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Let « be an irrational number with simple continued fraction a=(ag,a,,a;,:*).
The problem studied is that of whether the sequence (g,) of denominators of the
convergents p,/q, to « has a subsequence (B,) = (q;,} which is the sequence
of denominators of convergents 4,/B, to a different number «’. In other words,
does there exist a subsequence {g,,} which satisfies ;) = 1 and

(©) Ginys = 4;,(modg; , ); n = 0?

For example, the sequence of denominators of convergents to 4(3—e) is a sub-
sequence of the sequence of denominators of convergents to e.

In what follows we shall preserve the notation introduced above. We shall
show that if the continued fraction for « satisfies a condition a little more general
than periodicity then there usually exists at least one a’ for which the denomi-
nators B, of convergents form, apart from an initial few, a subsequence of the
sequence g,. Furthermore, either B,,, = 1B infinitely often or a’ = aa + b
for rational numbers a and b.

We define, for odd integers p = 3, the continued fraction (ay,a,,4,, ) as
nearly periodic with period (p,r) if r = 0 is an integer such that for each integer
n = 1 at least one of the conditions

(1) (1) anp+r—i = a(n+l)p+r—i (0 é i é P—2)

(ll) Aup+r—i = Dup+2+r+i (0 i P"z)
holds. In other words the sequence a,_1yp+24,,** up+, is repeated in the same
or reverse order after a,,.,,,. For example the continued fraction for e,
(2,1,2,1,1,4,.-), is nearly periodic with period (3,1). Note that r is not restricted

to be less than p, so the nearly periodic property is not determined by the initial
elements.

LeMMA 1. Let k, | and m be positive integers with m > |. Define P,,, Q,,,
R, and S, by
112
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PplQn = (0, py25 s Qmi)s
RulSm = (0,84sp—1,3Qpm—1+42)
where the right hand sides are to be interpreted as O/1 if k = 1 or I = 1. Then
Im+k = Pulm + Onm-1 + Qulm+ 19>
Gm-t = (=17~ Ry Slm—1),
and similarly with the q; replaced by p;.

Proor. This is a direct consequence of the relations between the g; and
between the p;.

COROLLARY. If the continued fraction for o is nearly periodic with period
(p,r) then for each integer n = 1,

@ O Qin+ yp+r = Cn—1np+r T An—1)p+r> and
(ii) Din+ )p+r = Cn—1Pnap+r + Pin—11p+r>
where the c, are positive integers.
ProoF. Apply the lemma with m =np+r, k =1 = p, taking
Ch-1 = Qmdm+1 + P + Ry,

observing that conditions (1) imply that Q,, = S,, since (0,a,,,-*,a,,_,,,) and
(0,8,—p+2,"""»am) have the same denominator.

LemMma 2. Let dy,--+,d,_; be positive integers, let Xy,X,,Y,,Y, be non-
negative integers and let X,,---,X_, Y,,--, Y, be defined inductively by

Xm = dm—le—l +Xm—2 (2 é m _—<_ S),

Ym = dm—lYm—1+Ym—2 (2§m§s)
Then
X, _ XyB+Xo
Y, YiB, + Yo

where ﬂs = (dl’dZa"';ds—l)'

Proor. The result is trivial for s = 2. For 5> 2 the result is proved by
induction in a similar manner to the particular case in simple continued fraction
theory.

THEOREM. Let a be such that for positive integers c¢g,cy,Cz,"+
(3) (1) qin+x = Cn—-lqi,, + qin-: (n g 1)’ and
(i1) Piney = Ca=1Pi, t Pin_, (hnz1),
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for a subsequence (q;,) of (q;). If q;, and q;, are relatively prime then there
exists a’ of the form aoa+ b with a and b rational such that B,,, = q; for
n = 0, where u = 0 is integral and u = 0 if q;) = 1.

Proof. If ¢q;, =1 then plainly the g; ~are the denominators to
a’ = (0,4;,,C0,€1,C5, ). However if ¢;; > 1, define g;_,q;_,,"~,and c_ ,c_
inductively by

2’...’

qij+2=chij+1+qij (Oé qijéqiji»l_l)

where the process is terminated when g;, = 0 is reached. Then it is easy to verify
that the denominators of the convergents to o' = (0,¢,,¢,44,:-) are precisely

qitﬂzl?cl)”f;r,l.ci";he relation between o and o' we observe that, by lemma 2 with
B = (co,1,°")

) a = lim p,/q;, = (Pi, + Pio)/(9:,B + 4ir)

and 0

a' = (yf+ x)/(q;,8 + a;,)

where y/q;, = (0,¢,,--+,c_) and x/q;, = (0,¢,,---,c_,), these expressions being
interpreted as 1/q;, and 0/1 if g;, = 1. Then comparing the above formulae gives

o' = {pidi, — Pidio)~ Ho{xq;, — Ydio} + YPio — XPi,}

which shows a’ to be of the desired form. It remains to set u = —(¢t + 1).

It should be remarked that if (g;,,q;,) = d > 1 then dl g;, for n = 2 as well.
Replacing the ¢;, by ¢ = q;,d ~! we have 3(i) holding for the q7,. Since
(¢:,)% |« — pi,la;,| < 1 implies (¢*)*|da—p;,/qf| <d=' < 4, then p, [q} isa
convergent to a* = do. It follows that the ¢;* are denominators of convergents
to some number o*, i.e. that the g, are multiples by d = (q,,,¢;,) of a subsequence
of denominators of convergents to a*.

COROLLARY. If the continued fraction for o is nearly periodic with period
(p,r), where p = 3 is odd, then

@) Ifr =0o0rr =a, =1then q, =1 and the theorem, with i, = pn +r,
yields the existence of o' the denominators of convergents to which form a
subsequence (B,) = (4; ), >0 of the denominator sequence of convergents to «,

(b) If (4,,9,+,) = 1 then the theorem, with i, = pn +r, yields the exis-
tence of o' the denominators of convergents to which form, apart from an initial
few, a subsequence (B,,) = (g ).»0 of the denominator sequence of conver-
gents to o, and

(©) If (4,,q9,+,) = d>1 then by the remarks above there exists o' the
denominators of convergents to which, apart from an initial few, when multi-
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plied by d form a subsequence of the denominator sequence of convergents
to o.

It will be observed that by lemma 1 (q,+,,9,)=(Q.q,) where Q is the denom-
nator of (0,a,4,,"*",4,,,), and so Q and g, are completely independent of
one another.

REMARKS. (i) If we take 3(,/5—1) as our «, so that the g, are the Fibonacci
numbers, then the continued fraction for « is nearly periodic with periods (p,0)
and (p,1) for any odd number p. Thus there are infinitely many a’ for this choice
of a.

(ii) If « has an ultimately periodic continued fraction then by the result
of Schmidt [1] it follows that any «’ must be of the form ax + b for rationals
a and b unless it is transcendental.

(iii) If we take e—1=(1,1,2,1,1,4,1,1,6,---) as « then the continued
fraction is nearly periodic with period (3,1) ,and wefindx = 0,y = 1,¢; = 10+4j
and B = (10,14,18,22,---). Hence using (4) we obtain a proof that e~ 1 =
(1,1,2,1,---) given that (0,2,6,10,---) = (e—1)/(e + 1).

(iv) If some terms are dropped from the beginning of the sequence (g, ),
o’ as defined in the proof of the theorem is unaffected. Hence if an &’ exists which
is not of the form aa + b for rational a and b then the sequence i, defined by
B,+, = 4;, must violate 3(ii) infinitely often where ¢,_; is defined by 3(i). If
Q,, and S; are obtained by setting m = i,, k = i,,,—i,, | =i,—i,_, in the
formulae of lemma 1, then plainly 9, — (—=1)'"!S; = Q;. £ S; must be non-
zero infinitely often, for when it is zero 3(i) and 3(ii) hold. But g; divides
4:;,,,—4i,_, and is relatively prime to g; _,. Hence, infinitely often,
|0:. £ S, | = ;.. ButQ; = 1g; implies thatq; , 2 1q2,and S, = 4q;, implies
Qi._, = 4q;_, (Si, = Q;,_,) which in turn yields g;, = 47 _ . Thus we may
conclude that if o’ is not of the form ax + b for rational a and b then B, ; = %Bﬁ
infinitely often.

(v) If « is a quadratic irrational it is easy to construct an «’ not of the form
ao + b for rational a and b since we only need to ensure q; ,, = ¢, _,modg;
and that ¢; ., = %Qi: (or, indeed, any sufficiently rapidly increasing function of
g:,). The o’ defined by such a sequence cannot be a quadratic irrational and so
certainly cannot be of the form ax + b. Such a sequence (g; ) can be chosen
since the congruence classes mod g;, of the g; recur in cyclic pattern.

(vi) It is possible to construct an «, not a quadratic irrational, having an «’
for which B, = 1B?,, infinitely often, but in this case the transcendence of o’
does not guarantee the non-existence of a relation of the type o’ = aa + b for a
and b rational.

(vii) It can be deduced that if o and a; are such that they have a common
subsequence (B,) of the sequence of denominators of convergents satisfying
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B, < 1BZ,, for all but finitely many n, then a, = ax + b for rational a and b.
This raises the problem of how dense a common subsequence of denominators,
with or without extra conditions, must be in order to guarantee a; = aax + b
for rationals a and b. Of course it may be assumed that one of « and «, is trans-
cendental, as the result of Schmidt shows that if a, o, are both algebraic with
an infinite number of common denominators then «; = aa + b with a and b
rational.

(viii) Tt should be noted that the sequence of fractional parts {B,a} converges
to 0 mod1. Thus if « and &’ are as in (v) then 1,a,«’ are independent over the
rationals and the sequence {B,x} is not dense in [0,1]. This result sheds little
light on the unsolved problem of whether or not the sequence {F,,/3} is dense
in [0, 1], where the Fibonacci numbers F, are the denominators of the convergents
to 3(/5—1), since though 1, 4(,/5—1),./3 are independent over the rationals,
the second of these is a quadratic irrational whereas o’ from (v) is transcen-
dental.
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