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We present an energy-conserving discontinuous Galerkin scheme for the full-f
electromagnetic gyrokinetic system in the long-wavelength limit. We use the
symplectic formulation and solve directly for ∂A‖/∂t, the inductive component of
the parallel electric field, using a generalized Ohm’s law derived directly from the
gyrokinetic equation. Linear benchmarks are performed to verify the implementation
and show that the scheme avoids the Ampère cancellation problem. We perform a
nonlinear electromagnetic simulation in a helical open-field-line system as a rough
model of the tokamak scrape-off layer using parameters from the National Spherical
Torus Experiment (NSTX). This is the first published nonlinear electromagnetic
gyrokinetic simulation on open field lines. Comparisons are made to a corresponding
electrostatic simulation.
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1. Introduction
Understanding turbulent transport physics in the tokamak edge and scrape-off layer

(SOL) is critical to developing a successful fusion reactor. The dynamics in these
regions plays a key role in determining the L–H transition, the pedestal height and
the heat load to the vessel walls. While the edge is often modelled by Braginskii-type
fluid models that have provided valuable results and insights (Xu et al. 2008; Tamain
et al. 2010; Ricci et al. 2012; Francisquez, Zhu & Rogers 2017; Zhu, Francisquez &
Rogers 2017), a kinetic treatment will inevitably be necessary for reliable quantitative
predictions in some cases (Jenko & Dorland 2001; Cohen & Xu 2008). Gyrokinetic
theory and direct numerical simulation have become important tools for studying
turbulence and transport in fusion plasmas, especially in the core region (Parker,
Lee & Santoro 1993a; Kotschenreuther, Rewoldt & Tang 1995; Dimits et al. 2000;
Dorland et al. 2000; Jenko 2000; Lin et al. 2000; Jost et al. 2001; Candy & Waltz
2003; Idomura, Tokuda & Kishimoto 2003; Watanabe & Sugama 2005; Jolliet et al.
2007; Idomura et al. 2008; Peeters et al. 2009; Lanti et al. 2019). In the edge
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and SOL, gyrokinetic simulations are particularly challenging because the large,
intermittent fluctuations in the SOL make assumptions of scale separation between
equilibrium and fluctuations not strongly valid. This necessitates a full-f approach
that self-consistently evolves the full distribution function, f (as opposed to the δf
approach commonly used in the core, where one assumes f = F0 + δf with a fixed
background F0 so that only δf perturbations must be evolved, and the parallel electric
field nonlinearity is frequently neglected). Steady progress in gyrokinetic edge/SOL
modelling has been made with both particle-in-cell (PIC) (Ku, Chang & Diamond
2009; Korpilo et al. 2016; Ku et al. 2016) and continuum (Shi et al. 2019; Dorf
et al. 2016; Pan et al. 2018) methods. Another challenge is the magnetic geometry of
the edge/SOL region, which requires treatment of open and closed magnetic field-line
regions and the resulting plasma interactions with material walls on open field lines.
The X-point in a diverted geometry is an additional complication which makes the use
of field-aligned coordinates challenging. Currently, only the XGC1 hybrid-Lagrangian
PIC code (Ku et al. 2016) can simulate gyrokinetic turbulence in a three-dimensional
diverted geometry with an X-point.

The edge/SOL region also features steep pressure gradients, especially in the
H-mode transport barrier and SOL regions, which contributes to the importance
of electromagnetic effects. In this regime, the parallel electron dynamics is no
longer fast relative to the drift turbulence, so electrons can no longer be treated
adiabatically (Scott 1997). This leads to coupling of the perpendicular vortex motions
and kinetic shear Alfvén waves, which results in field-line bending (Xu et al. 2010).
Including electromagnetic effects in gyrokinetic simulations has proved numerically
and computationally challenging, both in the core and in the edge. The so-called
Ampère cancellation problem is one of the main numerical issues that has troubled
primarily PIC codes (Reynders 1993; Cummings 1994). Various δf PIC schemes
to address the cancellation problem have been developed and there are interesting
recent advances in this area (Chen & Parker 2003; Mishchenko, Hatzky & Könies
2004; Hatzky, Könies & Mishchenko 2007; Mishchenko et al. 2014; Startsev & Lee
2014; Bao, Lin & Lu 2018). Meanwhile, some continuum δf core codes avoided
the cancellation problem completely (Rewoldt, Tang & Hastie 1987; Kotschenreuther
et al. 1995), while others had to address somewhat minor issues resulting from it
(Jenko 2000; Candy & Waltz 2003). With respect to the cancellation problem, one
possible reason for the differences might be that, in continuum codes, the fields and
particles are discretized on the same grid, whereas in PIC codes the particle positions
do not coincide with the field grid. Because particle positions are randomly located
relative to the field grid, one might need to be more careful in some way when
treating the interaction of the particles and electromagnetic fields.

To this point, all published nonlinear electromagnetic gyrokinetic results have
focused on the core region, mostly within the δf formulation neglecting the E‖
nonlinearity, although the ORB5 PIC code includes the E‖ nonlinearity and is
effectively full-f (Lanti et al. 2019). The XGC1 code is also full-f and is focused
on both the core and the edge/SOL; it has an option for a gyrokinetic ion/drift-fluid
massless electron hybrid model (Hager et al. 2017), with a fully kinetic implicit
electromagnetic scheme based on Chen & Chacon (2015) recently implemented and
under further development (Ku et al. 2018b). Other gyrokinetic codes working on
the SOL are not yet electromagnetic. Thus, to our knowledge, the results presented
here are the first nonlinear electromagnetic full-f gyrokinetic turbulence simulations
on open field lines.

In this paper we present a numerical scheme for simulating the full-f electromag-
netic gyrokinetic system using a continuum approach. We use an energy-conserving
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discontinuous Galerkin (DG) scheme for the discretization of the gyrokinetic system in
phase space, building on the work of Liu & Shu (2000), Shi (2017), Shi et al. (2017)
and Hakim et al. (2019). DG methods are attractive because they are highly local
(enabling fairly straightforward parallelization schemes), allow high-order accuracy
and enforce local conservation laws (Durran 2010). The present target of the scheme
is simulating the edge and SOL of tokamaks, although the scheme could in principle
be used for whole-device modelling, including the core. Our scheme has been
implemented as part of the gyrokinetics solver (Shi et al. 2017, 2019; Bernard
et al. 2019) of the Gkeyll computational plasma framework, which also includes
solvers for the Vlasov–Maxwell system (Cagas et al. 2017; Juno et al. 2018) and
multi-moment fluid equations (Wang et al. 2015).

The paper is organized as follows. In § 2, we describe the electromagnetic
gyrokinetic system and some of its conservation properties. Section 3 describes
the discontinuous Galerkin phase-space discretization of the system, and also
presents proofs that the scheme preserves particle and energy conservation. The time-
discretization scheme is handled in § 4. In § 5 we present some linear electromagnetic
benchmarks that validate the scheme and also demonstrate the avoidance of the
cancellation problem. We present nonlinear results showing the first electromagnetic
gyrokinetic turbulence simulation on open field lines in § 6, along with comparisons
to a corresponding electrostatic simulation. We summarize and address future work
in § 7.

2. The electromagnetic gyrokinetic system
2.1. Basic equations

We solve the full-f electromagnetic gyrokinetic (EMGK) equation in the symplectic
formulation (Brizard & Hahm 2007), which describes the evolution of the gyrocentre
distribution function fs(Z, t) = fs(R, v‖, µ, t) for each species s, where Z is a phase-
space coordinate composed of the guiding centre position R = (x, y, z), the parallel
velocity v‖ and the magnetic moment µ = msv

2
⊥
/(2B). In terms of the gyrocentre

Hamiltonian and the Poisson bracket in gyrocentre coordinates, and also including
collisions C[ fs] and sources Ss (which do not derive from the bracket), the gyrokinetic
equation is given by1

∂fs

∂t
+ { fs,Hs} −

qs

ms

∂A‖
∂t

∂fs

∂v‖
=C[ fs] + Ss, (2.1)

or equivalently,

∂fs

∂t
+ Ṙ · ∇fs + v̇

H
‖

∂fs

∂v‖
−

qs

ms

∂A‖
∂t

∂fs

∂v‖
=C[ fs] + Ss, (2.2)

where the gyrokinetic Poisson bracket is given by

{F,G} =
B∗

mB∗‖
·

(
∇F

∂G
∂v‖
−
∂F
∂v‖
∇G
)
−

b̂
qB∗‖
×∇F · ∇G, (2.3)

1One can use extended gyrocentre phase-space coordinates, which include time t and the canonically
conjugate energy w, to include the time derivative terms in (2.1) inside an extended Poisson bracket (Brizard
& Hahm 2007). For ease of presentation we do not take this approach.
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and we take the gyrocentre Hamiltonian to be

Hs =
1
2 msv

2
‖
+µB+ qsφ. (2.4)

Here, we have taken the long-wavelength (drift-kinetic) limit to neglect gyroaveraging
of the electrostatic potential φ, and we have also dropped higher-order terms in
the Hamiltonian that appear in e.g. Brizard & Hahm (2007); extensions to include
gyroaveraging will be included in later work, but these additions will not change the
overall scheme presented here. The nonlinear phase-space characteristics are given
by

Ṙ= {R,Hs} =
B∗

B∗‖
v‖ +

b̂
qsB∗‖
× (µ∇B+ qs∇φ), (2.5)

v̇‖ = v̇
H
‖
−

qs

ms

∂A‖
∂t
= {v‖,Hs} −

qs

ms

∂A‖
∂t
=−

B∗

msB∗‖
· (µ∇B+ qs∇φ)−

qs

ms

∂A‖
∂t
. (2.6)

Here, B∗
‖
= b̂ · B∗ is the parallel component of the effective magnetic field B∗ =

B+ (msv‖/qs)∇ × b̂+ δB, where B= Bb̂ is the equilibrium magnetic field and δB=
∇ × (A‖b̂)≈∇A‖ × b̂ is the perturbed magnetic field (assuming that the equilibrium
magnetic field varies on spatial scales longer than perturbations so that A‖∇× b̂ can be
neglected). We neglect higher-order parallel compressional fluctuations of the magnetic
field, so that δB= δB⊥. The species charge and mass are qs and ms, respectively. In
(2.6), note that we have separated v̇‖ into a term that comes from the Hamiltonian,
v̇H
‖
={v‖,Hs}, and another term proportional to the inductive component of the parallel

electric field, (q/m)∂A‖/∂t. We use this notation for convenience, and so that the time
derivative of the parallel vector potential A‖ appears explicitly. Further, we will assume
a field-aligned coordinate system (e.g. Beer, Cowley & Hammett 1995), and we will
take the perpendicular directions to be x and y, and the parallel direction to be z.

In the absence of collisions C[ fs] and sources Ss, equation (2.1) can be recognized
as a Liouville equation, which shows that the distribution function is conserved along
the nonlinear characteristics. Liouville’s theorem also shows that phase-space volume
is conserved,

∂J
∂t
+∇ · (J Ṙ)+

∂

∂v‖
(J v̇H

‖
)−

∂

∂v‖

(
J

qs

ms

∂A‖
∂t

)
= 0, (2.7)

where J = B∗
‖

is the Jacobian of the gyrocentre coordinates, and we will make the
approximation b̂ · ∇× b̂≈ 0 so that B∗

‖
≈ B.

We can now write the gyrokinetic equation in conservative form,

∂(J fs)

∂t
+∇ · (J Ṙfs)+

∂

∂v‖
(J v̇H

‖
fs)−

∂

∂v‖

(
J

qs

ms

∂A‖
∂t

fs

)
=JC[ fs] +J Ss. (2.8)

Here, we have used the symplectic formulation of electromagnetic gyrokinetics,
where the parallel velocity is used as an independent variable (as opposed to the
Hamiltonian formulation which uses the parallel canonical momentum p‖ as an
independent variable) (Hahm, Lee & Brizard 1988; Brizard & Hahm 2007). Notably,
in the symplectic formulation, the time derivative of A‖ appears explicitly in the
gyrokinetic equation, equation (2.8), and A‖ appears in B∗ but not in the Hamiltonian.
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The electrostatic potential is determined by the quasi-neutrality condition in the
long-wavelength limit, given by

σg + σpol = σg −∇ · P= 0, (2.9)

with the guiding centre charge density (neglecting gyroaveraging in the long-
wavelength limit)

σg =
∑

s

qs

∫
dwJ fs. (2.10)

Here we have defined dw = 2πm−1
s dv‖ dµ = m−1

s dv‖ dµ
∫

dα as the gyrocentre
velocity-space volume element (dv = m−1

s dv‖ dµ dαJ ) with the gyroangle α

integrated away and the Jacobian factored out. The polarization vector is

P=−
∑

s

∫
dw

ms

B2
J fs∇⊥φ ≈−

∑
s

msn0s

B2
∇⊥φ ≡−ε⊥∇⊥φ, (2.11)

where ∇⊥ = ∇ − b̂(b̂ · ∇) is the gradient perpendicular to the background magnetic
field. We use a linearized polarization density n0 that we take to be a constant in
time, which is consistent with neglecting a second-order E × B energy term in the
Hamiltonian. While the validity of this approximation in the SOL can be questioned
due to large density fluctuations, a linearized polarization density is commonly used
for computational efficiency (Ku et al. 2018a; Shi et al. 2019). Future work will
include the nonlinear polarization density along with the second-order E × B energy
term in the Hamiltonian. The quasi-neutrality condition can then be rewritten as the
long-wavelength gyrokinetic Poisson equation,

−∇ ·
∑

s

msn0s

B2
∇⊥φ =

∑
s

qs

∫
dwJ fs. (2.12)

Even in the long-wavelength limit with no gyroaveraging, the first-order polarization
charge density on the left-hand side of (2.12) incorporates some finite Larmor radius
(FLR) effects.

The parallel vector potential A‖ is determined by the parallel Ampère equation,

−∇
2
⊥

A‖ =µ0J‖ =µ0

∑
s

qs

∫
dwJ v‖ fs. (2.13)

Note that we can also take the time derivative of this equation to get a generalized
Ohm’s law which can be solved directly for ∂A‖/∂t, the inductive component of the
parallel electric field E‖ (Reynders 1993; Cummings 1994; Chen & Parker 2001)

−∇
2
⊥

∂A‖
∂t
=µ0

∑
s

qs

∫
dwv‖

∂(J fs)

∂t
. (2.14)

Writing the gyrokinetic equation as

∂(J fs)

∂t
=
∂(J fs)

∂t

?

+
∂

∂v‖

(
J

qs

ms

∂A‖
∂t

fs

)
, (2.15)
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where ∂(J fs)
?/∂t denotes all the terms in the gyrokinetic equation (including sources

and collisions) except the ∂A‖/∂t term, Ohm’s law can be rewritten (after an
integration by parts) as(

−∇
2
⊥
+

∑
s

µ0q2
s

ms

∫
dwJ fs

)
∂A‖
∂t
=µ0

∑
s

qs

∫
dwv‖

∂(J fs)

∂t

?

. (2.16)

As we will show in § 4, this form allows for the use of an explicit time-stepping
scheme in which one can first compute ∂(J fs)

?/∂t (which does not involve ∂A‖/∂t),
then compute ∂A‖/∂t and finally compute ∂(J fs)/∂t. Note, however, that in some
PIC approaches (Reynders 1993; Chen & Parker 2001), one must expand the right-
hand side of (2.16) by inserting the gyrokinetic equation so that the right-hand side
involves only moments of fs without time derivatives. In our continuum scheme we
can compute ∂(J fs)

?/∂t directly and then perform the integration. Further, note that
although we are using the symplectic (v‖) formulation of EMGK, our Ohm’s law
from (2.16) contains two integral terms which must cancel exactly. This is the root
of the cancellation problem that appears in Ampère’s law in the Hamiltonian (p‖)
formulation, and in appendix A we show that the same cancellation problem could
arise from (2.16) if the integrals are not treated consistently.

To model the effect of collisions we use a conservative Lenard–Bernstein (or
Dougherty) collision operator (Lenard & Bernstein 1958; Dougherty 1964),

JC[ f ] = ν
{
∂

∂v‖

[
(v‖ − u‖)J f + v2

t
∂(J f )
∂v‖

]
+

∂

∂µ

[
2µJ f + 2µ

m
B
v2

t
∂(J f )
∂µ

]}
,

(2.17)

where

nu‖ =
∫

dwJ v‖ f , nu2
‖
+ 3nv2

t =

∫
dwJ (v2

‖
+ 2µB/m)f , (2.18a,b)

with n=
∫

dwJ f . This collision operator contains the effect of drag and pitch-angle
scattering, and it conserves number, momentum and energy density. Consistent with
our present long-wavelength treatment of the gyrokinetic system, finite Larmor radius
effects are ignored. For simplicity we restrict ourselves to the case in which the
collision frequency ν is velocity independent, i.e. ν 6= ν(v). Further details about
this collision operator, including its conservation properties and its discretization, are
left to a separate paper (Francisquez et al. 2020). In this work, we include only
the effects of like-species collisions, which neglects electron–ion collisions and the
resulting resistivity. A conservative scheme for cross-species collisions has also been
implemented and will be included in later work. Extensions to a more complete
collision operator are in progress.

2.2. Conservation properties
In the absence of collisions and sources, the Hamiltonian structure of the gyrokinetic
system guarantees conservation of arbitrary functions of f along the characteristics,

∂G( f )
∂t
+ {G( f ),H} −

q
m
∂A‖
∂t
∂G( f )
∂v‖

= 0, (2.19)
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along with corresponding Casimir invariants
∫

dR dwJG( f ), where dR = dx dy dz.
Thus, the system has an infinite number of conserved quantities such as the total
particle number (or L1 norm) N =

∫
dR dwJ f , the L2 norm M =

∫
dR dwJ f 2 and

the kinetic entropy S=−
∫

dR dwJ f ln f (Idomura et al. 2008).
The system also conserves total energy, W=WK+WE+WB=WH−WE+WB, where

the kinetic particle energy (neglecting the kinetic energy of the E× B flow) is

WK =
∑

s

∫
dR dwJ ( 1

2 msv
2
‖
+µB)fs, (2.20)

the (non-vacuum) electrostatic field energy (equivalent to the kinetic energy associated
with the E× B flow of particles) is

WE =
∑

s

∫
dR

1
2

msn0s

B2
|∇⊥φ|

2
=

∫
dR
ε⊥

2
|∇⊥φ|

2, (2.21)

the (perturbed) electromagnetic field energy is

WB =

∫
dR

1
2µ0
|∇⊥A‖|2, (2.22)

and
WH =

∑
s

∫
dR dwJHsfs. (2.23)

(Note that WH is the sum of the particle kinetic energy and twice the potential energy,
because every pair of particle interactions is double counted in the raw integral of
qsφfs.)

Assuming the boundary conditions are periodic or that the distribution function
vanishes at the boundary so that surface terms vanish, the evolution of these quantities
can be calculated as

dWH

dt
=

∑
s

∫
dR dwHs

∂(J fs)

∂t
+

∑
s

∫
dR dwJ fs

∂Hs

∂t

= −

∫
dRJ‖

∂A‖
∂t
+

∫
dRσg

∂φ

∂t
, (2.24)

dWE

dt
=

∑
s

∫
dR

msn0s

B2
∇⊥φ · ∇⊥

∂φ

∂t
=

∫
dRσg

∂φ

∂t
, (2.25)

dWB

dt
=

∫
dR

1
µ0
∇⊥A‖ · ∇⊥

∂A‖
∂t
=

∫
dRJ‖

∂A‖
∂t
, (2.26)

so that total energy is indeed conserved:

dW
dt
=

dWH

dt
−

dWE

dt
+

dWB

dt
= 0. (2.27)

3. The discrete EMGK system
In this section we describe the phase-space discretization of the electromagnetic

gyrokinetic system used in Gkeyll.
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3.1. Discrete equations
We use an energy-conserving discontinuous Galerkin scheme to discretize the
gyrokinetic system in phase space. The scheme generalizes the algorithm of
Liu & Shu (2000) (originally for the two-dimensional incompressible Euler and
Navier–Stokes equations) to arbitrary Hamiltonian systems (Hakim et al. 2019; Shi
2017; Shi et al. 2017). However, unlike the nodal approach used in Shi (2017) and
Shi et al. (2017), we use a modal DG scheme.

We start by decomposing the global phase-space domain Ω into a structured
phase-space mesh T with cells Kj ∈ T , j = 1, . . . , N. We then introduce a
piecewise-polynomial approximation space for the distribution function f (R, v‖, µ),

Vp
h = {v : v|Kj ∈ Pp, ∀Kj ∈ T }, (3.1)

where Pp is some space of polynomials with maximum degree p (by some measure).
That is, v(z) are polynomial functions of z in each cell, and Pp is the space of the
linear combination of some set of multi-variate polynomials. In this work, we choose
Pp to be an orthonormalized serendipity polynomial element space (Arnold & Awanou
2011). The serendipity basis set has the advantage of using fewer basis functions
while giving the same formal convergence order (although it is less accurate) as
the Lagrange tensor basis, although note that, for p = 1, the serendipity basis is
equivalent to the Lagrange tensor basis. We can then obtain the discrete weak form
of the gyrokinetic equation by multiplying equation (2.8) by any test function ψ ∈Vp

h
and integrating (by parts) in each cell∫

Kj

dR dwψ
∂(J fh)

∂t

+

∮
∂Kj

dw dsR · Ṙhψ
−Ĵ fh +

∮
∂Kj

dR dsw

(
v̇H
‖h −

q
m
∂A‖h
∂t

)
ψ−Ĵ fh

−

∫
Kj

dR dwJ fhṘh · ∇ψ −

∫
Kj

dR dwJ fh

(
v̇H
‖h −

q
m
∂A‖h
∂t

)
∂ψ

∂v‖

=

∫
Kj

dR dwψ(JC[ fh] +J S). (3.2)

Solving this equation for all test functions ψ ∈ Vp
h in all cells Kj ∈ T yields

the discretized distribution function fh ∈ Vp
h , where the subscript h denotes a

discrete quantity in Vp
h . In the surface terms, dsR is the differential element on

a configuration-space surface (pointing outward normal to the surface), dsw =

2πm−1
s dµn · (∂Z/∂v‖) is the differential element on a v‖ surface and the notation

ψ− (ψ+) indicates that the function ψ is evaluated just inside (outside) the surface
∂Kj. The notation f̂ = f̂ ( f+, f−) indicates a ‘numerical flux’, which takes a single
value at the cell surface and in general can depend on the solution on both sides
of the surface since the solution is discontinuous at the surface. Here, we choose
to use standard upwind fluxes, which depend on the local value of the phase-space
characteristic flow normal to the surface evaluated at each Gaussian quadrature point
on the surface. Denoting the flow as αh, the upwind flux can be expressed as

f̂h =
1
2( f+h + f−h )−

1
2 sgn(n · αh)( f+h − f−h ), (3.3)

where n= ds/|ds| is the unit normal pointing out of the ∂Kj surface.
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We will introduce a subset of Vp
h where the piecewise polynomials are continuous

across cell interfaces, denoted by Vp
h. As we will show later, in order to preserve

energy conservation in our discrete scheme, we will require that the discrete
Hamiltonian be continuous across cell interfaces, i.e. Hh ∈ V

p
h (Liu & Shu 2000; Shi

2017; Shi et al. 2017; Hakim et al. 2019). Note that one can show that this ensures
that the discrete phase-space characteristics, Ṙh = {R,Hh} and v̇H

‖h − (qs/ms)∂A‖h/∂t=
{v‖,Hh} − (qs/ms)∂A‖h/∂t, are also continuous across cell interfaces.2

We must also discretize the field equations. We introduce the restriction of the
phase-space mesh to configuration space, T R, and we denote the configuration-space
cells by KR

j ∈ T R for j = 1, . . . , NR, where NR is the number of configuration-space
cells. We also restrict Vp

h to configuration space as

X p
h = Vp

h \ T R. (3.4)

Further, we introduce the subset of polynomials that are piecewise continuous across
configuration-space cell interfaces X p

h⊂X p
h , along with an additional subset X p

h⊂X p
h

where continuity is required in the directions perpendicular to the magnetic field, but
not in the direction parallel to the field. Assuming a field-aligned coordinate system
(e.g. Beer et al. 1995), we will take the perpendicular directions to be x and y, and
the parallel direction to be z.

Since we require Hh to be continuous across all cell interfaces, this means that
we require φh to be continuous, i.e. φh ∈ X p

h. Thus, to solve the Poisson equation
we use the (continuous) finite-element method (FEM). While one could ensure φh is
continuous in all directions by using a three-dimensional FEM solve, we instead use a
two-dimensional FEM solve in the x and y directions, followed by a one-dimensional
smoothing operation in the z direction. That is, we first solve for φh ∈ X p

h using a
two-dimensional FEM solve, and then we use a smoothing/projection operation to
ensure continuity in the z direction. We will denote this operation as φh=Pz[φh] and
define it below. We can make this splitting because ∇⊥ only produces coupling in the
x and y (perpendicular) directions.

For the two-dimensional solve, we solve for φh ∈X p
h by multiplying equation (2.12)

by a test function ξ ∈ X p
h and integrating (by parts) in each configuration-space cell

KR
j to obtain the discrete local weak form∫

KR
j

dR ε⊥∇⊥ φ h · ∇⊥ξ
(j)
−

∮
∂KR

j

dsR · ∇⊥ φ hξ
(j) ε⊥ =

∫
KR

j

dR ξ (j)P∗z [σg h], (3.5)

where ξ ( j) denotes the restriction of ξ to cell j and

σg h =
∑

s

qs

∫
T v

dwJ fs h, (3.6)

with T v the restriction of T to velocity space. The global weak form is then
obtained by summing equation (3.5) over cells in x and y (but not in z), which
results in cancellation of the surface terms at cell interfaces and leaves only a global

2In a general non-orthogonal field-aligned geometry this is not necessarily true. This is because B∗ · ∇z
contains A‖h , which can be discontinuous in the z direction. This makes the characteristic speed Ṙh · ∇z
discontinuous across z cell interfaces. This will be addressed in a separate paper dealing with non-orthogonal
field-aligned geometry.
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∂T R boundary term. Note that, in order to maintain energetic consistency (as we will
see below), the introduction of Pz necessitates the modification of the right-hand side
of (3.5) with P∗z , the adjoint of Pz, defined as∫

T R
dR fPz[g] =

∫
T R

dRP∗z [ f ]g. (3.7)

For the smoothing operation φh = Pz[φ h], we use a one-dimensional FEM solve
in the z direction. This can be written as the solution φh of the global (in z) weak
equality ∫

T z
j

dRχφh =

∫
T z

j

dRχ φ h, (3.8)

where χ ∈ X̂ p
h ⊂ X p

h , with X̂ p
h a subset of the configuration-space basis where

continuity is required only in the z direction. Here, T z
j denotes a restriction of the

domain that is global in z but cell-wise local in x and y. We remark that using
an FEM solve for this operation makes Pz self-adjoint, so that P∗z = Pz. Note,
however, that one could instead use a different, local smoothing operation that is not
self-adjoint, so we will keep the distinction between Pz and P∗z . Also note that Pz is
a projection operator, in that Pz[Pz[φh]] =Pz[φh].

The continuous discrete Hamiltonian Hh ∈ V
p
h is then given by

Hh =
1
2 mv2

‖ h +µBh + qPz[φ h], (3.9)

where v2
‖h is the projection of v2

‖
onto Vp

h. Note that this is only necessary when v2
‖

is not in the basis, i.e. when pv < 2, where pv is the maximum degree of the v‖
monomials in the basis set.

For the parallel Ampère equation we will take A‖h ∈X p
h so that A‖h is continuous in

x and y but discontinuous in z. Multiplying equation (2.13) by a test function ϕ ∈X p
h

and integrating, we can obtain the discrete weak form of this equation. The local weak
form in cell j is∫

KR
j

dR∇⊥A‖h · ∇⊥ϕ( j)
−

∮
∂KR

j

dsR · ∇⊥A‖hϕ( j)
=µ0

∫
KR

j

dRϕ( j)J‖h, (3.10)

where again the surface terms will cancel on summing over cells except at the global
∂T R boundary, and

J‖h =
∑

s

qs

ms

∫
T v

dwJ
∂Hs h

∂v‖
fs h. (3.11)

Here, note that we have replaced the v‖ in the J‖ definition from (2.13) with
(1/m)∂Hh/∂v‖; this will be required for energy conservation in the pv = 1 case,
since ∂Hh/∂v‖ 6=mv‖ when v2

‖
is not in the basis. Instead, for pv = 1, ∂Hh/∂v‖=mv̄‖,

the piecewise-constant projection of mv‖. As before, we solve equation (3.10) using a
two-dimensional FEM solve in the x and y directions. Note, however, that we do not
require the smoothing operation in z here because A‖h is allowed to be discontinuous
in the z direction, since it does not appear in the Hamiltonian in the symplectic
formulation of EMGK.
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The discrete weak form of Ohm’s law can be obtained by taking the time derivative
of (3.10); after some manipulation, which we leave to appendix B, the local weak
form becomes∫

KR
j

dR∇⊥
∂A‖h
∂t
· ∇⊥ϕ

( j)

−

∮
∂KR

j

dsR · ∇⊥
∂A‖h
∂t

ϕ( j)
−

∫
KR

j

dRϕ( j) ∂A‖h
∂t

∑
s,i

µ0q2
s

ms

∮
∂Kv

i

dswv̄
−

‖
Ĵ fs h

=µ0

∑
s

qs

∫
KR

j

dRϕ( j)

[∫
T v

dwv̄‖
∂(J fs h)

∂t

?

−

∑
i

∮
∂Kv

i

dswv̄
−

‖
v̇H
‖hĴ fs h

]
, (pv = 1),

(3.12)

∫
KR

j

dR∇⊥
∂A‖h
∂t
· ∇⊥ϕ

( j)
−

∮
∂KR

j

dsR · ∇⊥
∂A‖h
∂t

ϕ( j)
+

∫
KR

j

dRϕ( j) ∂A‖h
∂t

∑
s

µ0q2
s

ms

∫
T v

dwJ fs h

=µ0

∑
s

qs

∫
KR

j

dRϕ( j)
∫
T v

dwv‖
∂(J fs h)

∂t

?

, (pv > 1), (3.13)

where ∂A‖h/∂t ∈X p
h, and∫

Kj

dR dwψ
∂(J fh)

∂t

?

=−

∮
∂Kj

dw dsR · Ṙhψ
−Ĵ fh +

∫
Kj

dR dwJ fhṘh · ∇ψ

+

∫
Kj

dR dwJ fhv̇
H
‖h
∂ψ

∂v‖
+

∫
Kj

dR dwψ(JC[ fh] +J S), (3.14)

so that the gyrokinetic equation can be written as∫
Kj

dR dwψ
∂(J fh)

∂t

=

∫
Kj

dR dwψ
∂(J fh)

∂t

?

−

∮
∂Kj

dR dsw

(
v̇H
‖h −

q
m
∂A‖h
∂t

)
ψ−Ĵ fh

−

∫
Kj

dR dwJ fh
q
m
∂A‖h
∂t

∂ψ

∂v‖
. (3.15)

Note that some special attention is required to ensure that upwinding of the numerical
fluxes is handled consistently in (3.12) and (3.15) in the pv = 1 case. The upwind
flow for the v‖ surface terms is v̇H

‖h − (q/m)∂A‖h/∂t; this is somewhat problematic
because we cannot readily solve for ∂A‖h/∂t from (3.12) without first knowing the
upwind direction, which depends on ∂A‖h/∂t. Thus, for pv = 1 only, we use an
approximate ˜∂A‖h/∂t, calculated using equation (3.13) (which contains no surface
term contributions), to compute the upwind direction for the v‖ surface terms in
(3.12) and (3.15). (One could extend this algorithm by iterating with a new estimate
of the upwind direction based on the previous estimate of ∂A‖ h/∂t, but we leave that
for future work. The present algorithm seems to work well for the cases tested so
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far, and we expect that ˜∂A‖h/∂t results in the correct upwind direction most of the
time.)

In our modal DG scheme, integrals in the above weak forms are computed
analytically using a quadrature-free scheme that results in exact integrations (of the
discrete integrands). (This means there are no aliasing errors, and that integration by
parts operations that led to these integrals are treated exactly, for the specified discrete
representation of fh and other factors in the integrand.) This is important for ensuring
the conservation properties of the scheme, since the conservation laws in the EMGK
system are indirect, involving integrals of the gyrokinetic equation. The fact that
integrations are exact also has important implications for the cancellation problem.
Since integrals in the discrete Ohm’s law are computed exactly, the discretization
errors (which are solely embedded in the discrete integrands) cancel exactly, avoiding
the cancellation problem. For more details about the modal scheme, the analytical
integrations and the avoidance of the cancellation problem, we have included in
appendix C a derivation of a semi-discrete Alfvén wave dispersion relation that
results from our scheme.

3.2. Discrete conservation properties
Now we would like to show that the discrete system (in the continuous-time limit)
preserves various conservation laws of the continuous system. As with the continuous
system, we will consider the conservation properties in the absence of collisions,
sources and sinks, and we will assume that the boundary conditions are either
periodic or that the distribution function vanishes at the boundary.

PROPOSITION 1. The discrete system conserves total number of particles (the L1

norm).

Proof. Taking ψ = 1 in the discrete weak form of the gyrokinetic equation, equation
(3.2), and summing over all cells, we have

∑
j

∂

∂t

∫
Kj

dR dwJ fh +
∑

j

∮
∂Kj

dw dsR · ṘhĴ fh

+

∑
j

∮
∂Kj

dR dsw

(
v̇H
‖h −

q
m
∂A‖h
∂t

)
Ĵ fh = 0

⇒
∂

∂t

∫
T

dR dwJ fh = 0, (3.16)

where the surface terms cancel exactly at cell interfaces because the integrands (both
the phase-space characteristics and the numerical fluxes) are continuous across the
interfaces.

PROPOSITION 2. The discrete system conserves a discrete total energy, Wh =WH h −

WE h +WB h, where

WH h =
∑

s

∫
T

dR dwJ fs hHs h, (3.17)

https://doi.org/10.1017/S0022377820000070 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377820000070


Electromagnetic gyrokinetics in the tokamak edge 13

WE h =
∑

s

∫
T

dR dw
ε⊥

2
|∇⊥ φ h|

2, (3.18)

and

WB h =

∫
T

dR
1

2µ0
|∇⊥A‖h|2. (3.19)

Proof. The proof follows from Proposition 3.2 in Hakim et al. (2019). We start by
calculating

dWH h

dt
=

∑
s,j

∫
Kj

dR dwHs h
∂(J fs h)

∂t
+J fs h

∂Hs h

∂t
. (3.20)

The first term can be calculated by taking ψ = Hh in (3.2) and summing over cells
and species, since ψ ∈ Vp

h and Hh ∈ V
p
h ⊂ Vp

h :

∑
s,j

∫
Kj

dR dwHs h
∂(J fs h)

∂t
+

∑
s,j

∮
∂Kj

dw dsR · ṘhH−s hĴ fs h

+

∑
s,j

∮
∂Kj

dR dsw

(
v̇H
‖h −

qs

ms

∂A‖h
∂t

)
H−s hĴ fs h

−

∑
s,j

∫
Kj

dR dwJ fs h

(
Ṙh · ∇Hs h + v̇

H
‖h
∂Hs h

∂v‖

)
+

∑
s,j

∫
Kj

dR dwJ fs h
qs

ms

∂A‖h
∂t

∂Hs h

∂v‖
= 0. (3.21)

Here, we see why we must require Hh to be continuous; we want the surface terms
to vanish, which means the integrands must be continuous across cell interfaces so
that the contributions from either side of the interface cancel exactly when we sum
over cells. The numerical flux Ĵ fh is by definition continuous across the interface,
and we have already noted above that the phase-space characteristics Ṙh and v̇H

‖h −

(q/m)∂A‖h/∂t are also continuous across cell interfaces. This leaves the Hamiltonian,
which we require to be continuous so that the surface terms do indeed vanish. Further,
the first volume term vanishes exactly because Ṙh · ∇Hh + v̇

H
‖h∂Hh/∂v‖ = {Hh,Hh} = 0

by definition of the Poisson bracket. This leaves

∑
s,j

∫
Kj

dR dwHs h
∂(J fs h)

∂t
=−

∑
s,j

∫
Kj

dR dwJ fs h
qs

ms

∂A‖h
∂t

∂Hs h

∂v‖
=−

∫
T R

dR
∂A‖h
∂t

J‖h,

(3.22)
where, here, we see why we have defined J‖h using the derivative of Hh instead of v‖,
as noted after equation (3.11). We now have the desired result for this term. For the
second term in (3.20), we have

∑
s,j

∫
Kj

dR dwJ fs h
∂Hs h

∂t
=

∑
s,j

∫
Kj

dR dwJ fs hqsPz

[
∂ φ h

∂t

]
=

∫
T R

dR σg hPz

[
∂ φ h

∂t

]
.

(3.23)
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Thus we have

dWH h

dt
=−

∫
T R

dR
∂A‖h
∂t

J‖h +
∫
T R

dRσg hPz

[
∂ φ h

∂t

]
, (3.24)

which is consistent with equation (2.24).
Next, we calculate

dWE h

dt
=

∑
j

∫
KR

j

dR ε⊥∇⊥ φ h ·∇⊥
∂ φ h

∂t
=

∫
T R

dRP∗z [σg h]
∂ φ h

∂t
=

∫
T R

dR σg hPz

[
∂ φ h

∂t

]
,

(3.25)
where we have used ξ ( j)

= ∂ φh/∂t in (3.5) to make the second equality, noting that
the surface term vanishes upon summing over cells because φ h ∈ X p

h is continuous
in the perpendicular directions. Here, we see why we modified the right-hand side of
(3.5) with P∗z , so that the resulting term in (3.25) matches the one in (3.23).

Finally, we calculate

dWB h

dt
=

∑
j

∫
KR

j

dR
1
µ0
∇⊥A‖h · ∇⊥

∂A‖h
∂t
=

∫
T R

dR
∂A‖h
∂t

J‖h, (3.26)

where we have used ϕ( j)
= (1/µ0)∂A‖h/∂t in (3.10) to make the second equality, again

noting that the surface term vanishes upon summing over cells because ∂A‖h/∂t ∈X p
h

is continuous in the perpendicular directions.
We now have conservation of discrete total energy

dWh

dt
=

dWH h

dt
−

dWE h

dt
+

dWB h

dt
= 0. (3.27)

We note that this proof did not rely on the particular choice of numerical flux function.

PROPOSITION 3. The discrete system exactly conserves the L2 norm of the distribution
function when using a central flux, while the distribution function L2 norm monotoni-
cally decays when using an upwind flux.

Proof. The proof is given as Proposition 3.3 in Hakim et al. (2019).

PROPOSITION 4. If the discrete distribution function fh remains positive definite, then
the discrete scheme grows the discrete entropy monotonically,

−
d
dt

∫
T

dR dwJ fh ln( fh)> 0. (3.28)

Proof. The proof is given as Proposition 3.4 in Hakim et al. (2019).
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4. Time-discretization scheme

So far we have considered only the discretization of the phase space for the
system, and we have considered the conservation properties of the scheme in the
continuous-time limit. Indeed, in the discrete-time system the conservation properties
are no longer exact due to truncation error in the non-reversible time-stepping
methods that we consider. However, the errors will be independent of the phase-space
discretization, and errors can be reduced by taking a smaller time step or by using
a high-order time-stepping scheme to improve convergence. Following the approach of
the Runge–Kutta discontinuous Galerkin method (Cockburn & Shu 1998, 2001; Shu
2009), we have implemented several explicit multi-stage strong stability-preserving
Runge–Kutta high-order schemes (Gottlieb, Shu & Tadmor 2001; Shu 2002); the
results in this paper use a three-stage, third-order scheme (SSP-RK3). These schemes
have the property that a high-order scheme can be composed of several forward-Euler
stages. Thus we will detail our time-stepping scheme for a single forward-Euler
stage, which can then be combined into a multi-stage high-order scheme. Note
that, although we present the time-discretization scheme in this section in terms of
our DG phase-space discretization, the scheme could be generalized to any spatial
discretization.

Given f n
h = fh(t= tn) and An

‖h = A‖h(t= tn) at time tn, the steps of the forward-Euler
scheme to advance to time tn+1 = tn +1t are as follows:

(i) Calculate φn
h using equation (3.5), and then φn

h =Pz[φ
n
h] using equation (3.8).∫

KR
j

dR ε⊥∇⊥ φ n
h · ∇⊥ξ

(j)
−

∮
∂KR

j

dsR · ∇⊥ φ
n
hξ
(j)ε⊥ =

∫
KR

j

dR ξ (j)P∗z [σ n
g h], (4.1)∫

T z
j

dRχφn
h =

∫
T z

j

dRχ φ n
h. (4.2)

(ii) Calculate the partial EMGK update (∂(J fh)
?/∂t)n using equation (3.14).∫

Kj

dR dwψ
(
∂(J fh)

∂t

?)n

= −

∮
∂Kj

dw dsR · Ṙ
n
hψ
−Ĵ fh

n
+

∫
Kj

dR dwJ f n
h Ṙn

h · ∇ψ

+

∫
Kj

dR dwJ f n
h v̇

H n
‖h
∂ψ

∂v‖

+

∫
Kj

dR dwψ(JC[ f n
h ] +J Sn). (4.3)

(iii) Calculate (∂A‖h/∂t)n from (3.13) [for pv = 1, this is only a provisional value,
which we will denote as ( ˜∂A‖h/∂t)n].∫

KR
j

dR∇⊥
(
∂A‖h
∂t

)n

· ∇⊥ϕ
( j)
−

∮
∂KR

j

dsR · ∇⊥

(
∂A‖h
∂t

)n

ϕ( j)

+

∫
KR

j

dRϕ( j)

(
∂A‖h
∂t

)n ∑
s

µ0q2
s

ms

∫
T v

dwJ f n
s h

=µ0

∑
s

qs

∫
KR

j

dRϕ( j)
∫
T v

dwv‖
(
∂(J fs h)

∂t

?)n

. (4.4)
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(iv) (pv = 1 only) Use the provisional ( ˜∂A‖h/∂t)n from step 3 to calculate the
upwinding direction in the surface terms in (3.12), and then calculate (∂A‖h/∂t)n.∫

KR
j

dR∇⊥
(
∂A‖h
∂t

)n

· ∇⊥ϕ
( j)
−

∮
∂KR

j

dsR · ∇⊥

(
∂A‖h
∂t

)n

ϕ( j)

−

∫
KR

j

dRϕ( j)

(
∂A‖h
∂t

)n ∑
s

µ0q2
s

ms

∑
i

∮
∂Kv

i

dswv̄
−

‖
Ĵ fs h

n

=µ0

∑
s

qs

∫
KR

j

dRϕ( j)

[∫
T v

dwv̄‖
(
∂(J fs h)

∂t

?)n

−

∑
i

∮
∂Kv

i

dswv̄
−

‖
v̇H n
‖h Ĵ fs h

n
]
.

(4.5)

(v) Calculate the full GK update, ((∂(J fh))/∂t)n, using equation (3.15). For pv = 1,
the provisional ( ˜(∂A‖h)/∂t)n from step 3 should again be used to calculate the
upwinding direction in the surface terms for consistency.∫

Kj

dR dwψ
(
∂(J fh)

∂t

)n

=

∫
Kj

dR dwψ
(
∂(J fh)

∂t

?)n

−

∮
∂Kj

dR dsw

[
v̇H n
‖h −

q
m

(
∂A‖h
∂t

)n]
ψ−Ĵ fh

n

−

∫
Kj

dR dwJ f n
h

q
m

(
∂A‖h
∂t

)n
∂ψ

∂v‖
. (4.6)

(vi) Advance fh and A‖h to time tn+1.

J f n+1
h =J f n

h +1t
(
∂(J fh)

∂t

)n

, (4.7)

An+1
‖h = An

‖h +1t
(
∂A‖h
∂t

)n

. (4.8)

Note that the parallel Ampère equation, equation (3.10), is only used to solve for
the initial condition of A‖h(t=0). For all other times, equation (4.8) is used to advance
A‖h. This prevents the system from being over-determined and ensures consistency
between A‖h and ∂A‖h/∂t.

5. Linear benchmarks
5.1. Kinetic Alfvén wave

As a first benchmark of our electromagnetic scheme, we consider the kinetic Alfvén
wave. In a slab (straight background magnetic field) geometry, with stationary ions
(assuming ω� k‖vti), the gyrokinetic equation for electrons reduces to

∂fe

∂t
= {He, fe} −

e
m
∂fe

∂v‖

∂A‖
∂t
=−v‖

∂fe

∂z
−

e
m
∂fe

∂v‖

(
∂φ

∂z
+
∂A‖
∂t

)
. (5.1)

Taking a single Fourier mode with perpendicular wavenumber k⊥ and parallel
wavenumber k‖, the field equations become

k2
⊥

min0

B2
φ = en0 − e

∫
dv‖ fe, (5.2)
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(a) (b)

FIGURE 1. Real frequencies (a) and damping rates (b) for the kinetic Alfvén wave
vs k⊥ρs. Solid lines are the exact values from (5.5) for three different values of β̂ =
(βe/2)mi/me, and black dots are the numerical results from Gkeyll.

k2
⊥

A‖ =−µ0e
∫

dv‖ v‖fe, (5.3)(
k2
⊥
+
µ0e2

me

∫
dv‖ fe

)
∂A‖
∂t
=−µ0e

∫
dv‖ v‖{He, fe}. (5.4)

After linearizing the gyrokinetic equation by assuming a uniform Maxwellian
background with density n0 and temperature mev

2
te, so that fe=FMe+ δfe, the dispersion

relation becomes

ω2

[
1+

ω
√

2k‖vte

Z

(
ω

√
2k‖vte

)]
=

k2
‖
v2

te

β̂

[
1+ k2

⊥
ρ2

s +
ω

√
2k‖vte

Z

(
ω

√
2k‖vte

)]
, (5.5)

where β̂ = (βe/2)mi/me, with βe = 2µ0n0Te/B2, vte =
√

Te/me is the electron thermal
speed, ρs is the ion sound gyroradius and Z(x) is the plasma dispersion function (Fried
& Conte 1961). In the limit k⊥ρs� 1 the wave becomes the standard shear Alfvén
wave from magnetohydrodyamics (MHD), which is an undamped wave with frequency
ω = k‖vA, where vA = vte/β̂

1/2 is the Alfvén velocity. For larger values of k⊥ρs, the
mode is damped by kinetic effects.

In figure 1, we show the real frequencies (a) and damping rates (b) obtained
by solving equation (5.5) for a few values of β̂. We also show numerical results
from Gkeyll, which match the analytic results very well. These results are a good
indication that our scheme avoids the Ampère cancellation problem, which can
cause large errors for modes with β̂/k2

⊥
ρ2

s � 1 (see appendix A); we see no such
errors, even for the case with β̂/k2

⊥
ρ2

s = 105. Each Gkeyll simulation was run
using piecewise-linear basis functions (p = 1) in a reduced dimensionality mode
with one configuration-space dimension and one velocity-space dimension, with
(Nz, Nv‖) = (32, 64) the number of cells in each dimension. The perpendicular
dimensions (x and y), which appear only in the field equations in this simple system,
were handled by replacing ∇⊥ by k⊥, as in (5.2) and (5.3). We use periodic boundary
conditions in z and zero-flux boundary conditions in v‖.

We also show in figure 2 the fields φh and ∂A‖h/∂t for the case with β̂ = 10 and
k⊥ρs = 0.01, which gives β̂/k2

⊥
ρ2

s = 105. For these parameters the system is near the
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FIGURE 2. Values of φh (blue) and ∂A‖h/∂t (yellow) for the case with β̂ = 10 and
k⊥ρs = 0.01. The amplitude of E‖h (green) is ∼10−9.

MHD limit, which means we should expect E‖ = −∂φ/∂z − ∂A‖/∂t ≈ 0. While this
condition is never enforced, getting the physics correct requires the scheme to allow
∂φh/∂z ≈ −∂A‖h/∂t. The fact that our scheme allows discontinuities in A‖ in the
parallel direction is an advantage in this case. Because φh is piecewise linear here,
∂φh/∂z is piecewise constant; this is necessarily discontinuous for non-trivial solutions.
Thus the scheme produces a piecewise constant ∂A‖h/∂t in this MHD-limit case, as
shown in figure 2, resulting in E‖h ≈ 0. If our scheme did not allow discontinuities
in A‖h, a continuous ∂A‖h/∂t would never be able to exactly cancel a discontinuous
∂φh/∂z, and the resulting E‖h 6= 0 would make the solution inaccurate. Notably, this
would be the case had we chosen the Hamiltonian (p‖) formulation of the gyrokinetic
system, which uses p‖ = mv‖ + qA‖ as the parallel velocity coordinate. This is
because A‖ is included in the Hamiltonian in the p‖ formulation, which would require
continuity of A‖h (and thereby ∂A‖h/∂t) to conserve energy in our discretization
scheme.

5.2. Kinetic ballooning mode
We use the kinetic ballooning mode (KBM) instability in the local limit as a second
linear benchmark of our electromagnetic scheme. The dispersion relation is given by
solving (Kim, Horton & Dong 1993)

ω[τ + k2
⊥
+ Γ0(b)− P0]φ = [τ(ω−ω∗e)− k‖P1]

ω

k‖
A‖, (5.6)

2k2
‖
k2
⊥

βi
A‖ = k‖[k‖P1 − τ(ω−ω∗e)]φ

− [k2
‖
P2 − τ(ω(ω−ω∗e)− 2ωde(ω−ω∗e(1+ ηe)))]A‖, (5.7)

where

Pm =

∫
∞

0
dv⊥v⊥

∫
∞

−∞

dv‖
1
√

2π
e−(v

2
‖
+v2
⊥
)/2(v‖)

mω−ω∗i[1+ ηi(v
2/2− 3/2)]

ω− k‖v‖ −ωdi(v
2
‖ + v

2
⊥/2)

J2
0(v⊥
√

b),

(5.8)
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FIGURE 3. Growth rates for the KBM instability in the local limit, as a function of βi,
with k⊥ρi = 0.5, k‖Ln = 0.1, R/Ln = 5, R/LTi = 12.5, R/LTe = 10 and τ = 1. The black dots
are numerical results from Gkeyll, and the coloured lines are the result of numerically
solving the analytic dispersion relation given by (5.6)–(5.7).

with τ =Ti/Te, ω∗e= ky, ω∗i=−ky, ηs=Ln/LTs and Γ0(b)= I0(b)e−b with I0(b)= J0(ib)
the modified Bessel function. Here, the wavenumbers ky and k‖ are normalized to ρi

and Ln, respectively, and the frequencies ω and ω∗ are normalized to vti/Ln. In the
local limit, ωds = ω∗sLn/R and k⊥ = ky do not vary along the field line. Note that in
(5.6) we have modified the FLR terms from (Kim et al. 1993) so that we can take
b= k2

⊥
→ 0 while keeping k⊥ 6= 0 to neglect all FLR effects except for the first-order

polarization term, which is consistent with our long-wavelength Poisson equation.
The local limit can be achieved by simulating a helical flux tube with no magnetic

shear, which gives a system with constant magnetic curvature that corresponds to
ωd = const. This geometry has been previously used for SOL turbulence studies with
Gkeyll (Bernard et al. 2019; Shi et al. 2019), except in this section we take the
boundary condition along the field lines to be periodic. We will provide further details
about the helical geometry and the coordinates in the next section.

We show the results of Gkeyll simulations of the KBM instability in the local-limit
helical geometry for several values of βi in figure 3. The results agree well with the
analytic result obtained by numerically solving equations (5.6)–(5.7). The parameters
k⊥ρi = 0.5, k‖Ln = 0.1, R/Ln = 5, R/LTi = 12.5, R/LTe = 10, τ = 1 are chosen to match
those used in figure 1 of Kim et al. (1993), although the differences in FLR terms
(b= 0) cause our growth rates to be larger than those in Kim et al. (1993). These are
fully five-dimensional simulations with the real deuterium–electron mass ratio using
piecewise-linear (p= 1) basis functions, with (Nx,Ny,Nz,Nv‖,Nµ)= (1, 16, 16, 32, 16).
The boundary conditions are periodic in the three configuration-space dimensions
and zero flux in the velocity dimensions. The initial distribution function of each
species is composed of a background Maxwellian with gradients in the density and
temperature corresponding to the desired Ln and LTs, plus a perturbed Maxwellian (for
the electrons only) with small sinusoidal variations in the density corresponding to the
desired ky and k‖. Note that, since we are using a full-f representation, the presence
of a background gradient in the distribution function means that we must apply the
periodic boundary conditions by first subtracting off the initial background distribution
function, then applying periodicity to the perturbations only and then adding back the
background distribution. Finally, we note that since Gkeyll is designed primarily for
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nonlinear calculations, the fact that Fourier modes are not eigenfunctions of the DG
discretization of the system makes these linear tests somewhat difficult for Gkeyll.
This may play a role in the small deviation of the results from the analytical theory.
Because of this, Fourier modes other than the one initialized can grow and pollute the
results. In particular, we have not included results from the ion temperature gradient
(ITG) branch because we find that a mode with k‖ = 0 grows and overcomes the
initialized finite k‖ mode before its growth rate has converged.

6. Nonlinear results

We now present preliminary nonlinear electromagnetic results from Gkeyll. We
simulate turbulence on helical, open field lines as a rough model of the tokamak
scrape-off layer. These simulations are a direct extension of the work of Shi et al.
(2019) to include electromagnetic fluctuations. As such, we use the same simulation
geometry and similar NSTX-like parameters. In the non-orthogonal field-aligned
geometry, x is the radial coordinate, z is the coordinate along the field lines and y is
the binormal coordinate which labels field lines at constant x and z. These coordinates
map to physical cylindrical coordinates (R, ϕ, Z) via R= x, ϕ= (y/ sin θ + z cos θ)/Rc,
Z = z sin θ . (Note that this fixes an error in the ϕ(y, z) mapping in (Shi et al.
2019).) The field-line pitch sin θ = Bv/B is taken to be constant, with Bv the vertical
component of the magnetic field (analogous to the poloidal field in typical tokamak
geometry), and B the total magnitude of the background magnetic field. Further,
Rc=R0+ a is the radius of curvature at the centre of the simulation domain, with R0
the device major radius and a the minor radius. As in Shi et al. (2019), we neglect
all geometrical factors arising from the non-orthogonal coordinate system, except for
the assumption that perpendicular gradients are much stronger than parallel gradients
so that we can approximate

(∇× b̂) · ∇f (x, y, z)≈ [(∇× b̂) · ∇y]
∂f
∂y
=−

1
x
∂f
∂y
, (6.1)

where we have used B = Baxis(R0/R)êz in the last step, with Baxis the magnetic field
strength at the magnetic axis.

We use this geometry to simulate a flux-tube-like domain on the outboard side
that wraps helically around the torus and terminates on conducting plates at each
end in z. The simulation box is centred at (x, y, z) = (Rc, 0, 0) with dimensions
Lx = 50ρs0 ≈ 14.6 cm, Ly = 100ρs0 ≈ 29.1 cm and Lz = Lp/ sin θ = 8 m, where
Lp= 2.4 m and ρs0= cs0/Ωi. Periodic boundary conditions are used in the y direction,
and a Dirichlet boundary condition φ = 0 is applied in x, which effectively prevents
flows into the boundaries in x. Conducting-sheath boundary conditions are applied in
the z direction (Shi et al. 2017, 2019), which partially reflect one species (typically
electrons) and fully absorbs the other species depending on the sign of the sheath
potential. This involves solving the gyrokinetic Poisson equation to evaluate the
potential at the z boundary, corresponding to the sheath entrance, and using the
resulting sheath potential to determine a cutoff velocity below which particles are
reflected by the sheath. Notably, our sheath boundary condition allows current
fluctuations in and out of the sheath, which we will find to important later in
this section. This is different from the standard logical sheath boundary condition
(Parker et al. 1993b) that imposes that there is no net current to the sheath by
assuming that the ion and electron currents at the sheath entrance are equal at all
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times. The velocity-space grid has extents 4vts 6 v‖6 4vts and 06µ6 6Ts0/B0, where
vts =

√
Ts0/ms and B0 = BaxisR0/Rc. We use piecewise-linear (p = 1) basis functions,

with (Nx, Ny, Nz, Nv‖, Nµ) = (16, 32, 10, 10, 5). Note that, although the domain that
we simulate is a flux tube, the simulations are not performed in the local limit; the
simulations include radial variation of the magnetic field and the profiles, and are
thus effectively global.

The simulation parameters are similar to those used in Shi et al. (2019), roughly
approximating an H-mode deuterium plasma in the NSTX SOL: Baxis = 0.5 T, R0 =

0.85 m, a= 0.5 m, Te0 = Ti0 = 40 eV. For the particle source, we use the same form
as in Shi et al. (2019) but we increase the source particle rate by a factor of 10
to access a higher β regime where electromagnetic effects will be more important.
The source is localized in the region x < xS + 3λS, with xS = Rc − 0.05 m and λS =

5 × 10−3 m. The location x = xS + 3λS, which separates the source region from the
SOL region, can be thought of as the separatrix. A floor of one tenth the peak particle
source rate is used near the midplane to prevent regions of n� n0 from developing
at large x. Unlike in Shi et al. (2019) we do not use numerical heating to keep
f > 0 despite the fact that our DG algorithm does not guarantee positivity. While the
simulations appear to be robust to negative f in some isolated regions, lowering the
source floor in the SOL region leads to simulation failures due to positivity issues at
large x. A more sophisticated algorithm for ensuring positivity is left to future work.
We also artificially lower the collision frequency to one tenth the physical value to
offset the increased particle source rate so that the time-step limit from collisions
does not become too restrictive. Further, we model only ion–ion and electron–electron
collisions, leaving cross-species collisions to future work.

Using the novel electromagnetic scheme described in this paper, we ran a simulation
in this configuration to t = 1 ms, with a quasi-steady state being reached around
t= 600 µs when the sources balance losses to the end plates. For reference, the ion
transit time is τi = (Lz/2)/vti ≈ 50 µs. In figure 4 we show snapshots of the density,
temperature and β of electrons (a–c) and ions (d–f ). The snapshots are taken at
the midplane (z = 0) at t = 620 µs. We can see a blob with a mushroom structure
being ejected from the source region. We also show in figure 5 snapshots of the
electromagnetic fields taken at the same time and location. We show the electrostatic
potential φ, the parallel magnetic vector potential A‖ and the normalized magnetic
fluctuation amplitude |δB⊥|/B0 = |∇⊥A‖|/B0 (a–c), along with the components of the
parallel electric field E‖ = −∇‖φ − ∂A‖/∂t (d–f ). Note that only φ, A‖ and ∂A‖/∂t
are evolved quantities in the simulation, with the other quantities derived. We see
that ∂A‖/∂t is of comparable magnitude to ∇‖φ, indicating that the dynamics is in
the electromagnetic regime. Significant magnetic fluctuations of over 2.5 % can be
seen in |δB⊥|/B0 in this snapshot. We also show in figure 6 the time and spatially
averaged profile of magnetic fluctuations vs x, which shows that, on average, we
observe magnetic fluctuations of the order of 0.5 %–1 %. This radial profile, and
similar ones that will follow, is computed by averaging in y and z using data near
the midplane (|z|< 0.4 m) over the period of 600 µs–1 ms.

In figures 7 and 8 we show projections of the three-dimensional magnetic field-line
trajectories. These plots are created by integrating the field-line equations for the total
(background plus fluctuation) magnetic field. In figure 7, each field line starts at z=
−4 m and either x= 1.33 m or x= 1.38 m for a range of y values and is traced to
z= 4 m. The starting points (at z=−4 m) are marked with circles, while the ending
points (at z= 4 m) are marked with crosses. The trajectories have been projected onto
the x− y plane, and we have also plotted the ion density at z= 0 m in the background.
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(a) (b) (c)

(d) (e) (f)

FIGURE 4. Snapshots from an electromagnetic simulation on open, helical field lines.
From left to right, we show the density, temperature and plasma β of electrons (a–c) and
ions (d–f ). The snapshots are taken at the midplane (z = 0) at t = 620 µs. The dashed
line indicates the boundary between the source and SOL regions. A blob with mushroom
structure is being ejected from the source region and propagating radially outward into
the SOL region.

From left to right, we show a short time series of snapshots, with t = 230, 240 and
250 µs. At t = 230 µs, a blob is starting to emerge from the source region at y ≈
0.04 m. The field lines that start at x= 1.33 m are beginning to be stretched radially
outward as the blob emerges. In the t= 240 µs snapshot, we see that the blob is now
propagating radially outward into the SOL region and the x= 1.33 m field lines have
been stretched further. The field lines that start at x = 1.38 m are now also starting
to be stretched near y≈ 0.2 m, and they are stretched even more in the t = 250 µs
snapshot as the blob continues to propagate. We can also see the remnants of another
blob that was ejected near y=−0.1 m in previous frames. In the t= 230 µs snapshot,
the field lines have been stretched by this blob, but by t = 250 µs the field lines in
this region have returned closer to their equilibrium position. This behaviour of blobs
bending and stretching the field lines is an inherently full-f phenomenon. The blobs
have a higher density and temperature than the background, so they raise the local
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(a) (b) (c)

(d) (e) (f)

FIGURE 5. Snapshots (at z = 0, t = 620 µs) of the electrostatic potential φ, parallel
magnetic vector potential A‖ and normalized magnetic fluctuation amplitude |δB⊥|/B0 =

|∇⊥A‖|/B0 (a–c), along with the components of the parallel electric field E‖ = −∇‖φ −
∂A‖/∂t (d–f ).

FIGURE 6. Radial profile of the normalized magnetic fluctuation amplitude, |δB⊥|/B0 =

|∇⊥A‖|/B0, averaged in y, z and time using data near the midplane (|z|< 0.4 m) over a
period of 400 µs. On average, we observe magnetic fluctuations of the order of 0.5–1 %.
The source region is shaded.
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FIGURE 7. Three-dimensional magnetic field-line trajectories at t= 230, 240 and 250 µs,
projected onto the x− y plane. The ion density at z= 0 m is plotted in the background.
Each field line starts at z = −4 m and either x = 1.33 m or x = 1.38 m for a range of
y values and is traced to z = 4 m. The starting points are marked with circles and the
ending points are marked with crosses. Focusing on the blob that is being ejected near
y= 0 m, we see that field lines are stretched and bent by the blob as it propagates into
the SOL region. In previous frames (not shown) a blob was also ejected near y=−0.1 m.
At t= 230 µs the field lines are still stretched from this event, but they return closer to
their equilibrium position by t= 250 µs. (A full animation of this time series is included
as supplementary materials online at https://doi.org/10.1017/S0022377820000070.)

(a) (b)

FIGURE 8. Three-dimensional magnetic field-line trajectories at t= 240 µs, projected onto
the x − y plane in (a) and the x − z plane in (b). The ion density is plotted in the
background, at z = 0 m in (a) and averaged over |y| < 0.02 m in (b). Each field line
starts at y = 0 m and z = −4 m for a range of x values and is traced to z = 4 m. The
starting points are marked with circles and the ending points are marked with crosses.
Each field line is coloured the same in both (a,b). The field lines in the near SOL are
stretched radially outward by a blob near y= 0 m.

plasma β as they propagate. This causes the field lines to move with the plasma,
allowing the fields lines to be deformed and stretched by the radially propagating
blobs and ultimately leading to larger magnetic fluctuations.

In figure 8 we show a slightly different view of the field-line trajectories at t =
240 µs. Field lines are still traced from the bottom (z=−4 m) to the top (z= 4 m),
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but now each field line starts at y = 0 m for a range of x. The starting points are
again marked with circles and the ending points are marked with crosses. We have
projected the three-dimensional trajectories onto the x − y plane in figure 8(a), and
onto the x− z plane in figure 8(b). In (a) we again plot the ion density at z= 0 m in
the background; in (b) the ion density has been averaged over |y|< 0.02 m. As can
be seen in figure 8(b), the blob propagating near y≈ 0 m has stretched several field
lines radially outward near the midplane. These bowed-out field lines originate from a
range of x values, 1.3 m. x. 1.35 m, and have all been dragged along with the blob
as it was ejected from the source region and propagated radially outward. We also
see some degree of line tying in these plots, with many of the field lines ending at
a similar point in x− y space to where they began, despite being stretched near the
midplane. The field lines are not perfectly line tied, however; if they were, the crosses
would perfectly align with their corresponding circles in the x− y projections. Because
our sheath boundary condition allows current fluctuations at the sheath interface, we
can model the finite resistance of the sheath, which makes line tying only partial
(Kunkel & Guillory 1966). This allows the footpoints of the field lines to slip at the
sheath interface (Ryutov 2006). Examining figures 7 and 8, we see evidence of this
in the simulation, with most of the end points moving slowly and smoothly in the
vicinity of their origin, especially at larger x. In the source region, however, there are
other field lines whose end points suddenly jump further away from their origin. This
suggests that we are seeing line breaking (reconnection) due to electron inertia effects
and numerical diffusion, as field lines are pushed close together by large perturbations
in the source region.

We have also run a corresponding electrostatic simulation in this configuration for
direct comparison. This simulation is identical in configuration to the Lz = 8 m case
from Shi et al. (2019) except for the increased particle source rate and lack of cross-
species collisions. In figure 9 we show a comparison of radial profiles of density,
temperature and β for the electromagnetic and electrostatic cases. The profiles for
the electromagnetic case are shallower in the SOL region and steeper in the source
region. This suggests that there is less radial particle and heat transport into the SOL
region in the electromagnetic case. This is in part confirmed by the profile of the
radial particle flux in figure 10, showing approximately 40 % less particle transport in
the electromagnetic case. The total particle flux Γn,r includes the E× B particle flux,
Γn,r,E×B = 〈ñeṽr〉, with vr = Er/B = −(1/B)∂φ/∂y. In the electromagnetic case, Γn,r
also includes the particle flux due to magnetic flutter, Γn,r,flutter = 〈ñeu‖ebr〉, with br =

(1/B)∂A‖/∂y. The tilde indicates the fluctuation of a time-varying quantity, defined as
Ã= A− Ā with Ā the time average of A. The brackets 〈A〉 denote an average in y, z
(near the midplane) and time. We also note that the electromagnetic profiles might be
even shallower in the SOL region if not for the floor on the source used to prevent
positivity issues in the distribution function at large x.

We also compare fluctuation statistics between the electromagnetic and electrostatic
cases in figure 11. Statistics of the electron density are shown on the top row, the
middle row shows statistics of electrostatic potential fluctuations and the bottom
row shows statistics of the radial electron particle flux. Despite the fact that the
electromagnetic case shows less particle transport, the root-mean-square relative
density fluctuations are larger in the electromagnetic case by up to a factor of two.
The electromagnetic case also has higher skewness and excess kurtosis, indicating
that the density fluctuations in the electromagnetic case are more intermittent. The
skewness and kurtosis of the particle flux also indicate more intermittency in
the electromagnetic case. This contributes to the reduced transport shown in the

https://doi.org/10.1017/S0022377820000070 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377820000070


26 N. R. Mandell, A. Hakim, G. W. Hammett and M. Francisquez

(a) (b) (c)

FIGURE 9. Radial profiles of density (a), temperature (b) and β (c) for electrons
(solid) and ions (dashed). Profiles from the electromagnetic case (EM) are blue, and the
electrostatic profiles (ES) are yellow. The profiles are averaged in y, z and time using data
near the midplane (|z|< 0.4 m) over a period of 400 µs. The electromagnetic case shows
shallower profiles in the SOL region, indicating that there is less radial particle and heat
transport (as confirmed by figure 10).

FIGURE 10. Radial profile of the radial electron particle flux Γn,r, averaged in y, z
and time using data near the midplane (|z| < 0.4 m) over a period of 400 µs. The
transport in the electromagnetic case (EM, blue) is approximately 40 % lower than in the
electrostatic case (ES, yellow). This contributes to the shallower electron density profile
in the electromagnetic case, as seen in figure 9. The electromagnetic case contains radial
transport from both E× B drift (dashed) and magnetic flutter (dot-dashed).

electromagnetic case, since the transport events are rarer even if the fluctuation
levels are larger. Meanwhile, the fluctuation statistics for the potential are relatively
similar between the electromagnetic and electrostatic cases. The statistics of the
density and potential appear more coupled in the electrostatic case, consistent with
the electrons behaving adiabatically when electromagnetic effects are neglected.
In the electromagnetic case the density fluctuations are more intermittent and higher
amplitude than the potential fluctuations.

Finally, we note that in terms of computational cost, the electromagnetic simulation
is less than twice as expensive as the corresponding electrostatic simulation on
a per-time-step basis. On 128 cores, the time per time step was 0.41 s/step for
the electrostatic simulation and 0.68 s/step for the electromagnetic simulation. The
increased cost is due to the additional field solves required for Ohm’s law, along with
additional terms in the gyrokinetic equation. However, due to time-step restrictions
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(a) (b) (c)

(d) (e) (f)

(g) (h)

FIGURE 11. Comparison of fluctuation statistics for the electron density (a–c),
electrostatic potential (d–f ) and radial electron particle flux (g,h) between the
electromagnetic case (EM, blue) and a corresponding electrostatic case (ES, yellow).
From left to right, we show radial profiles of the normalized root-mean-square fluctuation
amplitude, skewness and excess kurtosis. These plots were computed by averaging in y,
z and time using data near the midplane (|z| < 0.4 m) over a period of 400 µs. The
electromagnetic case shows higher electron density fluctuation amplitude, skewness and
excess kurtosis. This is an indication that the electromagnetic case has more intermittent
density fluctuations. The skewness and kurtosis of the particle flux also indicate that the
transport is more intermittent in the electromagnetic case. The statistics for the potential
are relatively similar for the electrostatic and electromagnetic cases.

on an electrostatic simulation due to the electrostatic shear Alfvén mode (also known
as the ωH mode) (Lee 1987), the electromagnetic simulation makes up some of
the additional cost by taking slightly larger time steps. The total wall-clock time
(on 128 cores) for the electrostatic simulation was approximately 65 h, and the
electromagnetic simulation took about 82 h. Altogether, the cost of these simulations

https://doi.org/10.1017/S0022377820000070 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377820000070


28 N. R. Mandell, A. Hakim, G. W. Hammett and M. Francisquez

is relatively modest, and the addition of electromagnetic effects only makes the
simulations marginally (∼25 %) more expensive. We also note that the new version
of Gkeyll, which uses a quadrature-free modal DG scheme, is approximately 10
times faster than the previous version of Gkeyll used in Shi et al. (2019), which
used nodal DG with Gaussian quadrature. More details about the improvements from
the quadrature-free modal scheme will be reported elsewhere.

7. Summary and conclusion
In this paper we have presented an energy-conserving scheme for the full-f

electromagnetic gyrokinetic system. We choose the symplectic formulation of
EMGK, which uses the parallel velocity as an independent variable. This leads
to the time derivative of the parallel vector potential, ∂A‖/∂t, appearing explicitly in
the gyrokinetic equation. We handle this term directly by solving an Ohm’s law. We
presented the conservation properties of the EMGK system.

We described the discontinuous Galerkin scheme used to discretize the EMGK
system in phase space. We proved that the scheme preserves particle conservation,
and that the scheme also preserves energy conservation provided that the discrete
Hamiltonian is continuous. This is achieved by using the (continuous) finite-element
method for the field solves. We also detailed a basic forward-Euler time-stepping
scheme to be used in the stages of a multi-stage high-order SSP-RK scheme. The
time-stepping scheme updates the gyrokinetic equation in two parts, with the result
of the first part [denoted ∂(J fs)

?/∂t] being used in Ohm’s law to solve directly for
∂A‖/∂t so that it can then be used in the second part of the gyrokinetic update.

We have implemented the scheme in the gyrokinetic solver of the Gkeyll
computational plasma framework. We provided two linear benchmarks to validate
the electromagnetic scheme: a kinetic Alfvén wave calculation and a local kinetic
ballooning mode instability calculation. In both cases results from Gkeyll agree
well with analytic results. The success of these calculations, especially in cases with
β̂/k2

⊥
ρ2

s � 1, indicates that the scheme avoids the Ampère cancellation problem.
Further, the discontinuous Galerkin nature of the scheme enables (but does not
enforce) exact cancellation of the components of E‖, allowing the system to capture
the MHD limit with E‖ = 0.

We presented a nonlinear electromagnetic full-f gyrokinetic simulation of turbulence
on helical, open field lines as a rough model of the tokamak scrape-off layer. This
simulation is the first nonlinear electromagnetic gyrokinetic simulation on open
field lines. We showed data illustrating the interplay between blobs propagating
into the SOL and the resulting bending and stretching of magnetic field lines. We
also made quantitative comparisons between the electromagnetic simulation and
a corresponding electrostatic simulation. Notably, the electromagnetic simulation
exhibits less transport and shallower density and temperature profiles in the SOL, as
well as larger root-mean-square density fluctuations with more intermittency. Future
work will examine the particle and energy balance in these nonlinear simulations to
confirm the conservation properties proved in § 3.2 after accounting for sources and
losses to the walls.

A number of extensions have been left to future work. The capability to simulate
more realistic magnetic geometries using a non-orthogonal field-aligned coordinate
system is currently in progress, so that effects of magnetic shear and non-constant
curvature can be included. The inclusion of both open and closed-field-line regions,
including the X-point in diverted geometries, is an additional complication that must
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be addressed. Gyroaveraging is another important effect that must be implemented to
improve fidelity. Further, a robust solution to the issue of maintaining positivity of the
distribution function has been implemented for Hamiltonian terms and is in progress
for the collision operator. This could, for example, alleviate the need to use a source
floor in the nonlinear simulations presented in § 6, which could further enhance the
differences between the electromagnetic and electrostatic profiles.

The modest cost of the nonlinear full-f gyrokinetic simulations that we have
presented make the prospect of using Gkeyll for whole-device modelling a feasible
goal. The inclusion of electromagnetic effects will be crucial to the fidelity of these
efforts. Such a tool would be invaluable to future studies of turbulent transport in
fusion devices, both from a theoretical perspective and also as a model for predicting
and analysing the performance of current and future experiments.
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Appendix A. Ampère cancellation problem
To understand the root of the Ampère cancellation problem, we examine the simple

Alfvén wave case from § 5.1. Recall that in this simple case, the gyrokinetic system
is given by

∂fe

∂t
= {He, fe} −

e
me

∂fe

∂v‖

∂A‖
∂t
=−v‖

∂fe

∂z
−

e
m
∂fe

∂v‖

(
∂φ

∂z
+
∂A‖
∂t

)
, (A 1)

k2
⊥

min0

B2
φ = en0 − e

∫
dv‖ fe, (A 2)(

k2
⊥
+CN

µ0e2

me

∫
dv‖ fe

)
∂A‖
∂t
=−CJµ0e

∫
dv‖ v‖{He, fe}. (A 3)

Note that now we have inserted two constants, CN and CJ , in the integrals in (A 3).
We will use these constants to represent small errors that could arise in the numerical
calculation of these integrals. As in § 5.1, we can calculate the dispersion relation for
this system, but now we will take the limit ω� k‖vte, so that the dispersion relation
reduces to

ω2
=

k2
‖
v2

A

CN + k2
⊥ρ

2
s /β̂

[
1+ (CN −CJ)

β̂

k2
⊥ρ

2
s

]
, (A 4)
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where recall that β̂ = (βe/2)mi/me. This reduces to the correct result if CN = CJ = 1.
However, if CN 6= CJ , there will be large errors for modes with β̂/(k2

⊥
ρ2

s )� 1. This
means the two integrals in (A 3) must be calculated carefully and consistently so that
any errors exactly cancel.

A.1. Hamiltonian (p‖) formulation
We now briefly discuss the cancellation problem in the Hamiltonian (p‖) formulation
of gyrokinetics. In this case, the simple system above becomes

∂fe

∂t
= {He, fe} =−

1
me

p‖
∂fe

∂z
− e

∂fe

∂p‖

∂φ

∂z
(A 5)

k2
⊥

min0

B2
φ = en0 − e

∫
dp‖ fe (A 6)(

k2
⊥
+CN

µ0e2

m2
e

∫
dp‖ fe

)
A‖ =−CJ

µ0e
m2

e

∫
dp‖p‖ fe, (A 7)

where we have again included constants CN and CJ to represent numerical errors in
the integrals. The resulting dispersion relation is identical to (A 4), so the two integrals
must again be calculated carefully and consistently so that errors exactly cancel. This
could be slightly more challenging than in the symplectic case. Suppose the p‖ grid
does not extend to infinity but has some finite limits which are expected to be large
enough in practice. These limits are used when numerically computing the integrals.
Since p‖ depends on a time-dependent quantity in A‖, it is possible that the p‖ limits
may need to be time dependent if A‖ fluctuations are large in order to consistently
compute the integrals.

Appendix B. The discrete weak form of Ohm’s law
To obtain the discrete weak form of Ohm’s law, we start by taking the time

derivative of (3.10):∫
KR

j

dR∇⊥
∂A‖h
∂t
· ∇⊥ϕ

( j)
−

∮
∂KR

j

dsR · ∇⊥
∂A‖h
∂t

ϕ( j)

=µ0

∑
s

qs

ms

∫
KR

j

dRϕ( j)
∫
T v

dw
∂Hs h

∂v‖

∂(J fs h)

∂t
. (B 1)

Now, note that, analogously to (2.15), we can write the discrete weak form of the
gyrokinetic equation as∫

Kj

dR dwψ
∂(J fh)

∂t

=

∫
Kj

dR dwψ
∂(J fh)

∂t

?

−

∮
∂Kj

dR dsw

(
v̇H
‖h −

q
m
∂A‖h
∂t

)
ψ−Ĵ fh

−

∫
Kj

dR dwJ fh
q
m
∂A‖h
∂t

∂ψ

∂v‖
, (B 2)

where ∫
Kj

dR dwψ
∂(J fh)

?

∂t
=−

∮
∂Kj

dw dsR · Ṙhψ
−Ĵ fh +

∫
Kj

dR dwJ fhṘh · ∇ψ
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+

∫
Kj

dR dwJ fhv̇
H
‖h
∂ψ

∂v‖
+

∫
Kj

dR dwψ(JC[ fh] +J S). (B 3)

Substituting ψ = ϕ( j)∂Hh/∂v‖ in (B 2) and summing over velocity cells, we obtain∫
KR

j

dRϕ( j)
∫
T v

dw
∂Hh

∂v‖

∂(J fh)

∂t
=

∫
KR

j

dRϕ( j)
∫
T v

dw
∂Hh

∂v‖

∂(J fh)
?

∂t

−

∫
KR

j

dRϕ( j)
∑

i

∮
∂Kv

i

dsw

(
v̇H
‖h −

q
m
∂A‖h
∂t

)
∂Hh

∂v‖

−

Ĵ fh

−

∫
KR

j

dRϕ( j) q
m
∂A‖h
∂t

∫
T v

dwJ
∂2Hh

∂v2
‖

fh. (B 4)

Note that, for pv > 1, the v‖ surface term on the right-hand side vanishes because
∂Hh/∂v‖ is continuous across v‖ cell interfaces when v2

‖
is included in the basis,

resulting in cancellations. However, for pv = 1 this term is not continuous, and we
must keep this surface term; further, the last term on the right-hand side vanishes for
pv = 1 since ∂2Hh/∂v

2
‖
= 0. We can now substitute this result into the right-hand side

of (B 1), giving∫
KR

j

dR∇⊥
∂A‖h
∂t
·∇⊥ϕ

( j)
−

∮
∂KR

j

dsR ·∇⊥
∂A‖h
∂t

ϕ( j)
−

∫
KR

j

dRϕ( j) ∂A‖h
∂t

∑
s,i

µ0q2
s

ms

∮
∂Kv

i

dswv̄
−

‖
Ĵ fs h

=µ0

∑
s

qs

∫
KR

j

dRϕ( j)

[∫
T v

dwv̄‖
∂(J fs h)

∂t

?

−

∑
i

∮
∂Kv

i

dswv̄
−

‖
v̇H
‖hĴ fs h

]
, (pv = 1),

(B 5)

∫
KR

j

dR∇⊥
∂A‖h
∂t
· ∇⊥ϕ

( j)
−

∮
∂KR

j

dsR · ∇⊥
∂A‖h
∂t

ϕ( j)
+

∫
KR

j

dRϕ( j) ∂A‖h
∂t

∑
s

µ0q2
s

ms

∫
T v

dwJ fs h

=µ0

∑
s

qs

∫
KR

j

dRϕ( j)
∫
T v

dwv‖
∂(J fs h)

∂t

?

, (pv > 1). (B 6)

In (B 5), v̄‖ is the piecewise-constant projection of v‖.

Appendix C. Semi-discrete dispersion relation for Alfvén wave
In this appendix we derive a semi-discrete Alfvén wave dispersion relation using

a piecewise-linear DG discretization for only the v‖ coordinate. The main purpose of
this appendix is to show how our discrete scheme avoids the Ampère cancellation
problem. We will also show how the integrals in the DG weak form are computed
analytically in our modal scheme.

The semi-discrete gyrokinetic weak form for this system is∫
Kj

dv‖ψ
∂fh

∂t
+

∫
Kj

dv‖ψ
1

me

∂Hh

∂v‖

∂fh

∂z
−

e
me

(
∂φ

∂z
+
∂A‖
∂t

) ∫
Kj

dv‖
∂ψ

∂v‖
fh

+
e

me

(
∂φ

∂z
+
∂A‖
∂t

)
(ψ− f̂h)

∣∣∣∣
∂Kj

= 0. (C 1)
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We begin by mapping each cell Kj to ξ ∈ [−1, 1] via the transformation ξ = 2(v‖ −
v̄

j
‖)/1v‖, where v̄ j

‖ is the cell centre of cell j∫ 1

−1
dξψ

∂fh

∂t
+

∫ 1

−1
dξψ

2
1v‖

1
me

∂Hh

∂ξ

∂fh

∂z
−

e
me

(
∂φ

∂z
+
∂A‖
∂t

) ∫ 1

−1
dξ

2
1v‖

∂ψ

∂ξ
fh

+
e

me

(
∂φ

∂z
+
∂A‖
∂t

)
2
1v‖

(ψ− f̂h)

∣∣∣∣ 1

−1

= 0. (C 2)

Taking an orthonormal piecewise-linear basis in ξ , ψ = [ 1
√

2
,
√

3
√

2
ξ ], we expand fh on

the basis in cell j as

f j
h(z, v‖, t)=

∑
`

ψ`(ξ)f
j
`(z, t)=

1
√

2
f j
0 +

√
3
√

2
f j
1ξ . (C 3)

(Note that in the fully discretized case all coordinate dependence would be contained
in multi-variate basis functions.) We can then analytically integrate the weak form for
each ψ` to obtain the modal evolution equation for each DG ‘mode’ f`

∂f j
0

∂t
+ v̄

j
‖

∂f j
0

∂z
+

e
me

(
∂φ

∂z
+
∂A‖
∂t

) √
2

1v‖
f̂ j
h

∣∣∣∣ 1

−1

= 0 (C 4)

∂f j
1

∂t
+ v̄

j
‖

∂f j
1

∂z
+

e
me

(
∂φ

∂z
+
∂A‖
∂t

) √
6

1v‖
ξ f̂ j

h

∣∣∣∣ 1

−1

−
e

me

(
∂φ

∂z
+
∂A‖
∂t

)
2
√

3
1v‖

f j
0 = 0. (C 5)

Finally, we will make the ansatz f` = FM` + f`eik‖z−iωt and linearize

−i(ω− k‖v̄
j
‖)f

j
0 +

e
me

(
ik‖φ +

∂A‖
∂t

) √
2

1v‖
F̂j

Mh

∣∣∣∣ 1

−1

= 0 (C 6)

−i(ω− k‖v̄
j
‖)f

j
1 +

e
me

(
ik‖φ +

∂A‖
∂t

) √
6

1v‖
ξ F̂j

Mh

∣∣∣∣ 1

−1

−
e

me

(
ik‖φ +

∂A‖
∂t

)
2
√

3
1v‖

Fj
M0 = 0.

(C 7)

We now turn to the field equations. The Poisson equation is

k2
⊥

min0

B2
φ = en0 − e

∑
j

∫
Kj

dv‖fh. (C 8)

Expanding fh and using the ansatz, this becomes

k2
⊥

min0

B2
φ = en0 − e

∑
j

1v‖
√

2
Fj

M0 − e
∑

j

1v‖
√

2
f j
0 =−e

∑
j

1v‖
√

2
f j
0, (C 9)

where we will define FMh so that
∑

j (1v‖/
√

2)Fj
M0= n0 by definition. For Ohm’s law,

we must use the pv = 1 form from (3.12), which gives

k2
⊥

∂A‖
∂t
−
∂A‖
∂t
µ0e2

me

∑
j

v̄
j
‖ f̂ j

h

∣∣∣∣
∂Kj

=−µ0e
∑

j

∫
Kj

dv‖ v̄
j
‖

∂fh

∂t

?

+ ik‖φ
µ0e2

me

∑
j

v̄
j
‖ f̂ j

h

∣∣∣∣
∂Kj

,

(C 10)
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where ∫
Kj

dv‖ψ
∂fh

∂t

?

=−ik‖

∫
Kj

dv‖ψ
1

me

∂Hh

∂v‖
fh +

e
me

ik‖φ
∫
Kj

dv‖
∂ψ

∂v‖
fh. (C 11)

Again expanding and using the ansatz, Ohm’s law becomes

k2
⊥

∂A‖
∂t
−
∂A‖
∂t
µ0e2

me

∑
j

v̄
j
‖F̂

j
Mh

∣∣∣∣ 1

−1

=−µ0e(ik‖)
∑

j

1v‖
√

2
v̄

j 2
‖ f j

0 + ik‖φ
µ0e2

me

∑
j

v̄
j
‖F̂

j
Mh

∣∣∣∣ 1

−1

.

(C 12)
Analogously to appendix A, we can rewrite this equation as

k2
⊥

∂A‖
∂t
+
∂A‖
∂t
µ0e2n0

me
CN =−µ0e(ik‖)

∑
j

1v‖
√

2
v̄

j 2
‖ f j

0 − ik‖φ
µ0e2n0

me
CJ, (C 13)

where we have defined

CN =−
∑

j

1
n0
v̄

j
‖F̂

j
Mh

∣∣∣∣ 1

−1

, (C 14)

CJ =−
∑

j

1
n0
v̄

j
‖F̂

j
Mh

∣∣∣∣ 1

−1

. (C 15)

Clearly, CN =CJ , which allows us to move the CN term to the right-hand side, giving
a term proportional to the total parallel electric field, E‖ =−ik‖φ − ∂A‖/∂t

k2
⊥

∂A‖
∂t
=−µ0e(ik‖)

∑
j

1v‖
√

2
v̄

j 2
‖ f j

0 −
µ0e2n0

me

(
ik‖φ +

∂A‖
∂t

)
CN . (C 16)

This is essential for avoiding the cancellation problem because if we instead had CN 6=

CJ , we would have had a leftover term proportional to (CN −CJ)(∂A‖/∂t) on the left-
hand side. This leftover term would then lead to the spurious term proportional to
β̂/(k2

⊥
ρ2

s ) in (A 4).
In order to compute the integral quantities in the field equations, we use (C 6) to

compute

f j
0 = −

e
me

(
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∂A‖
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‖
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j 3
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F̂j
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(ω� k‖vte),

(C 17)

where we have expanded in the limit ω� k‖vte. Now we can calculate

∑
j
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2
f j
0 =−

e
me

(
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∂A‖
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)
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, (C 18)
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j
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Substituting these integral quantities into the field equations, the Poisson equation
becomes
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∣∣∣∣ 1

−1

]
(C 20)

and Ohm’s law becomes

k2
⊥

∂A‖
∂t
=
µ0e2

me

(
ik‖φ +

∂A‖
∂t

)∑
j

[
v̄

j
‖F̂

j
Mh

∣∣∣∣ 1

−1

+
k‖
ω

(
1+

k‖v̄
j
‖

ω

)
v̄

j 2
‖ F̂j

Mh

∣∣∣∣ 1

−1

]

=
µ0e2

me

(
ik‖φ +

∂A‖
∂t

)[
−n0CN +

∑
j

k‖
ω

(
1+

k‖v̄
j
‖

ω

)
v̄

j 2
‖ F̂j

Mh

∣∣∣∣ 1

−1

]
, (C 21)

where we have substituted the definition of CN . We can now combine (C 20) and
(C 21) by multiplying equation (C 20) by ik‖Te/n0, multiplying equation (C 21) by
ρ2

s =miTe/(e2B2) and summing the two equations to get

k2
⊥
ρ2

s

(
ik‖φ +

∂A‖
∂t

)
=

(
ik‖φ +

∂A‖
∂t

)(
β̂ −

k2
‖
v2

te

ω2

)[
−CN +

1
n0

∑
j

k‖
ω

(
1+

k‖v̄
j
‖

ω

)
v̄

j 2
‖ F̂j

Mh

∣∣∣∣ 1

−1

]
,

(C 22)

with β̂ = (βe/2)mi/me. This then yields the dispersion relation

k2
⊥
ρ2

s =

(
β̂ −

k2
‖
v2

te

ω2

)[
−CN +

1
n0

∑
j

k‖
ω

(
1+

k‖v̄
j
‖

ω

)
v̄

j 2
‖ F̂j

Mh

∣∣∣∣ 1

−1

]
. (C 23)

To evaluate CN and the other sum, we need to project the background onto the basis
in each cell. Taking FM = n0h(2πv2

t )
−1/2 exp(−v2

‖
/(2v2

t )), we project onto the basis in
cell j as

Fj
M0 =

1
√

2

∫ 1

−1
dξ

1√
2πv2

t

e(−(v̄
j
‖
+1v‖ξ/2)2)/2v2

t

=
n0h

1v‖
√

2

[
erf
(
( j+ 1/2)1v‖

vt

√
2

)
− erf

(
( j− 1/2)1v‖

vt

√
2

)]
(C 24)
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Fj
M1 =

√
3
√

2

∫ 1
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dξξ
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3
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(
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vt

√
2

)
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(
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vt

√
2

)]
, (C 25)

where we have taken the cell centre to be v̄ j
‖= j1v‖. Now we can evaluate integrated

quantities such as

P∑
j=−N

1v‖
√

2
Fj

M0 =
n0h

2

[
erf
(
(P+ 1/2)1v‖

vt

√
2
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vt

√
2
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=

n0h

2

[
erf
(
vmax

vt

√
2

)
− erf

(
vmin

vt

√
2

)]
= n0herf

(
vmax

vt

√
2

)
assuming vmin =−vmax, (C 26)

where now note that we have finite limits on the sum to indicate finite extents of
the v‖ ∈ [−vmax, vmax] grid. As we alluded to before, we will define n0h so that∑

j (1v‖/
√

2)Fj
M0 = n0 by definition, which means

n0h =
n0

erf
(
vmax

vt

√
2

) . (C 27)

Note that erf(x) quickly approaches 1 with increasing x, so that for example when
vmax = 4vt, n0h ≈ 1.00006n0. We can also calculate

CN = −
1
n0
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v̄
j
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j
Mh
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−1

= −
1
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2
[Fj

Mh(1)− Fj
Mh(−1)] + boundary terms

=
1
n0

P∑
j=−N

1v‖
√

2
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= 1+ boundary terms≈ 1, (C 28)

where σ is the sign of the upwind velocity, and the boundary terms that result from
the finite limits on the sum are small for vmax & 4vt. Thus we have CN ≈ 1 as expected,
although it does not need to be exactly equal to unity to eliminate the cancellation
problem. Instead, it was sufficient that CN =CJ on either side of (C 13).

One can also show that

P∑
j=−N

v̄
j 2
‖ F̂j

Mh

∣∣∣∣ 1

−1

= boundary terms ≈ 0 (C 29)

P∑
j=−N

v̄
j 3
‖ F̂j

Mh

∣∣∣∣ 1

−1

=−3n0v
2
t

(
1−

1v2
‖

12v2
t

)
+ boundary terms ≈−3n0v

2
t

(
1−

1v2
‖

12v2
t

)
.

(C 30)

Now, substituting these results into the dispersion relation from (C 23), we obtain

k2
⊥
ρ2

s ≈

(
β̂ −

k2
‖
v2

te

ω2

)(
−CN −

3k2
‖
v2

te

ω2

(
1−

1v2
‖

12v2
te

))
≈−

(
β̂ −

k2
‖
v2

te

ω2

)
(C 31)

after again taking the limit ω� k‖vte and assuming 1v‖ ∼ vte. This finally gives

ω2
≈

k2
‖
v2

te

β̂ + k2
⊥ρ

2
s

, (C 32)

which is the expected dispersion relation.
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