜁𝑞 (1 − 𝑠1 + 𝑠2)𝜁𝑞 (1 − 𝑠3 + 𝑠4)
𝜁𝑞 (𝑠2 + 𝑠4 − 𝑠1 − 𝑠3 + 2)

∞∑
𝑛=1

𝜎𝑠1−𝑠2+𝑠3−𝑠4−1 (𝑛)𝑟𝑞 (𝑛)
𝑛𝑠1+𝑠3−1 .

Having mentioned this expression, we need to calculate the the sum over n via Lemma 2.5, getting

∞∑
𝑛=1

𝜎𝑤 (𝑛)
𝑛𝑠

∑
𝑑 | (𝑛,𝑞)

𝜇
( 𝑞
𝑑

)
𝑑 =

∑
𝑑 |𝑞

𝜇
( 𝑞
𝑑

)
𝑑1−𝑠

∞∑
𝑛=1

1
𝑛𝑠

∑
𝑐 | (𝑛,𝑑)

𝜇(𝑐)𝜎𝑤

(𝑛
𝑐

)
𝜎𝑤

(
𝑑

𝑐

)
𝑐𝑤

=
∑
𝑑 |𝑞

𝜇
( 𝑞
𝑑

)
𝑑1−𝑠

∑
𝑐 |𝑑
𝜇(𝑐)𝑐𝑤−𝑠𝜎𝑤

(
𝑑

𝑐

) ∞∑
𝑛=1

𝜎𝑤 (𝑛)
𝑛𝑠

= 𝜁 (𝑠)𝜁 (𝑠 − 𝑤)
∑
𝑐 |𝑞
𝜇(𝑐)𝑐1+𝑤−2𝑠

∑
𝑑 |𝑞/𝑐

𝜇
( 𝑞
𝑐𝑑

)
𝑑1−𝑠𝜎𝑤 (𝑑),

where 𝑠 = 𝑠1 + 𝑠3 − 1 and 𝑤 = 𝑠1 − 𝑠2 + 𝑠3 − 𝑠4 − 1. Notice that the right-hand side can be written as a
Dirichlet convolution of multiplicative functions. Recall that the Dirichlet convolution is defined as

( 𝑓 ∗ 𝑔) (𝑚) =
∑
𝑑 |𝑚

𝑓 (𝑑)𝑔
(𝑚
𝑑

)
,

which is an associative and commutative binary operation on arithmetic functions. If f and g are assumed
to be multiplicative, so is 𝑓 ∗ 𝑔. Setting 𝑓 (𝑛) � 𝜎𝑤 (𝑛)𝑛1−𝑠 and 𝑔(𝑛) � 𝜇(𝑛)𝑛1+𝑤−2𝑠 , we have that

∞∑
𝑛=1

𝜎𝑤 (𝑛)𝑟𝑞 (𝑛)
𝑛𝑠

= ( 𝑓 ∗ 𝑔 ∗ 𝜇) (𝑞)𝜁 (𝑠)𝜁 (𝑠 − 𝑤).

This finishes the proof of Proposition 3.3. �

3.4. Utilisation of the Kuznetsov formula

We now apply the automorphic machinery in Section 2 to our sums of Kloosterman sums along
with a careful analysis of integrals involving various Bessel functions. We focus on the treatment of
O𝑑𝑞

∞𝔟 (𝑚,±𝑛;Ψ±
s ;𝜓) with 𝔟 = ∞, 0 in an across-the-board manner and implement the substitutions at the

end to calculate J± and E±. The three-time differentiability and the decay condition at 𝑥 = 0 in Theorem
2.11 are fulfilled. Moreover, the decay condition at infinity follows by shifting the contours �(𝑠) = 𝐵 in
equations (3.14) and (3.15) to the right and then applying Lemma 3.2. We forthwith derive the spectral
decomposition

O𝑑𝑟
∞𝔟 (𝑚,±𝑛;Ψ±

s ;𝜓) = A Maaß
∞𝔟 (𝑚,±𝑛;ℒ±Ψ±

s ;𝜓) +A Eis
∞𝔟 (𝑚,±𝑛;ℒ±Ψ±

s ;𝜓)
+ 𝛿±=+A hol

∞𝔟 (𝑚, 𝑛;ℒ holΨ+
s ;𝜓). (3.21)
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Complying with Motohashi’s book [55], one observes how the case of the plus sign contributes. In order
to reduce the integral transform ℒ+, we consider, in the light of the definition in equation (3.14), the
double integral∫ ∞

0
𝐽2𝑖𝑡 (𝜂)

∫
(𝐵)

Γ(1 + 𝜏 − 𝑠1 − 𝑠3)Γ(1 + 𝜏 − 𝑠1 − 𝑠4)
(𝜂

2

)𝑠1+𝑠2+𝑠3+𝑠4−2−2𝜏
𝑔̊(𝜏, 𝑠1)𝑑𝜏𝑑𝜂, (3.22)

where 𝑔̊ is the Mellin transform in equation (3.5). This double integral is holomorphic in the domain{
(𝑠1, 𝑠2, 𝑠3, 𝑠4) ∈ C4 : �(𝑠1 + 𝑠3) < 1 + 𝐵, �(𝑠1 + 𝑠4) < 1 + 𝐵,

1 + 2𝐵 < �(𝑠1 + 𝑠2 + 𝑠3 + 𝑠4) < 3/2 + 2𝐴

}
, (3.23)

which contains E4 defined in equation (3.9) and 𝐴 > 𝐵 is the same as in Convention 1.10. To prove this
fact, we divide equation (3.22) into two parts according as 0 � 𝜂 < 1 and 𝜂 � 1 and note that

𝐽2𝑖𝑡 (𝜂) �
{

1 as 𝜂 → 0,
𝜂−1/2 as 𝜂 → ∞,

where we implicitly assumed that t is real. The first part is clearly holomorphic in the domain of equation
(3.23). To estimate the second part, we move the contour in the 𝜏-integral to �(𝜏) = 𝐴. We would like
to consider the subdomain of equation (3.23) where we have 1 + 2𝐵 < �(𝑠1 + 𝑠2 + 𝑠3 + 𝑠4) < 3/2 + 2𝐵.
There the integral in equation (3.22) is absolutely and uniformly convergent in view of the power series
expansion of the J-Bessel function

𝐽𝜈 (𝑦) =

√
2
𝜋𝑦

{
cos

(
𝑦 − 𝜋

2

(
𝜈 + 1

2

)) 𝑀∑
𝑚=0

(−1)𝑚
(
𝜈 − 1/2

2𝑚

)
Γ(𝜈 + 1/2 + 2𝑚)
Γ(𝜈 + 1/2) (2𝑦)2𝑚

− sin
(
𝑦 − 𝜋

2

(
𝜈 + 1

2

)) 𝑀∑
𝑚=0

(−1)𝑚
(
𝜈 − 1/2
2𝑚 + 1

)
Γ(𝜈 + 3/2 + 2𝑚)

Γ(𝜈 + 1/2) (2𝑦)2𝑚+1

}
+ O(𝑦−�(𝜈)−3/2−2𝑀 ),

provided �(𝜈) > −2𝑀 − 3/2. Hence, the double integral in equation (3.22) equals

∫
(𝐵)

Γ
(

𝑠1+𝑠2+𝑠3+𝑠4−1
2 − 𝜏 + 𝑖𝑡

)
Γ
(

3−𝑠1−𝑠2−𝑠3−𝑠4
2 + 𝜏 + 𝑖𝑡

) Γ(1 + 𝜏 − 𝑠1 − 𝑠3)Γ(1 + 𝜏 − 𝑠1 − 𝑠4)𝑔̊(𝜏, 𝑠1)𝑑𝜏, (3.24)

where we have used the formula∫ ∞

0
𝐽𝜈 (𝜂)

(𝜂
2

)−𝜇
𝑑𝜂 = Γ

(
1 + 𝜈 − 𝜇

2

)
Γ

(
1 + 𝜈 + 𝜇

2

)−1

valid for 1/2 < �(𝜇) < 1 + �(𝜈). Since the integral in equation (3.24) is regular in equation (3.23),
the analytic continuation implies that the double integral in equation (3.22) is equal to equation (3.24)
throughout the domain of equation (3.23) or E4. At this stage, we note that the following identities hold:

Γ(𝑎 − 𝜏 + 𝑖𝑡)
Γ(1 − 𝑎 + 𝜏 + 𝑖𝑡) −

Γ(𝑎 − 𝜏 − 𝑖𝑡)
Γ(1 − 𝑎 + 𝜏 − 𝑖𝑡) =

2
𝜋𝑖

sinh(𝜋𝑡) cos(𝜋(𝑎 − 𝜏))Γ(𝑎 − 𝜏 + 𝑖𝑡)Γ(𝑎 − 𝜏 − 𝑖𝑡),

Γ(𝑎 − 𝜏 + 𝑖𝑡)
Γ(1 − 𝑎 + 𝜏 + 𝑖𝑡) +

Γ(𝑎 − 𝜏 − 𝑖𝑡)
Γ(1 − 𝑎 + 𝜏 − 𝑖𝑡) =

2
𝜋

cosh(𝜋𝑡) sin(𝜋(𝑎 − 𝜏))Γ(𝑎 − 𝜏 + 𝑖𝑡)Γ(𝑎 − 𝜏 − 𝑖𝑡).
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which follows from the functional equation Γ(𝑠)Γ(1 − 𝑠) = 𝜋/sin(𝜋𝑠). Substituting 𝑎 = (𝑠1 + 𝑠2 + 𝑠3 +
𝑠4 − 1)/2, we obtain after some rearrangement that5

ℒ+Ψ+
s (𝑡) = (𝑖𝑡 coth(𝜋𝑡))𝜅 cos

(
𝜋(𝑠3 − 𝑠4)

2

) ∫
(𝐵)

sin
(
𝜋(𝑠1 + 𝑠2 + 𝑠3 + 𝑠4 − 𝜅 − 2𝜏)

2

)
× Γ

(
𝑠1 + 𝑠2 + 𝑠3 + 𝑠4 − 1

2
+ 𝑖𝑡 − 𝜏

)
Γ

(
𝑠1 + 𝑠2 + 𝑠3 + 𝑠4 − 1

2
− 𝑖𝑡 − 𝜏

)
× Γ(1 + 𝜏 − 𝑠1 − 𝑠3)Γ(1 + 𝜏 − 𝑠1 − 𝑠4)𝑔̊(𝜏, 𝑠1)

𝑑𝜏

𝜋𝑖
.

In a similar fashion, the holomorphic contribution turns into

ℒ holΨ+
s (𝑘) = 𝑖𝑘−1 cos

(
𝜋(𝑠3 − 𝑠4)

2

) ∫
(𝐵)

Γ
(

𝑘+𝑠1+𝑠2+𝑠3+𝑠4−2
2 − 𝜏

)
Γ
(

𝑘+2−𝑠1−𝑠2−𝑠3−𝑠4
2 + 𝜏

)
× Γ(1 + 𝜏 − 𝑠1 − 𝑠3)Γ(1 + 𝜏 − 𝑠1 − 𝑠4)𝑔̊(𝜏, 𝑠1)𝑑𝜏.

To proceed, we focus on the context of the minus sign. In this case, the bound shown in Lemma 3.2
plays a crucial rôle. By definition, the integral transform in question is written as

ℒ−Ψ−
s (𝑡) = 8𝑖−𝜅 cosh(𝜋𝑡)

∫ ∞

0
Ψ−
s (𝜂)𝐾2𝑖𝑡 (𝜂)

𝑑𝜂

𝜂
.

Inserting equation (3.15), we obtain an absolutely convergent integral, for we have the growth condition

𝐾2𝑖𝑡 (𝜂) �
{
| log 𝜂 | as 𝜂 → 0,
exp(−𝜂) as 𝜂 → ∞.

Substituting Heaviside’s integral formula∫ ∞

0
𝐾2𝑣 (𝜂)

(𝜂
2

)2𝑠−1
𝑑𝜂 =

Γ(𝑠 + 𝑣)Γ(𝑠 − 𝑣)
2

for �(𝑠) > |�(𝑣) |, (3.25)

we are left with the expression

ℒ−Ψ−
s (𝑡) = −𝑖−𝜅 cosh(𝜋𝑡)

∫
(𝐵)

cos
(
𝜋
(
𝑠1 +

𝑠3 + 𝑠4
2

− 𝜏
))
Γ

(
𝑠1 + 𝑠2 + 𝑠3 + 𝑠4 − 1

2
+ 𝑖𝑡 − 𝜏

)
× Γ

(
𝑠1 + 𝑠2 + 𝑠3 + 𝑠4 − 1

2
− 𝑖𝑡 − 𝜏

)
Γ(1 + 𝜏 − 𝑠1 − 𝑠3)Γ(1 + 𝜏 − 𝑠1 − 𝑠4)𝑔̊(𝜏, 𝑠1)

𝑑𝜏

𝜋𝑖
.

In anticipation of future simplifications of ℒ±Ψ±
s (𝑡), we define the the integral transforms

Φ+
s (𝜉) � −2𝑖(2𝜋)𝑠1−𝑠2−2(𝑖𝜉 cot(𝜋𝜉))𝜅 cos

(
𝜋(𝑠3 − 𝑠4)

2

) ∫ 𝑖∞

−𝑖∞
sin

(
𝜋(𝑠1 + 𝑠2 + 𝑠3 + 𝑠4 − 𝜅 − 2𝜏)

2

)
× Γ

(
𝑠1 + 𝑠2 + 𝑠3 + 𝑠4 − 1

2
+ 𝜉 − 𝜏

)
Γ

(
𝑠1 + 𝑠2 + 𝑠3 + 𝑠4 − 1

2
− 𝜉 − 𝜏

)
× Γ(1 + 𝜏 − 𝑠1 − 𝑠3)Γ(1 + 𝜏 − 𝑠1 − 𝑠4)𝑔̊(𝜏, 𝑠1)𝑑𝜏

(3.26)

5Motohashi [55, Page 161] made a minor mistake in the argument of a gamma function.
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and

Φ−
s (𝜉) � 2𝑖1−𝜅 (2𝜋)𝑠1−𝑠2−2 cos(𝜋𝜉)

∫ 𝑖∞

−𝑖∞
cos

(
𝜋
(
𝑠1 +

𝑠3 + 𝑠4
2

− 𝜏
))
Γ

(
𝑠1 + 𝑠2 + 𝑠3 + 𝑠4 − 1

2
+ 𝜉 − 𝜏

)
× Γ

(
𝑠1 + 𝑠2 + 𝑠3 + 𝑠4 − 1

2
− 𝜉 − 𝜏

)
Γ(1 + 𝜏 − 𝑠1 − 𝑠3)Γ(1 + 𝜏 − 𝑠1 − 𝑠4)𝑔̊(𝜏, 𝑠1)𝑑𝜏

(3.27)

along with the original integral transform

Ξs (𝜉) �
∫ 𝑖∞

−𝑖∞

Γ
(
𝜉 + 𝑠1+𝑠2+𝑠3+𝑠4−1

2 − 𝜏
)

Γ
(
𝜉 + 3−𝑠1−𝑠2−𝑠3−𝑠4

2 + 𝜏
) Γ(1 + 𝜏 − 𝑠1 − 𝑠3)Γ(1 + 𝜏 − 𝑠1 − 𝑠4)𝑔̊(𝜏, 𝑠1)

𝑑𝜏

2𝜋𝑖
. (3.28)

Here the contour in the formula forΦ+
s (𝜉) is curved to ensure that the poles of the first two gamma factors

in the integrand lie to the right of the contour and those of the other factors are on the left of the contour.
In addition, the variables 𝜉, 𝑠1, 𝑠2, 𝑠3, 𝑠4 are assumed to be such that the path can be drawn. The contour
in the definition of Φ−

s (𝜉) is chosen in just the same way. On the other hand, the contour in Ξ separates
the poles of Γ(𝜉 + (𝑠1 + 𝑠2 + 𝑠3 + 𝑠4 −1)/2− 𝜏) and those of Γ(1+ 𝜏− 𝑠1 − 𝑠3)Γ(1+ 𝜏− 𝑠1 − 𝑠4)𝑔̊(𝜏, 𝑠1) to
the left and the right of the contour. An explicit formulation of the integral transforms can be executed:

Proposition 3.5. With the notation above, we have that

Φ+
s (𝜉) = −(−𝑖𝜉)𝜅 (2𝜋)𝑠1−𝑠2

2 sin(𝜋𝜉) cos
(
𝜋(𝑠3 − 𝑠4)

2

) {
Ξs(𝜉) − (−1)𝜅Ξs(−𝜉)

}
,

Φ−
s (𝜉) = 𝑖−𝜅 (2𝜋)𝑠1−𝑠2

2 sin(𝜋𝜉)

{
sin

(
𝜋
( 𝑠2 − 𝑠1

2
+ 𝜉

))
Ξs(𝜉) − sin

(
𝜋
( 𝑠2 − 𝑠1

2
− 𝜉

))
Ξs(−𝜉)

}
,

provided the left-hand sides are well-defined. We also have for real t and s = (𝑠1, 𝑠2, 𝑠3, 𝑠4) ∈ E4 that

ℒ+Ψ+
s (𝑡) = (2𝜋)1−𝑠1+𝑠2Φ+

s (𝑖𝑡),
ℒ−Ψ−

s (𝑡) = (2𝜋)1−𝑠1+𝑠2Φ−
s (𝑖𝑡).

For integral 𝑘 ≡ 𝜅(mod 2) and (𝑠1, 𝑠2, 𝑠3, 𝑠4) ∈ E4, we have that

ℒ holΨ+
s (𝑘) = 2𝜋𝑖𝑘 cos

(
𝜋(𝑠3 − 𝑠4)

2

)
Ξs

(
𝑘 − 1

2

)
.

Proof. The proof proceeds as in [55, Lemma 4.4] mutatis mutandis. �

Remark 3.6. From Proposition 3.3, we observe that all Dirichlet characters in question are of the form
𝜓2. It therefore suffices to treat the case of 𝜅(𝜓2) = 0 in what follows. This should not cause any
problem, although we have suppressed the dependence on 𝜓 from the functions Φ±

s (𝜉) and Ξs(𝜉).

3.5. Deduction of the cubic moment side

We devote this subsection to the derivation of the cubic moment side. The absolute convergence that
we would like to check is apparent as far as the double summation over the variables 𝑚, 𝑛 is concerned,
since we have the bound in equation (2.22) on the Hecke eigenvalues and s = (𝑠1, 𝑠2, 𝑠3, 𝑠4) ∈ E4.
Hence, the chief issue is reduced to bounding ℒ±Ψ±

s , and then Proposition 3.5 reduces our task to the
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analysis of the function Ξ. If real t and positive integral k tend to infinity, we have uniformly for any
compact subset of E4 that

Ξs(𝑖𝑡) � |𝑡 |−𝐴, Ξs

(
𝑘 − 1

2

)
� 𝑘−𝐴.

3.5.1. Computation of J±
We are able to insert equation (3.21) into equation (3.19) and change the order of summations and
integrals as long as we work inside E4. The replacement of 𝜓 (in the discussion of Section 3.4) with 𝜓2

is necessary. We now evaluate Rankin–Selberg L-functions involving the divisor function defined as

T(𝑠, 𝑢; 𝑓 ;𝜓) �
∞∑

𝑚=1

𝜓(𝑚)𝜎𝑢 (𝑚)𝜆 𝑓 (𝑚)
𝑚𝑠

, T(𝑠, 𝑢; 𝐸 ;𝜓) �
∞∑

𝑚=1

𝜓(𝑚)𝜎𝑢 (𝑚)𝜆 𝑓 (𝑚, 𝑡)
𝑚𝑠

.

One then establishes the following lemma:

Lemma 3.7. For 𝑓 ∈ B𝜅 (𝑑𝑞, 𝜓2) and an Eisenstein series 𝐸 (𝑧, 1/2+ 𝑖𝑡, 𝑓 ) with 𝑓 ∈ B(𝜓1, 𝜓2), we have

T(𝑠, 𝑢; 𝑓 ;𝜓) = 𝐿(𝑠, 𝑓 ⊗ 𝜓)𝐿(𝑠 − 𝑢, 𝑓 ⊗ 𝜓)
𝜁𝑞 (2𝑠 − 𝑢) ,

T(𝑠, 𝑢; 𝐸 ;𝜓) = 𝐿(𝑠 + 𝑖𝑡, 𝜓𝜓2)𝐿(𝑠 − 𝑖𝑡, 𝜓𝜓1)𝐿(𝑠 − 𝑢 + 𝑖𝑡, 𝜓𝜓2)𝐿(𝑠 − 𝑢 − 𝑖𝑡, 𝜓𝜓1)
𝜁𝑞 (2𝑠 − 𝑢) .

Remark 3.8. The level 𝑑𝑞 in Lemma 3.7 can be replaced with any positive integer that is divided by
the modulus q of the central character.

Proof. For the first assertion, we use the multiplicativity relation in equation (2.21) for the Hecke
eigenvalues, getting

T(𝑠, 𝑢; 𝑓 ;𝜓) =
∞∑

𝑚=1

∞∑
𝑛=1

𝜓(𝑚𝑛)𝜆 𝑓 (𝑚𝑛)
𝑚𝑠𝑛𝑠−𝑢

=
∞∑

𝑚=1

∞∑
𝑛=1

𝜓(𝑚𝑛)
𝑚𝑠𝑛𝑠−𝑢

∑
𝑑 | (𝑚,𝑛)

𝜇(𝑑)𝜓(𝑑)2𝜆 𝑓

(𝑚
𝑑

)
𝜆 𝑓

( 𝑛
𝑑

)
.

Upon exchanging the order of summations, the right-hand side equals

∑
(𝑑,𝑞)=1

𝜇(𝑑)
𝑑2𝑠−𝑢

∞∑
𝑚=1

𝜓(𝑚)𝜆 𝑓 (𝑚)
𝑚𝑠

∞∑
𝑛=1

𝜓(𝑛)𝜆 𝑓 (𝑛)
𝑛𝑠−𝑢

=
𝐿(𝑠, 𝑓 ⊗ 𝜓)𝐿(𝑠 − 𝑤, 𝑓 ⊗ 𝜓)

𝜁𝑞 (2𝑠 − 𝑢) .

In order to establish the second assertion, we make use of Lemma 2.5 to derive

T(𝑠, 𝑢; 𝐸 ;𝜓) =
∞∑

𝑚=1

𝜓(𝑚)𝜎𝑢 (𝑚)
𝑚𝑠

∑
𝑎 |𝑚

𝜓1 (𝑎)𝜓2

(𝑚
𝑎

) ( 𝑎2

𝑚

) 𝑖𝑡

=
∑

(𝑐,𝑞)=1

𝜇(𝑐)
𝑐2𝑠−𝑢

∞∑
𝑎=1

𝜓(𝑎)𝜓1 (𝑎)𝜎𝑤 (𝑎)
𝑎𝑠−𝑖𝑡

∞∑
𝑚=1

𝜓(𝑚)𝜓2(𝑚)𝜎𝑢 (𝑚)
𝑚𝑠+𝑖𝑡

=
𝐿(𝑠 + 𝑖𝑡, 𝜓𝜓2)𝐿(𝑠 − 𝑖𝑡, 𝜓𝜓1)𝐿(𝑠 − 𝑢 + 𝑖𝑡, 𝜓𝜓2)𝐿(𝑠 − 𝑢 − 𝑖𝑡, 𝜓𝜓1)

𝜁𝑞 (2𝑠 − 𝑢) .

This concludes the proof of Lemma 3.7. �
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We proceed to compute A Maaß
∞∞ (𝑚,±𝑛;ℒ±Ψ±

s ;𝜓2) by virtue of Lemma 3.7, obtaining

∞∑
𝑛=1

𝜓(𝑛)𝜎𝑠4−𝑠3 (𝑛)𝜌 𝑓 (±𝑛)
𝑛(1−𝑠1+𝑠2−𝑠3+𝑠4)/2 = 𝜖 (1∓1)/2

𝑓 𝜌 𝑓 (1)
𝐿
(

1−𝑠1+𝑠2+𝑠3−𝑠4
2 , 𝑓 ⊗ 𝜓

)
𝐿
(

1−𝑠1+𝑠2−𝑠3+𝑠4
2 , 𝑓 ⊗ 𝜓

)
𝜁𝑞 (1 − 𝑠1 + 𝑠2)

,

where 𝑓 ∈ B𝜅 (𝑑𝑞, 𝜓2). There is beauty in the above quotient since we have 𝜁𝑞 (1 − 𝑠1 + 𝑠2)−1, which
completely cancels out with the term 𝜁𝑞 (1 − 𝑠1 + 𝑠2) appearing in the expression for J± in Proposition
3.3. One can calculate the Dirichlet series for the sum over m in a similar manner, obtaining

∞∑
𝑚=1

𝜓(𝑚)𝜌 𝑓 (𝑚)
𝑚 (𝑠1+𝑠2+𝑠3+𝑠4−1)/2 = 𝜌 𝑓 (1)𝐿

(
𝑠1 + 𝑠2 + 𝑠3 + 𝑠4 − 1

2
, 𝑓 ⊗ 𝜓

)
,

where 𝑓 ∈ B𝜅 (𝑑𝑞, 𝜓2). We obtain the central L-value 𝐿(1/2, 𝑓 ⊗𝜓)3 if we take the limit (𝑠1, 𝑠2, 𝑠3, 𝑠4) ↦→
(1/2, 1/2, 1/2, 1/2). A similar procedure can be applied to the Eisenstein contribution to deduce the six
Dirichlet L-functions in equation (1.4). The eventual form of the cubic moment side looks like

J± = J Maaß
± + J Eis

± + 𝛿±=+J hol
+

with

J Maaß
± �

𝑞𝑠2−𝑠1−2

𝜏(𝜒)
∑
𝑑 |𝑞

𝜇(𝑑)
𝑑

∑#

𝜓 (mod 𝑞)
H±(𝜒, 𝜓)

∑
𝑓 ∈B∗

𝜅 (𝑑𝑞,𝜓2)
𝜖 (1∓1)/2

𝑓

×
𝐿
(

1−𝑠1+𝑠2+𝑠3−𝑠4
2 , 𝑓 ⊗ 𝜓

)
𝐿
(

1−𝑠1+𝑠2−𝑠3+𝑠4
2 , 𝑓 ⊗ 𝜓

)
𝐿
(

𝑠1+𝑠2+𝑠3+𝑠4−1
2 , 𝑓 ⊗ 𝜓

)
𝐿(1,Ad2 𝑓 )

Φ±
s (𝑖𝑡 𝑓 ),

J Eis
± �

2𝑞𝑠2−𝑠1−1

𝜏(𝜒)𝜑(𝑞)
∑
𝑑 |𝑞

𝜇(𝑑)
𝑑

∑#

𝜓 (mod 𝑞)
H±(𝜒, 𝜓)

∑
𝜓1 𝜓2=𝜓2

∑
𝑓 ∈B(𝜓1 ,𝜓2)

∫ ∞

−∞

S 𝑓 (𝑡; 𝑠1, 𝑠2, 𝑠3, 𝑠4)
|𝐿(1 + 2𝑖𝑡, 𝜓1𝜓2) |2

Φ±
s (𝑖𝑡)

𝑑𝑡

2𝜋
,

J hol
+ �

𝑞−2

𝜏(𝜒)

(
2𝜋
𝑞

)𝑠1−𝑠2

cos
(
𝜋(𝑠3 − 𝑠4)

2

)∑
𝑑 |𝑞

𝜇(𝑑)
𝑑

∑#

𝜓 (mod 𝑞)
H+(𝜒, 𝜓)

∑
𝑘>𝜅

𝑘≡𝜅 (mod 2)

∑
𝑓 ∈B∗

𝑘 (𝑑𝑞,𝜓2)
𝑖𝑘

×
𝐿
(

1−𝑠1+𝑠2+𝑠3−𝑠4
2 , 𝑓 ⊗ 𝜓

)
𝐿
(

1−𝑠1+𝑠2−𝑠3+𝑠4
2 , 𝑓 ⊗ 𝜓

)
𝐿
(

𝑠1+𝑠2+𝑠3+𝑠4−1
2 , 𝑓 ⊗ 𝜓

)
𝐿(1,Ad2 𝑓 )

Ξs

(
𝑘 − 1

2

)
.

Here we set H±(𝜒, 𝜓) = 𝜓(∓1)𝜏(𝜓)𝜏(𝜒𝜓)𝐽 (𝜓, 𝜓) and used the identity 𝜑(𝑑𝑞) = 𝑑𝜑(𝑞) for q prime.

3.5.2. Computation of E±
We initially handle A Maaß

∞0 (𝑚,±𝑛0𝑛;ℒ±Ψ±
s ;𝜓0). One can rewrite the direct sum decomposition in

equation (2.20) in order to imitate the formulation of Blomer–Milićević [14], namely

B0 (Γ0(𝑟2)) =
⊔

𝑟1𝑟2=𝑟2

⊔
𝑓 ∈B∗

0 (Γ0 (𝑟1))

⊔
𝑑 |𝑟2

𝜄𝑑 𝑓 · C,

where the first two sums are orthogonal, but the last one is not orthogonal and needs to be orthogonalised
by Gram–Schmidt. Here we also define (𝜄𝑑 𝑓 ) (𝑧) � 𝑓 (𝑑𝑧). By [14, Lemma 9], the set of functions⎧⎪⎪⎨⎪⎪⎩ 𝑓 (𝑔) �

∑
𝑑 |𝑔
𝜉𝑔 (𝑑) (𝜄𝑑 𝑓 ) : 𝑔 | 𝑟2

⎫⎪⎪⎬⎪⎪⎭
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is an orthonormal basis of the space
⊔

𝑑 |𝑟2 𝜄𝑑 𝑓 ·Cwith 𝑓 ∈ B∗
0(Γ0(𝑟1)). Then the Fourier coefficients are

𝜌 𝑓 (𝑔)𝔞 (𝑛) =
∑
𝑑 |𝑔
𝜉𝑔 (𝑑)𝑑1/2𝜌 𝑓 𝔞

( 𝑛
𝑑

)
with the convention that 𝜌 𝑓 𝔞 (𝑥) = 0 for 𝑥 ∉ Z. We calculate the sum over n in equation (3.20) as

∞∑
𝑛=1

𝜓(𝑛)𝜎𝑠4−𝑠3 (𝑛)𝜌 𝑓 0 (±𝑛/𝑑)
𝑛(1−𝑠1+𝑠2−𝑠3+𝑠4)/2 = 𝛿𝑑=1𝜖

(1∓1)/2
𝑓 𝜔 𝑓 𝜌 𝑓 (1)

𝐿
(
1−𝑠1+𝑠2+𝑠3−𝑠4

2 , 𝑓 ⊗ 𝜓
)
𝐿
(
1−𝑠1+𝑠2−𝑠3+𝑠4

2 , 𝑓 ⊗ 𝜓
)

𝜁𝑟 (1 − 𝑠1 + 𝑠2)
,

where 𝜔 𝑓 stands for the root number for a newform 𝑓 ∈ B∗
0(Γ0 (𝑟1)). We denote by 𝜓 a Dirichlet

character modulo r induced by the primitive character 𝜓∗ modulo 𝑟∗. We regard the character modulo
1 as primitive. Since the central character is trivial and the Hecke eigenvalues are real (Remark 2.10),
we use Lemma 2.1 to infer that

∞∑
𝑚=1

𝜏(𝜓, 𝑚)𝜌 𝑓 (𝑚/𝑑)
𝑚 (𝑠1+𝑠2+𝑠3+𝑠4−1)/2 =

𝜌 𝑓 (1)𝜏(𝜓∗)𝜓∗(𝑑)
𝑑 (𝑠1+𝑠2+𝑠3+𝑠4−1)/2 Σ𝑟/𝑟∗ (𝑠1, 𝑠2, 𝑠3, 𝑠4;𝜓)𝐿

(
𝑠1 + 𝑠2 + 𝑠3 + 𝑠4 − 1

2
, 𝑓 ⊗ 𝜓∗

)
,

where Σ𝑞 (𝑠1, 𝑠2, 𝑠3, 𝑠4;𝜓) is the multiplicative function∑
𝑐 |𝑞
𝜇
( 𝑞
𝑐

)
𝜓∗

( 𝑞
𝑐

)
𝑐 (3−𝑠1−𝑠2−𝑠3−𝑠4)/2

∑
𝑒 |𝑐
𝜇(𝑒)𝜓0(𝑒)𝜓∗(𝑒)𝑒 (1−𝑠1−𝑠2−𝑠3−𝑠4)/2𝜆 𝑓

( 𝑐
𝑒

)
and 𝜓0 is the principal character modulo 𝑟1. On the other hand, we obtain via elementary calculations
that ∑

𝑛 |𝑟∞

𝜏(𝜓, 𝑛)𝜎𝑤 (𝑛)𝜆 𝑓 (𝑛)
𝑛𝑠

= 𝜏(𝜓∗)
∑

𝑐 |𝑟/𝑟∗

𝑐𝜓∗
( 𝑟
𝑐𝑟∗

)
𝜇
( 𝑟
𝑐𝑟∗

) ∑
𝑛 |𝑟∞

𝜓∗(𝑛)𝜎𝑤 (𝑛𝑐)𝜆 𝑓 (𝑛𝑐)
(𝑛𝑐)𝑠 , (3.29)

where 𝑠 = (1− 𝑠1 + 𝑠2 − 𝑠3 + 𝑠4)/2 and 𝑤 = 𝑠4 − 𝑠3. We hence observe that the left-hand side of equation
(3.29) equals 𝜏(𝜓∗) when 𝜓 is the quadratic character modulo q or the character modulo 1. The problem
occurs if 𝜓 is the principal character modulo a prime q. In this case, a brute force computation gives∑

𝑐 |𝑞
𝑐1−𝑠𝜇

( 𝑞
𝑐

) ∑
𝑛 |𝑞∞

𝜎𝑤 (𝑛𝑐)𝜆 𝑓 (𝑛𝑐)
𝑛𝑠

= 𝜑(𝑞)
(
1 −

𝜆 𝑓 (𝑞)
𝑞𝑠

)−1 (
1 −

𝜆 𝑓 (𝑞)
𝑞𝑠−𝑤

)−1
− 𝑞.

We then conclude that ∑
𝑛 |𝑟∞

𝜏(𝜓, 𝑛)𝜎𝑤 (𝑛)𝜆 𝑓 (𝑛)
𝑛(1−𝑠1+𝑠2−𝑠3+𝑠4)/2 = 𝜏(𝜓∗)Π𝑟/𝑟∗ (𝑠1, 𝑠2, 𝑠3, 𝑠4;𝜓),

where Π𝑞 (𝑠1, 𝑠2, 𝑠3, 𝑠4;𝜓) is the multiplicative function

𝑞
∑
𝑐 |𝑞
𝜇
( 𝑞
𝑐

)∏
𝑝 |𝑐

(
1 − 𝜓

∗(𝑝)
𝑝

) (
1 −

𝜓∗(𝑝)𝜆 𝑓 (𝑝)
𝑝 (1−𝑠1+𝑠2+𝑠3−𝑠4)/2

)−1 (
1 −

𝜓∗(𝑝)𝜆 𝑓 (𝑝)
𝑝 (1−𝑠1+𝑠2−𝑠3+𝑠4)/2

)−1
.

This reasoning proceeds verbatim for the Eisenstein and holomorphic spectra, giving similar expressions
(see [70] for an extension of Weisinger’s theory and newform Eisenstein series). Thus we are left with

E± = E Maaß
± + E Eis

± + 𝛿±=+E hol
+ ,
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where

E Maaß
± �

1
𝜏(𝜒)𝑞

∑
𝑟 |𝑞

𝑟1−𝑠1+𝑠2

𝜑(𝑟)
∑♭

𝜓 (mod 𝑟 )
G±(𝜒, 𝜓)

∑
𝑟1𝑟2=𝑟2

∑
𝑓 ∈B∗

0 (Γ0 (𝑟1))
𝜖 (1∓1)/2

𝑓 𝜔 𝑓 Ω𝑟1 ,𝑟2 (𝑠1, 𝑠2, 𝑠3, 𝑠4; 𝑓 ;𝜓)

×
𝐿
(

1−𝑠1+𝑠2+𝑠3−𝑠4
2 , 𝑓 ⊗ 𝜓

)
𝐿
(

1−𝑠1+𝑠2−𝑠3+𝑠4
2 , 𝑓 ⊗ 𝜓

)
𝐿
(

𝑠1+𝑠2+𝑠3+𝑠4−1
2 , 𝑓 ⊗ 𝜓∗

)
𝐿(1,Ad2 𝑓 )

Φ±
s (𝑖𝑡 𝑓 ),

E Eis
± �

2
𝜏(𝜒)𝑞

∑
𝑟 |𝑞

𝑟1−𝑠1+𝑠2

𝜑(𝑟)
∑♭

𝜓 (mod 𝑟 )
G±(𝜒, 𝜓)

∑
𝑟1𝑟2=𝑟2

𝑟2
1

𝜑(𝑟1)
∑∗

𝜓1 𝜓2=𝜓0

∑
𝑓 ∈B(𝜓1 ,𝜓2)

×Ω𝑟1 ,𝑟2 (𝑠1, 𝑠2, 𝑠3, 𝑠4; 𝑓 ;𝜓)
∫ ∞

−∞
𝜌 𝑓 (1, 𝑡)𝜌 𝑓 0(1, 𝑡)S 𝑓 (𝑡; 𝑠1, 𝑠2, 𝑠3, 𝑠4)Φ±

s (𝑖𝑡)
𝑑𝑡

2𝜋
,

E hol
+ �

(2𝜋)𝑠1−𝑠2

𝜏(𝜒)𝑞 cos
(
𝜋(𝑠3 − 𝑠4)

2

)∑
𝑟 |𝑞

𝑟1−𝑠1+𝑠2

𝜑(𝑟)
∑♭

𝜓 (mod 𝑟 )
G+(𝜒, 𝜓)

×
∑

𝑟1𝑟2=𝑟2

∑
𝑘>𝜅

𝑘≡𝜅 (mod 2)

∑
𝑓 ∈B∗

𝑘 (Γ0 (𝑟1))
𝑖𝑘𝜔 𝑓 Ω𝑟1 ,𝑟2 (𝑠1, 𝑠2, 𝑠3, 𝑠4; 𝑓 ;𝜓)

×
𝐿
(

1−𝑠1+𝑠2+𝑠3−𝑠4
2 , 𝑓 ⊗ 𝜓

)
𝐿
(

1−𝑠1+𝑠2−𝑠3+𝑠4
2 , 𝑓 ⊗ 𝜓

)
𝐿
(

𝑠1+𝑠2+𝑠3+𝑠4−1
2 , 𝑓 ⊗ 𝜓∗

)
𝐿(1,Ad2 𝑓 )

Ξs

(
𝑘 − 1

2

)
,

where we define G±(𝜒, 𝜓) = 𝜓(∓1)𝜏(𝜓)𝜏(𝜓∗)2𝜏(𝜒𝜓) and

Ω𝑟1 ,𝑟2 (𝑠1, 𝑠2, 𝑠3, 𝑠4; 𝑓 ;𝜓) = 𝜑(𝑟1)
𝑟2

1

∑
𝑔 |𝑟2

𝜉𝑔 (1)
∑
𝑑 |𝑔
𝜉𝑔 (𝑑)𝜓∗(𝑑)𝑑 (2−𝑠1−𝑠2−𝑠3−𝑠4)/2

× Σ𝑟/𝑟∗ (𝑠1, 𝑠2, 𝑠3, 𝑠4;𝜓)Π𝑟/𝑟∗ (𝑠1, 𝑠2, 𝑠3, 𝑠4;𝜓).

These terms are complicated, but they are the same size as the main contributions J± in estimations.
Thus one can ignore them in the process of using Motohashi’s formula to deduce some moment bounds.

3.6. Endgame: analytic continuation

The aim of this subsection is to show that the spectral decomposition obtained in the preceding subsection
can be continued to the whole complex plane C4 and hence to conclude the proof of Theorem 1.1. The
main step is identical to that of Motohashi’s monograph [55], and we stress the following lemmata:

Lemma 3.9 (Motohashi [55, Lemma 4.7]). The function Ξs (𝜉) is meromorphic in the domain

B∗
4 = {𝜉 : �(𝜉) > −𝑐𝐴} × B4

for a fixed small constant 𝑐 > 0 and holomorphic in B∗
4 \N, where

N =

⎧⎪⎪⎪⎨⎪⎪⎪⎩(𝜉, 𝑠1, 𝑠2, 𝑠3, 𝑠4) :
at least one of 𝜉 + 𝑠1 + 𝑠2 + 𝑠3 + 𝑠4 − 1

2
, 𝜉 + 1 − 𝑠1 + 𝑠2 + 𝑠3 − 𝑠4

2
,

𝜉 + 1 − 𝑠1 + 𝑠2 − 𝑠3 + 𝑠4
2

equals a non-positive integer

⎫⎪⎪⎪⎬⎪⎪⎪⎭.
Moreover, if |𝜉 | tends to infinity in any fixed vertical or horizontal strips while satisfying �(𝜉) > −𝑐𝐴,
then we have uniformly in B4 that

Ξs(𝜉) � |𝜉 |−𝑐𝐴. (3.30)
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Lemma 3.10 (Motohashi [55, Lemma 4.8]). If (𝜉, 𝑠1, 𝑠2, 𝑠3, 𝑠4) is such that the path in equation (3.28)
can be drawn in a vertical strip contained in the half plane �(𝜏) > 0, then we have that

Ξs(𝜉) =
Γ(𝛼)Γ(𝛽)

Γ(𝛾)

∫ ∞

0
𝑦 𝜉+(𝑠1+𝑠2+𝑠3+𝑠4−3)/2𝐺 (𝑦, 𝑠1) 2𝐹1 (𝛼, 𝛽; 𝛾;−𝑦)𝑑𝑦,

where 𝐺 (𝑦, 𝑠) is defined in equation (3.4) and 2𝐹1 (𝛼, 𝛽; 𝛾; 𝑦) is the hypergeometric function with

𝛼 = 𝜉 + 1 − 𝑠1 + 𝑠2 + 𝑠3 − 𝑠4
2

, 𝛽 = 𝜉 + 1 − 𝑠1 + 𝑠2 − 𝑠3 + 𝑠4
2

, 𝛾 = 1 + 2𝜉.

We assume that (𝑠1, 𝑠2, 𝑠3, 𝑠4) ∈ B4 and examine the consequence of Lemma 3.9 for the contribution
J Maaß
+ from Maaß forms. If 𝑡 𝑓 � 3𝐵, then Ξs(±𝑖𝑡 𝑓 ) is holomorphic and O(𝑡−𝑐𝐴

𝑓 ) uniformly in B4
with an absolute constant c. Hence via Proposition 3.5, the function ℒ+Ψ+

s (𝑡 𝑓 ) is holomorphic and of
exponential decay with respect to 𝑡 𝑓 uniformly in B4. This indicates that J Maaß

+ exists as a meromorphic
function inside B4. The same observation holds for J hol

+ . As for the function J Maaß
− , we essentially

need equation (3.30). From Proposition 3.5, we have ℒ−Ψ−
s (𝑡 𝑓 ) = O(𝑡−𝑐𝐴

𝑓 ) uniformly in B4 provided
𝑡 𝑓 � 3𝐵. Hence J Maaß

− is meromorphic inside B4. This discussion works for E Maaß
± and E hol

+ as well.
Thus it remains to contemplateJ Eis

± and E Eis
± . To this end, we assume first that s = (𝑠1, 𝑠2, 𝑠3, 𝑠4) ∈ E4

and set

J Eis(s; 𝑔; 𝜒) = J Eis
+ (s; 𝑔; 𝜒) + J Eis

− (s; 𝑔; 𝜒).

Using Proposition 3.5, one derives

Φ+
s (𝑖𝑡) = − (2𝜋)𝑠1−𝑠2

2𝑖 sinh(𝜋𝑡) cos
(
𝜋(𝑠3 − 𝑠4)

2

) {
Ξs (𝑖𝑡) − Ξs(−𝑖𝑡)

}
,

Φ−
s (𝑖𝑡) =

(2𝜋)𝑠1−𝑠2

2𝑖 sinh(𝜋𝑡)

{
sin

(
𝜋
( 𝑠2 − 𝑠1

2
+ 𝑖𝑡

))
Ξs(𝑖𝑡) − sin

(
𝜋
( 𝑠2 − 𝑠1

2
− 𝑖𝑡

))
Ξs(−𝑖𝑡)

}
.

This yields an expression of J Eis(s; 𝑔; 𝜒) in terms of Ξs(𝑖𝑡). We need to shift the contour in the same
way as on pages 170–171 of Motohashi’s monograph [55]. This is because S 𝑓 (𝑡; 𝑠1, 𝑠2, 𝑠3, 𝑠4) has poles
when 𝜓1 = 𝜓2 = 𝜓. The same procedure applies to the term E Eis

± coming from the contribution of the
principal character and quadratic character. Gathering these observations, we have proven the following
lemma:

Lemma 3.11. The function OD†
4 continues meromorphically to B4, and the decomposition in equa-

tion (3.2) holds throughout this domain. In particular, the formula in equation (1.5) is valid for
(𝑠1, 𝑠2, 𝑠3, 𝑠4) = (1/2, 1/2, 1/2, 1/2).

This concludes the proof of Theorem 1.1.

4. Implications of Theorem 1.1

In this section, we aim to establish a q-aspect variant of Iwaniec’s short interval fourth moment bound
and the twelfth moment bound for Dirichlet L-functions without an average over Dirichlet characters.

4.1. Proofs of Corollaries 1.3 and 1.4

It suffices to specialise the test function in Theorem 1.1 as

𝑔(𝑡) = 1
√
𝜋𝐻

exp

(
−
(
𝑡 − 𝑇
𝐻

)2
)

(4.1)
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with the parameter H at one’s disposal. We assume that

𝑇1/2 � 𝐻 � 𝑇 (log𝑇)−1.

Motohashi [55, (5.1.40)–(5.1.42)] evaluated the corresponding integral transform Ξ, and his expression
can be used in our context. We then derive an asymptotic formula almost identical to [55, Theorem
5.1]. Upon estimating the spectral sum by absolute values, an oscillatory component in the summand
evanishes, and we obtain the bound∫ 𝑇 +𝐻

𝑇

����𝐿 (1
2
+ 𝑖𝑡, 𝜒

)����4𝑑𝑡 �𝜖 𝐻
1+𝜖 𝑞 𝜖 + 𝐻

3/2

𝑇
𝑞−2+𝜖

∑
𝜓(mod 𝑞)

∑
𝑓 ∈B∗

𝜅 (𝑞2 ,𝜓2)
𝑡 𝑓 �𝑇 /𝐻

𝐿

(
1
2
, 𝑓 ⊗ 𝜓

)3
. (4.2)

The truncation of the sum is justified since the Taylor expansion of exp(−(𝐻𝑡 𝑓 /𝑇)2/4) in [55, (5.1.44)]
implies that the rest of the sum is smaller than the main term in equation (4.2). Notice that the central
L-values in equation (4.2) are nonnegative, and it thus follows from the work of Petrow–Young [63,
Theorems 1.2 & 1.3] that

𝐻1+𝜖 𝑞 𝜖 + 𝐻
3/2

𝑇
𝑞−1+𝜖

(
𝑞𝑇

𝐻

)2+𝜖

� 𝐻1+𝜖 𝑞 𝜖 +
(
𝑞𝑇
√
𝐻

)1+𝜖

.

Optimising 𝐻 = (𝑞𝑇)2/3 concludes the proof of Corollaries 1.3 and 1.4.

4.2. Proofs of Corollaries 1.5 and 1.6

This section is devoted to proving the twelfth moment bound. We follow the argument of [34] verbatim,
obtaining the expression6

𝑅∑
𝑟=1

∫ 𝑡𝑟+𝑇0

𝑡𝑟

����𝐿 (1
2
+ 𝑖𝑡, 𝜒

)����4𝑑𝑡 �𝜖 𝑇0𝑞
−2+𝜖

∑
𝜓 (mod 𝑞)

∑
𝑓 ∈B∗

𝜅 (𝑞2 ,𝜓2)
𝑡 𝑓 �𝑇𝑇 −1

0

√
log𝑇

𝑡−1/2
𝑓

𝐿(1/2, 𝑓 ⊗ 𝜓)3

𝐿(1,Ad2 𝑓 )

×
𝑅∑

𝑟=1
𝑡−1/2
𝑟 exp

(
−
(
𝑇0𝑡 𝑓

2𝑡𝑟

)2
)

sin
(
𝑡 𝑓 log

𝑡 𝑓

4𝑒𝑡𝑟

)
+ 𝑅𝑇0 (𝑞𝑇) 𝜖 .

For technical reasons, it is convenient to remove the exponential factor in the last sum over r by partial
summation. In doing this, we obtain an error term of O𝜖 (𝑅𝑇 𝜖𝑇−1

0 ). Then we must majorise∑
�

∑
𝐾=2−𝑚𝑇𝑇 −1

0

√
log𝑇

𝑚=1,2,...

𝑆𝐾 ,

where

𝑆𝐾 �
∑

𝜓 (mod 𝑞)

∑
𝑓 ∈B∗

𝜅 (𝑞2 ,𝜓2)
𝐾�𝑡 𝑓 �2𝐾

𝑡−1/2
𝑓

𝐿(1/2, 𝑓 ⊗ 𝜓)
𝐿(1,Ad2 𝑓 )

����� 𝑅∑
𝑟=1
𝑡
−1/2−𝑖𝑡 𝑓
𝑟

�����.

6The variables 𝑡𝑟 and spectral parameters 𝑡 𝑓 should not be confused.
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The Cauchy–Schwarz inequality leads one to

𝑆𝐾 �

())))*
∑

𝜓 (mod 𝑞)

∑
𝑓 ∈B∗

𝜅 (𝑞2 ,𝜓2)
𝐾�𝑡 𝑓 �2𝐾

𝑡−1
𝑓

𝐿(1/2, 𝑓 ⊗ 𝜓)4

𝐿(1,Ad2 𝑓 )

+,,,,-
1/2

×
())))*

∑
𝜓 (mod 𝑞)

∑
𝑓 ∈B∗

𝜅 (𝑞2 ,𝜓2)
𝐾�𝑡 𝑓 �2𝐾

𝐿(1/2, 𝑓 ⊗ 𝜓)2

𝐿(1,Ad2 𝑓 )

����� 𝑅∑
𝑟=1
𝑡
−1/2−𝑖𝑡 𝑓
𝑟

�����2+,,,,-
1/2

.

Applying the bound of Petrow–Young [63, Theorem 7.6], the fourth moment is bounded as∑
𝜓 (mod 𝑞)

∑
𝑓 ∈B∗

𝜅 (𝑞2 ,𝜓2)
𝐾�𝑡 𝑓 �2𝐾

𝑡−1
𝑓

𝐿(1/2, 𝑓 ⊗ 𝜓)4

𝐿(1,Ad2 𝑓 )
�𝜖 𝑞

3+𝜖𝐾1+𝜖 .

The spectral large sieve in the form involving the square of twisted automorphic L-functions yields

∑
𝜓 (mod 𝑞)

∑
𝑓 ∈B∗

𝜅 (𝑞2 ,𝜓2)
𝐾�𝑡 𝑓 �2𝐾

𝐿(1/2, 𝑓 ⊗ 𝜓)2

𝐿(1,Ad2 𝑓 )

����� 𝑅∑
𝑟=1
𝑡
−1/2−𝑖𝑡 𝑓
𝑟

�����2 �𝜖 𝑞
3+𝜖 𝑅𝐾𝑇 𝜖𝑇−1

0 ,

since 𝐾 � 𝑇𝑇−1
0
√

log𝑇 . It follows that

𝑆𝐾 �𝜖 𝑞
3+𝜖 𝑅1/2𝐾1+𝜖𝑇 𝜖𝑇−1/2

0

and the summation over K eventually gives

𝑅∑
𝑟=1

∫ 𝑡𝑟+𝑇0

𝑡𝑟

����𝐿 (1
2
+ 𝑖𝑡, 𝜒

)����4𝑑𝑡 �𝜖

(
𝑅𝑇0 + 𝑞𝑇

√
𝑅

𝑇0

)
(𝑞𝑇) 𝜖 .

This establishes Corollary 1.5. Corollary 1.6 follows from Jutila’s trick described in [42, §6].

A. Twists of Maaß newforms

We evaluate the size of the conductor of 𝑓 ⊗ 𝜓 via automorphic representation theory.

Theorem A.1. Let 𝜓 be a primitive character modulo an odd squarefree q and 𝑑 | 𝑞. Let 𝑓 ∈ B∗
𝜅 (𝑑𝑞, 𝜓2)

be a Hecke–Maaß newform. Then the twist 𝑓 ⊗𝜓 has conductor 𝑞2 if𝜓 is nonquadratic. If𝜓 is quadratic,
then 𝑓 ⊗ 𝜓 has conductor dividing 𝑞2, and all three possibilities occur: if 𝑑 = 1, then the conductor is
𝑞2; and if 𝑑 = 𝑞, then

cond( 𝑓 ⊗ 𝜓) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if 𝑓 corresponds to a principal series representation,
𝑞 if 𝑓 corresponds to a special representation,
𝑞2 if 𝑓 corresponds to a twist-minimal representation.

An automorphic representation f is named twist-minimal if it has minimal conductor among all
their twists 𝑓 ⊗ 𝜓 by Dirichlet characters, namely cond( 𝑓 ) � cond( 𝑓 ⊗ 𝜓). Theorem A.1 asserts in
particular that 𝑓 ⊗ 𝜓 has conductor 𝑞2 when f corresponds to a twist-minimal representation at the
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primes dividing q. This matches work of Booker–Lee–Strömbersson [16, Lemma 1.4]. The method to
show Theorem A.1 features the use of automorphic representation theory. Nonetheless, one can also use
the local Langlands correspondence and tend toward the Galois side. The only way the conductor of the
tensor product could be smaller than 𝑞2 is if the associated representation has a subrepresentation as an
inertia representation isomorphic to 𝜓, in which case it has a quotient representation also isomorphic to
𝜓 since its determinant is 𝜓2. Consequently, f is not twist-minimal if the conductor cond( 𝑓 ⊗ 𝜓) does
not equal 𝑞2, and there are no twist-minimal principal series representations in our context.

A.1. Classification of representations

Let 𝜋𝑣 be a generic irreducible admissible representation of GL2 (Q𝑣 ) with central character 𝜔𝑣 . We
recall that such representations can be classified into principal series representations, special represen-
tations or supercuspidal representations. Standard references for the properties of these representations
are [20, 25], and the articles [32, 66] discuss the conductor exponents of these representations.

A.1.1. Principal series representations of GL2 (Q𝑣 )
A principal series representation 𝜋𝑣 is unitarily induced from a representation of the Borel subgroup of
GL2(Q𝑣 ), and these representations are indexed by two characters

𝜔𝑝,1 = 𝛽𝑝,1 | · |𝑠1
𝑣 , 𝜔𝑝,2 = 𝛽𝑝,2 | · |𝑠2

𝑣

of Q×
𝑣 , where 𝛽𝑝,1 and 𝛽𝑝,2 are characters of O×

𝑣 and 𝑠1, 𝑠2 ∈ C. We write

𝜋𝑣 � 𝜔𝑝,1 � 𝜔𝑝,2.

This representation is irreducible and unitarisable if and only if either 𝑠1, 𝑠2 ∈ 𝑖R or 𝑠1 + 𝑠2 ∈ 𝑖R with
𝑠1 − 𝑠2 ∈ (−1, 1) and 𝛽𝑝,1 = 𝛽𝑝,2. The central character of 𝜋𝑣 is

𝜔𝜋𝑣 = 𝜔𝑝,1𝜔𝑝,2 = 𝛽𝑝,1𝛽𝑝,2 | · |𝑠1+𝑠2
𝑣 .

The conductor exponent 𝑐(𝜋𝑣 ) equals 𝑐(𝜔𝑝,1) + 𝑐(𝜔𝑝,2). If 𝜔′
𝑣 is a character of Q×

𝑣 , the twist of 𝜋𝑣 by
𝜔′

𝑣 is the principal series representation

𝜋𝑣 ⊗ 𝜔′
𝑣 � 𝜔𝑝,1𝜔

′
𝑣 � 𝜔𝑝,2𝜔

′
𝑣 .

If 𝜋𝑣 has trivial central character, then𝜔𝑝,2 = 𝜔−1
𝑝,1 so that 𝛽𝑝,2 = 𝛽−1

𝑝,1, 𝑠2 = −𝑠1 and 𝑐(𝜋𝑣 ) = 2𝑐(𝜔𝑝,1).

A.1.2. Special representations of GL2 (Q𝑣 )
A special representation is a twist of the Steinberg representation: it is the irreducible subrepresentation

𝜋𝑣 � 𝜔𝑣St𝑣

of codimension one of the reducible principal series representation 𝜔𝑣 | · |1/2
𝑣 � 𝜔𝑣 | · |−1/2

𝑣 , where
𝜔𝑣 = 𝛽𝑣 | · |𝑠𝑣 is a central character of Q×

𝑣 with 𝛽𝑣 a character of O×
𝑣 and 𝑠 ∈ C. The central character of

𝜋𝑣 is

𝜔𝜋𝑣 = 𝜔2
𝑣 = 𝛽2

𝑣 | · |2𝑠
𝑣 .

The conductor exponent is

𝑐(𝜋𝑣 ) =
{

1 if 𝑐(𝜔𝑣 ) = 0,
2𝑐(𝜔𝑣 ) otherwise.
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If 𝜔′
𝑣 is a character of Q×

𝑣 , the twist of 𝜋𝑣 by 𝜔′
𝑣 is the special representation

𝜋𝑣 ⊗ 𝜔′
𝑣 = 𝜔𝑣𝜔

′
𝑣St𝑣 .

A.1.3. Supercuspidal representations of GL2 (Q𝑣 )
A supercuspidal representation is the compact induction of a finite-dimensional representation 𝜌𝜋𝑣 of a
maximal open subgroup H of GL2(Q𝑣 ) such that H is compact modulo the centre 𝑍 (Q𝑣 ). Every maximal
open subgroup of GL2(Q𝑣 ) that is compact modulo the centre is conjugate to either 𝑍 (Q𝑣 ) GL2(O𝑣 ) or
𝑁𝐾0(𝔭𝑣 ), the normaliser of𝐾0(𝔭𝑣 ) in GL2 (Q𝑣 ), where𝔭𝑣 is the maximal ideal of the ring of integersO𝑣

ofQ𝑣 . A supercuspidal representation 𝜋𝑣 is said to be of type I if H is conjugate to 𝑍 (Q𝑣 ) GL2 (O𝑣 ) and
of type II if H is conjugate to 𝑁𝐾0(𝔭𝑣 ). Supercuspidal representations always have conductor exponent
𝑐(𝜋𝑣 ) at least 2. The twist 𝜋𝑣 ⊗𝜔′

𝑣 of 𝜋𝑣 by a character 𝜔′
𝑣 ofQ×

𝑣 is also a supercuspidal representation.

A.2. Proof of Theorem A.1

A representation 𝜋 of GL2(𝐹) (where F is a nonarchimedean local field) of conductor 1, or equivalently
of conductor exponent 𝑐(𝜋) = 0, must be a spherical principal series representation 𝜋 = 𝜔1 � 𝜔2 with
both characters𝜔1, 𝜔2 of 𝐹× unramified, or equivalently of conductor exponent 𝑐(𝜔1) = 𝑐(𝜔2) = 0. The
central character is 𝜔𝜋 = 𝜔1𝜔2, which has conductor exponent 𝑐(𝜔1𝜔2) = 0; if this central character is
trivial, then 𝜔2 = 𝜔−1

1 . It holds that 𝜔1(𝑥) = |𝑥 |𝑖𝑡𝑣𝑣 and 𝜔2 (𝑥) = |𝑥 |−𝑖𝑡𝑣
𝑣 , where 𝑡𝑣 is such that the Hecke

eigenvalue is 𝜆𝜋 (𝑝) = 𝑝𝑖𝑡𝑣 + 𝑝−𝑖𝑡𝑣 . We must think of this as being the local component of f at a prime
not dividing the level.

For conductor p, or equivalently conductor exponent 𝑐(𝜋) = 1, there are two possibilities. The first
is that 𝜋 is a special representation 𝜔St, where 𝜔 is an unramified character (so that 𝑐(𝜔) = 0). The
central character is 𝜔𝜋 = 𝜔2 that has conductor exponent 𝑐(𝜔2) = 0. We must think of this as the local
component of f at a prime that exactly divides the level and such that the prime does not divide the
conductor of the central character of f. The other possibility is that 𝜋 = 𝜔1�𝜔2 is a nonspherical principal
series representations, where either 𝑐(𝜔1) = 1 and 𝑐(𝜔2) = 0 or vice versa. The central character is
𝜔𝜋 = 𝜔1𝜔2 that has conductor exponent 𝑐(𝜔1𝜔2) = 1. We must think of this as the local component
of f at a prime that exactly divides the level and such that the prime also divides the conductor of the
central character.

For conductor 𝑝𝑟 with 𝑟 � 2, or equivalently conductor exponent 𝑐(𝜋) = 𝑟 , there are three possibili-
ties. The first possibility is that 𝜋 = 𝜔1 � 𝜔2 is a nonspherical principal series representation for which
𝑟 = 𝑐(𝜋) = 𝑐(𝜔1) + 𝑐(𝜔2) = 𝑟 . The central character is 𝜔𝜋 = 𝜔1𝜔2 that has conductor exponent at most
r. The second possibility is that 𝜋 = 𝜔St is a special representation, where 𝜔 is a ramified character, so
that 𝑐(𝜔) � 1 and 𝑟 = 𝑐(𝜋) = 2𝑐(𝜔) (so that r is necessarily even). The central character is 𝜔𝜋 = 𝜔2

that has conductor exponent at most r. The third possibility is that 𝜋 is supercuspidal.
The twist by 𝜒 of a principal series representation 𝜋 = 𝜔1 � 𝜔2 with central character 𝜔𝜋 = 𝜔1𝜔2

is 𝜋 ⊗ 𝜒 = 𝜔1𝜒 � 𝜔2𝜒 with central character 𝜔𝜋⊗𝜒 = 𝜔1𝜔2𝜒
2. The conductor exponent of 𝜋 ⊗ 𝜒

becomes 𝑐(𝜋 ⊗ 𝜒) = 𝑐(𝜔1𝜒) + 𝑐(𝜔2𝜒), and the conductor exponent of 𝜔𝜋⊗𝜒 becomes 𝑐(𝜔1𝜔2𝜒
2). The

twist of a special representation 𝜋 = 𝜔St with central character 𝜔𝜋 = 𝜔2 is 𝜋 ⊗ 𝜒 = 𝜔𝜒St with central
character 𝜔𝜋⊗𝜒 = 𝜔2𝜒2. The conductor exponent of 𝜋 ⊗ 𝜒 becomes 𝑐(𝜋 ⊗ 𝜒) = max{1, 2𝑐(𝜔𝜒)}, and
the conductor exponent of 𝜔𝜋⊗𝜒 becomes 𝑐(𝜔2𝜒2).

Proof of Theorem A.1. The proof uses representation theory, and it suffices to prove Theorem A.1 when
𝑞 = 𝑝 is prime. Given a newform f of level 𝑑𝑞 and central character 𝜓2, there is a cuspidal automorphic
representation 𝜋 = 𝜋∞ ⊗

⊗
𝑣 𝜋𝑣 of GL2 (AQ), unique up to isomorphism, with conductor exponent

𝑐(𝜋𝑣 ) at each prime p satisfying 𝑝𝑐 (𝜋𝑣 ) ‖ 𝑑𝑞, whose central character𝜔𝜋 is the idèlic lift of the primitive
character 𝜒 that induces 𝜓2 and whose global newvector 𝜉◦ is the adèlic lift of f. If 𝑝 � 𝑑𝑞, then 𝜋𝑣 is
spherical and the local conductor exponents ought to satisfy 𝑐(𝜋𝑣 ) = 0. All the action happens when
𝑝 | 𝑑𝑞 for which 𝜋𝑣 is ramified. The central character 𝜔𝜋𝑣 is the local component 𝜔2

𝑣 of the idèlic
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lift of 𝜒, and the local conductor exponent 𝑐(𝜔𝑣 ) is such that 𝑝𝑐 (𝜔𝑣 ) ‖ 𝑞. If 𝜔𝑣 is nonquadratic, then
𝑐(𝜔𝜋𝑣 ) = 𝑐(𝜔2

𝑣 ) = 𝑐(𝜔𝑣 ); however, if𝜔𝑣 is quadratic, then 𝑐(𝜔𝜋𝑣 ) = 0, where 𝑐(𝜔𝑣 ) = 1. The accurate
quantity of the conductor exponent 𝑐(𝜋𝑣 ⊗ 𝜒𝑣 ) is calculable for given 𝜋𝑣 , where 𝜒𝑣 is the character
corresponding to 𝜓. It follows that cond( 𝑓 ⊗ 𝜓) | 𝑞2 with equality if f is twist-minimal or 𝑑 = 1 via
Lemma 1.4 of [16]. Since 𝜋𝑣 is a generic irreducible admissible representation of GL2(Q𝑣 ), one must
go through a case-by-case analysis. Using the above classification, the local conductor exponents can
be calculated, although one cannot deal with all the cases in one fell swoop.

1. The case where 𝜓 is quadratic:
(a) If 𝑑 = 1, then 𝜋𝑣 � 𝜔𝑣St𝑣 for some unramified character 𝜔𝑣 of Q×

𝑣 by the above classi-
fication. The local component of the twist 𝑓 ⊗ 𝜓 is 𝜋𝑣 ⊗ 𝜒𝑣 � 𝜔𝑣 𝜒𝑣St𝑣 . The conductor
exponent of 𝜋𝑣 ⊗ 𝜒𝑣 thus equals 2, which means that 𝑓 ⊗ 𝜓 has conductor 𝑝2.

(b) If 𝑑 = 𝑞 is a prime p, then 𝜋𝑣 has conductor exponent 𝑐(𝜋𝑣 ) = 2. Since𝜔𝜋𝑣 is trivial, 𝜋𝑣 can
either be principal series, special or supercuspidal. Humphries [32] discusses this problem
in detail and classifies everything in a comprehensive manner. The crucial point is that if
𝜋𝑣 = 𝜔𝑝,quad�𝜔𝑝,quad, where𝜔𝑝,quad denotes the quadratic character of conductor exponent
1, then 𝜋𝑣 ⊗ 𝜒𝑣 is a spherical principal series representation of conductor exponent 0, so
that 𝑓 ⊗ 𝜓 has conductor 1. If 𝜋𝑣 = 𝜔𝑣St𝑣 is special, its twist is a special representation of
conductor exponent 1, so that 𝑓 ⊗ 𝜓 has conductor p. In all other cases, 𝜋𝑣 is twist-minimal
and 𝜋𝑣 ⊗ 𝜒𝑣 has conductor exponent 2, so that 𝑓 ⊗ 𝜓 has conductor 𝑝2.

2. The case where 𝜓 is nonquadratic:
(a) We first handle the case 𝑑 = 1. Since 𝜓2 is primitive modulo p, the corresponding character

𝜔𝜋𝑣 has conductor exponent 𝑐(𝜔𝜋𝑣 ) = 1. By the above classification, 𝜋𝑣 = 𝜔𝑝,1 � 𝜔𝑝,2,
where 𝑐(𝜔𝑝,1) = 1, 𝑐(𝜔𝑝,2) = 0 and 𝜔𝜋𝑣 = 𝜔𝑝,1𝜔𝑝,2. The twist is 𝜋𝑣 ⊗ 𝜒𝑣 = 𝜔𝑝,1𝜒𝑣 �
𝜔𝑝,2𝜒𝑣 . Since 𝜔𝑝,1𝜔𝑝,2 = 𝜒−2

𝑣 (recall f has central character 𝜓2), we must have 𝜔𝑝,1𝜒𝑣 =
𝜔−1

𝑝,2𝜒
−1
𝑣 , which has conductor exponent 1, as does 𝜔𝑝,2𝜒𝑣 . Hence the conductor exponent

of 𝜋𝑣 ⊗ 𝜒𝑣 is 𝑐(𝜔𝑝,1𝜒𝑣 ) + 𝑐(𝜔𝑝,2𝜒𝑣 ) = 2, which means that 𝑓 ⊗ 𝜓 has conductor 𝑝2.
(b) If 𝑑 = 𝑝, then 𝜋𝑣 has conductor exponent 𝑐(𝜋𝑣 ) = 2. All three possibilities for 𝜋𝑣 are open,

and one can check in each case that twisting leaves its conductor exponent unchanged.

This concludes the proof of Theorem A.1. �
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