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1. Statement of results. Let /(u) =f(ult u2) = au\ + buiU2 + cu\ be a positive
definite binary quadratic form with real coefficients and discriminant b2-Aac = -l.

Among such forms, let h(u) = ~/x(wi + u1u2 + uf). The Epstein zeta function of / is
denned to be V 3

£/(*)= 2 f{m,n)-'.
(m,«)#0

Rankin [7], Cassels [1], Ennola [5], and Diananda [4] between them proved that for every
real s>0,

£>(*) ̂  £„(*). (1)
We prove a corresponding result for theta functions. For real a > 0, let

This function satisfies the functional equation

6,(1/a) = ae,(a). (2)

(This may be proved by using the formula (4) below, and then twice applying the identity
(8)0

THEOREM 1. For any a>0,

If there is an a>0 for which df(a) = dh(a), then f and h are equivalent forms and

ef - eh.
Let

Us) = tf(s)T(s)(2jzr.
Then

= 7TT - ; + f
S J. S J\

(X

for all complex numbers s other than 0 and 1. From Theorem 1 it follows that
%f(

s) — %h(s) for all real s, with equality only when f ~ h. Hence we obtain the earlier
result (1) as a corollary. On differentiating in (3), we see moreover that %fk)(s) > %ffk\s)
for all real s, and that ^2k+l\s) > %fk+1\s) for all 5 > 1/2. (For s < 1/2 the inequality is
reversed in the case of derivatives of odd order.)
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76 HUGH L. MONTGOMERY

We may factorize / ;

/ = a(u! + zuz){ux + zu2),

where z = x + iy, and without loss of generality y > 0. Since b2 — 4ac = - 1 , we deduce
that a = l/2y, so that

f- — ( - \ - — ( \2 i 2

2y 2y
Since 6f and £y are determined by the complex number z in the upper half-plane, we
dispense with the notation df, t,f, and henceforth write 6(a;x, y), £(s;x, y) instead. In
particular, we see that

6(a; x, y) = 2 e"^"2 2 e—^"-1-")̂ . (4)

Two forms are equivalent, fi~f2, if there is a

C = [c,7] e 5L(2, Z)

such that/2(«) =/i(CM). In this case

The form / is reduced if— a<b <a<c or if 0 s f c < s = c. Thus / is reduced if and only if
z lies in the fundamental domain

L | z | > l , y >0} U {z: 0 ==*<£, |z| = l, v >0}

of the modular group. We know that each/is equivalent to a unique reduced form, which
is to say that any z in the upper half-plane is equivalent to a unique z' e 3). If /j ~f2 then
dfl = 0/2 and ^ = t,h. Hence we may confine our attention to reduced forms.

The earlier results on t,f were derived by combining in a clever way the following two
lemmas:

LEMMA A. If y > 3/2 and s > 0, then — £(s; x, j>) > 0.

a
LEMMA B. / / 0 < ; t < l / 2 , y>3 /5 , and 0 < s < 3 , f/ten — £(S;A:, y) <0.

In Lemmas 4 and 7 below we establish corresponding results, from which Theorem 1
is an obvious consequence.

We now consider positive definite quadratic forms in n >2 variables, but we restrict
our attention to diagonal forms. Suppose that clt . . . , cn are positive real numbers for
which

c\, c2...cn = l, (5)
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and for a > 0 put

6(a, c) = 2 exp(-^or 2 c,*?) = f[ 0(c,-a), (6)
k

where 0 (0= S e"""2* for f>0. From the case b = 0 of Theorem 1 we see that

d(aa)6(ca) > d(a/2)2 whenever ac = 1/4. Hence it is evident that 6(a, c) > 6(a, 1) for
all or > 0 where 1 = (1 ,1 ,1 , . . . , 1), but we now show more. We exhibit a curve which
starts at 1, ends at c, lies in the hypersurface (5), and along which 6(a, •) is strictly
increasing.

THEOREM 2. Let a and cx, . . . , cn be fixed positive numbers, and suppose that (5)
holds but that not all the c, are 1. For t real put

Then U'(0) = 0, U'(t) >Ofort>0, and U'(t) <Ofort<0.

In particular we see that t/(0) < C/(l). This implies corresponding results concerning
the Epstein zeta function of diagonal positive definite quadratic forms. For related
literature see Ennola [6], Sandakova [9], Delone and Rygkov [2,3], and Ryskov [8].

It is my pleasure to thank Professors J. W. S. Cassels and R. A. Rankin for their
helpful remarks.

2. Properties of the classical theta function. We consider the classical one-
dimensional theta function

(7)
— oo

where Re t > 0, e(w) = e2mw. This function satisfies the functional equation

— oo

The Jacobi triple product formula also gives
oc

e(t; P) = I ! (! - e~2jm)(l + 2e~(2r-1)j" cos 2JT/3 + e - 2 ( 2 r - 1 ) j " ) . (9)

LEMMA 1. Let

sin 2np
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78 HUGH L. MONTGOMERY

and suppose that t>0 is fixed. Then Q(t; j8) is an even function of f$, with period 1. The
values of Q(t; j3) are all positive, and Q(t; /3) is a decreasing function of /3 in the interval
[0, 1/2].

Proof. The first assertion is obvious. By differentiating in (9) we see that
00 00

Q(t; jB) = 4* £ (1 " e-^')e-<*-0™ f] (1 - e-2*")
s=l r=\

X (1 + 2e-(2r-l)l"cos 271$ + e~2(2r-x)nr).

In this formula each term is positive and decreasing in [0,1/2]. Thus the proof is
complete.

LEMMA 2. Let Q(t; fi) be as above. Put

A{t) = -

/or all p.

Proof. By Lemma 1 it suffices to show that

Q{t;\l2)>A{t),

and that

Q(t;O)<B(t).

By L'Hopital's rule we see that

(10)

(11)

Suppose that t ̂  1. By differentiating twice in (7) we see that the above is

k=2
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This last sum is "a decreasing function of t, and we note that

2) k2e-"l*~» < 0.0003228 < —J-. (12)
k=2 3000

This gives (10) when t> 1. When K l w e differemtoate twice in (8) to see that

Q(t; 1/2) = 2r3'2 2 e-^
m-m)2"(— (m - HI)2 - l).

m = \ W /

Here all terms are non-negative, and the term m = 1 contributes an amount

r3/2e-"/Al(--2\>A(t).

Thus we have (10) when t < 1.
By L'Hopital's rule we find that

Suppose that f > 1. By differentiating twice in (7) we see that

Q(t;0) = 4n J k2e-"k2'

This last sum is a decreasing function of t, and so by (12) we see that we have (11) when
t>\.

Now suppose that t<\. We differentiate twice in (8) to see that

—Jim2/1

Here the term m = 0 gives B(t) and the other terms are negative. Thus we have (11) when
t< 1, and the proof is complete.

In order to establish Theorem 2, we prove the following further result.

LEMMA 3. For t > 0 let 6(t) = 6{t; 0) = £° e'""2'. Then

/or a// f > 0.

Proof. Let 7(0 denote the above expression. We begin by showing that T(t)
T(l/t). To see this, we take /3 = 0 in (8) and differentiate logarithmically to find that
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80 HUGH L. MONTGOMERY

We multiply both sides by t and differentiate to see that

On multiplying both sides by t this becomes the desired identity. It now suffices to show
that T(t) > 0 for 15* 1. We set /3 = 0 in (9) and differentiate logarithmically to see that

fL{\- V /2Jwe"2jrm 2(2« -

On differentiating this we see also that

0V ~ l _ (2nn)2e-2'"" 2{2n - l)2n2

l) {t) " V (1e-2™')2 + (i + e-(2"

Thus on one hand

ft' °° e~m(\ + e~2m}
6- (0 S -in ^ (2n - l ) e -^ ->- = - 2 ^ ( 1 " ^ y } •

Since e ' ^ s 0-04322 for t>\, this is >-le~m. On the other hand (1 -<r2;"")~2<
(1 - e-2jl)~2 < 1-004 for n > 1, f > 1, so that

As (l + e ' T ^ ^ + e"")"^0.918, the first term is >18e~Jtt. The sum in the second
term is

~n{\ + e~2")n{\

Hence the second term is >-2e~ja. On combining these estimates we see that

T(t) > (-7 + 16t)te-" > 9t2e-m > 0

for t s 1, and the proof is complete.

3. The first main lemma.

LEMMA 4. / / a > 0, 0 < x < 1/2, and y > 1/2, then

— d{a;x,y)<0.
ox

We note that in particular, this holds when z = x + iy is in the interior of the right
hand side of the fundamental domain 3). Numerical experiments suggest that the
constraint y s 1/2 can be weakened to y ^ V3/6. This would be best possible in view of
the behaviour of 6(a;x, y) near (x, y) = (2, VI) when a is large.
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Proof. In view of (2), we may suppose that a > 1. From (4), (7), and (8) we see that

0(0-; x, y) = (y/a)m £ e—y"26(y/a; nx). (13)
n

Hence

j - 0(«; x, y) = 2(y/a)V2 £ ne~^"2 | - d(y/a; 0) .
aX « = 1 OP p=nx

In the notation of Lemma 2 this sum is at most

Since
sin 2nnx

sin 2nx

-A(y/a)(sin 2nx)e~nay + 2 ne-nay"2B{yla) |sin 2JMX\.

s n for all x, the above is negative if

ex
Since y ̂  1/2, we see that ay = — • >' > ia'/y. Hence the sum above is at most

y
00 00

Z, n e -e 2J
 n e

n=2 n=2

Suppose that a>y. In this case the right hand side of (14) is e-
Wna'y> while the last sum

above is

/i2e"*("2"2)/4 = 0-868649. . . < 1.
n=2

This gives the result in this case.

Suppose that a<y. Then the right hand side of (14) is (l + z r r r ) / ( l - ^ J ^ ) -
\ D\j\j\) /1 \ J\)\j\J /

On the other hand, we see that ay ̂  a2^ 1, so that the left hand side in (14) does not
exceed the sum (12). Thus we again have (14), and the proof is complete.

4. Differential inequalities. We wish to show that the inequality

-?-0(a;x,y)>0
oy

holds when z = x + iy lies in the fundamental domain 3). To this end, we first prove the
following subsidiary result.
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82 HUGH L. MONTGOMERY

LEMMA 5. Ifa>0, 0 < x < | , andx2 + y2>l, then

d2 2 3
—5 6(a; x, y) H 6(a;x, y) > 0.
dy y dy

Numerical experiments suggest that this inequality holds if a>0 and _y>0.71.
However, it fails when a = 9/4, x = 1/2, y = 0-70. For any Y > 1/2 there is a C(Y) such
that the inequality holds when a^ C(Y), y > Y. On the other hand, at the saddle point
(x, y) = (1/2, 1/2), we have

36_ 3*0

dy ' dy2

for all a > 0. By differentiating in (13) it is easy to see that

' dy 2 ' dy2 4

as y/a—Kx>, a > 1. Thus it is obvious that the stated inequality holds when ff>l and y/a
is large.

Proof. In view of (2), we may assume that ar> 1. By direct calculation in (4) we see
that the quantity in question is

- _ (m-™)2\2
£-2x«f 2jt(X^ n2e-*»«f= 2 - 2 ,

y 1 y m,n 1 2

say. In Si, the terms (m, n) = (±1, 0) contribute an amount

where K denotes the first factor on the above right, and Px the second. The terms
(m, n) = (0, ±1) contribute to Si an amount

2(JTO-)2(1 - x*iyiye-'«<(*1+y1)iy = K{xa{\ - x2ly2)2) = KP2,

say. Thus

On the other hand,
^ 00

ttx j n = 2 ttt

By pairing m and — m we see that the first of these sums is
00

1 + 2 ^ e-"am2/ycosh(2jtamx/y).
m = \

This is an increasing function of x. We take x = 1/2 and pair m with 1 - m to see that the
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sum is

< 2 V e-Jiam(m-l)/y ̂ 2 X" e-na(m-l)2/y _ j _|_ y e~jiam2/y

m = \ m = l —°°

From (7) it is evident that max^ 8{t; /?) = 6(t;0). Hence the sum in (8) is also
maximized when /3 = 0. Thus in the second term in (15), the sum over m is at most

Em e~"am2ly. Since 0 ̂  x ^ —T?y in the domain under consideration, we see that

On combining these estimates we see that

+ [ = KR,
— \y '— —

say. The sums in R are decreasing functions of a, while Pi and P2 are increasing. Thus in
order to prove the inequality it suffices to show that R<PX + P2 when a = 1. Since
y > V3/2, the second sum in R is

< £ n2e-^n2-4/3)^n< 0-002826.
n=2

By (8) the first sum in /? is
1/9 V 1 jrfc^v —- 1/2 V ^ jrJt^'\/'?/2 _-- 1/2^ -i'>-i'i\

-_y 2^ e —J 2 / e <>' (1-1317).
* k

Hence
2

say.
We show that 5 < Px + P2. By logarithmic differentiation it is easy to see that P, is an

increasing function of y. It is also clear that P2 is an increasing function of y, while 5 is
decreasing. Hence it suffices to consider y = Vl - x2. That is, it remains to verify that

/ x2 \2

2(1 - x 2 Y m + (2-27)(l -X2)'1'4< JT(1 -x2)-2 + nil - —-A (16)

for 0 ̂ x ^ 1/2. Since the right hand side is

2\2 / '( I - * 2 )

we see that the expression is increasing. Hence its least value is 2n = 6-28. . . , at x = 0.
The left hand side is obviously increasing. Its maximum value is 4.75 . . . , at x = 1/2.
Hence (16) holds, and the proof is complete.
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5. The second main lemma. We begin with an elementary observation.

LEMMA 6. Suppose that

f ' ( ) +

for all y > y0 > 0, and that f(y0) ^ 0. Then f(y) > 0 for all y > y0.

Proof. On multiplying the given inequality by y2, we see that (y2f(y))' >0. Hence
y2f(y) is strictly increasing for y >y0. Hence f(y)>f(yo)(yo/y)2^.0 when y>yo-

We now are in a position to prove our second main lemma.

LEMMA 7. / / a > 0, 0 =£ x < 1/2, x2 + y2 > 1,

iY/i equality if and only if (x, y) is one of the points (0, 1), (1/2, V3/2).

If Theorem 1 were our only goal, then it would suffice to establish this lemma in the
special case x = 1/2. The main interest of Lemmas 4 and 7 is that they provide
information concerning the directional derivative of d(a;x, y).

Proof. In view of the previous two lemmas, it suffices to show that

when x2 + y2 = l, O ^ J C S 1/2, with equality if and only if x is at one of the endpoints. To
this end, let

g(r) = d(a; r cos 0, r sin <f>),

where tf> is fixed, 0 < <p< x. Then g(r) = g(l/r). Hence g'(l) = 0. But

. , 99 96
g (1)= —COS<|> + —SH10,

ox ay

so that

dd 3d
— cos <p = - — sin 0
3x dy

3d
when (x, y) = (cos <p, sin <f>). From Lemma 4 we see that — < 0 when JZ/3 <<p< n/2,

3x
36

with equality only at the endpoints. Hence — > 0 , and the proof is complete.
3y
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6. Proof of theorem 2. By logarithmic differentiation we see that
111 Ql

-Jj{t) = oc^ — {c'ia)

Hence

^)'(') = 2 ( f (c}a)ocj+ ( | ) ( c^ )«

in the notation of Lemma 3. Hence by this lemma, (U'/U)(t) is strictly increasing. But

so that (U'/U)(t)>0 for f>0 and (U'/U)(t)<0 for f<0. Since U(t)>0 for all t, this
gives the result.

REFERENCES

1. J. W. S. Cassels, On a problem of Rankin about the Epstein zeta function, Proc. Glasgow
Math. Assoc. 4 (1959), 73-80. (Corrigendum, ibid. 6 (1963), 116.)

2. B. N. Delone and S. S. RySkov, A contribution to the theory of the extrema of a
multidimensional £-function, Dokl. Akad. Nauk SSSR 173 (1963), 523-524. (Translated as Soviet
Math. Dokl. 8 (1967), 499-503.)

3. B. N. Delone and S. S. RySkov, Extremal problems in the theory of positive definite
quadratic forms, Collection of articles dedicated to Academician Ivan MatveeviC Vinogradov on his
eightieth birthday, I, Trudy Mat. Inst. Steklov. 112 (1971), 203-223, 387.

4. P. H. Diananda, Notes on two lemmas concerning the Epstein zeta-function, Proc. Glasgow
Math. Assoc. 6 (1964), 202-204.

5. Viekko Ennola, A lemma about the Epstein zeta function, Proc. Glasgow Math. Assoc. 6
(1964), 198-201.

6. Veikko Ennola, On a problem about the Epstein zeta-function, Proc. Cambridge Philos,
Soc. 60 (1964), 855-875.

7. R. A. Rankin, A minimum problem for the Epstein zeta function, Proc. Glasgow Math.
Assoc. 1 (1953), 149-158.

8. S. S. RySkov, On the question of the final £-optimality of lattices that yield the densest
packing of n-dimensional balls, Sibirsk. Mat. Z. 14 (1973), 1065-1075, 1158.

9. N. N. Sandakova, On the theory of t-functions of three variables, Dokl. Akad. Nauk SSSR
175 (1967), 535-538.

UNIVERSITY OF MICHIGAN

ANN ARBOR,

MICHIGAN 48109, U.S.A.

https://doi.org/10.1017/S0017089500007047 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500007047

