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1. Introduction

Consider the simultaneous real differential equations

(1) x = ax-\-by and y = cx-{-dy,

where the dot indicates differentiation with respect to time, and a, b, c, d
are functions about which the only thing that we know is that they are
uniformly bounded,

(2) p1<a^q1\ p2^b^q2; p3 ̂  c ^ q3; p ^ d ^ q , .

We say that the bounds (2) have the ^-property when they alone
imply that the solutions to (1) are uniformly asymptotically stable in the
large at the origin.

In this paper we solve completely the problem 'When do the bounds
(2) have the ^-property?' For particular values of pt, qt they have the
S-property if every solution eventually arrives at the oiigin, no matter
where it starts on the x, y plane or how the functions a, b, c, d vary within
their bounds. On the other hand if we can find some a, b, c, d for which a
solution tends to infinity, or goes round a closed path, or is stationary at
x =£ 0, then the bounds do not have the ^-property, even though other
solutions may tend to the origin.

Our methods deal with most sets of values of the pit qt very easily.
However in table 4 we give examples of non-trivial sets, which were chosen
to illustrate the various possible outcomes of our tests. For those who
only wish to use the results, we describe in the last section how this can be
done without reading the whole paper.

Some of the methods used here were introduced in [1]. The case where
a = 0, b = 1, c = — a/S, d = — (a+/3), and the latent roots —a, — /? are
bounded was solved in [2].

2. Velocity vector points inwards

We start by discussing a simple case which introduces something
which we will frequently use, namely the minimum value, determined
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284 Alan Brace and D. E. Daykin [2]

from (1) and (2), of the angle between the position vector x = (x, y) and
the velocity vector x = (x, y). This concept will lead us to what we later
call 'centrifugal contours', which remind one of Lyapunov functions, but
in some of our cases they are essentially different.

When we say that the velocity vector points inwards we mean that x
makes an oblique angle with x, and so is reducing the distance from the
origin. Thus if there is a real number p such that x • xj\x\\x\ < p < 0
for all J T ^ O , and a, b, c, d satisfying (2) then every solution to (1) will
tend to 0. To prove this by Lyapunov's second method simply consider
the function V = x2-\-y2. The above facts give us:

THEOREM 1. The bounds have the Sf'-property if qx, qt < 0 and

PROOF. From (1) and (2) we have

x • x = ax2+ (b+c)xy+dy2

< | if XV ^ 0.
= \ q1x

2+(p2+p3)xy+qiy
2 if xy ^ 0,

and the result follows.
In exactly the same way, only by having x make an acute angle with

x, we get

THEOREM 2. Every solution to (1) tends to infinity if p^.pi > 0 and

The results of this section are independent of the general study in the
rest of the paper, but they may well save work in practice.

3. Latent roots

It is well known that, when a, b, c, d are constants, the solutions to
(1) are stable at x — 0 iff the real parts of the latent roots

a b]

c dj

of the coefficient matrix

are both strictly negative. Consideration of this fact leads to theorem 3
below.

We let T be the set of 16 numbers obtained by replacing a by px and
by ?i> by replacing b by p2 and by q2, and so on, in ad—be. Then we have
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[3] Stability of differential equations 285

THEOREM 3. The bounds do not have the £P-property if qx+q4 ^ 0,
or if the numbers in the set T are not all strictly positive.

From now on we will assume that the cases dealt with by the theorem
have been eliminated. Notice that this means that no solution to (1) and
(2) can come to rest at a point x ^ 0, or go to infinity along a straight line
through the origin.

4. The X and Y boxes

On the x, y plane, see for example figure 1, we draw the box with corners

Zbox: (-q2,p1), {-p2,Pi), {-Ps.qi), (~?a. 9i)-

Figure 1. Case (2, 2)
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We call this box the X box because it is relevant to the equation x = ax-\-by.
The pencil of lines which pass through the origin and the X box and go
to infinity in both directions, we call the X fan. The X box includes its
boundaries and so does the X fan. The two regions of the plane lying outside
the X fan we call the X+ fan and the X_ fan respectively, the X+ fan being
the one lying clockwise from the X box. The reason for the notation is
that x > 0 for all points x in the X+ fan, that x < 0 in the X_ fan, whilst
x may be positive, zero, or negative in the X fan. To see this consider when
x = 0.

In exactly the same way we have the Y box with vertices

Ybox: ( - ? 4 , / > B ) . {-PI.PZ), {-Pt,9»)> (-?4»?s)>
and the Y, Y+, Y_ fans. We then have a corollary to theorem 3.

COROLLARY 1. For it to be possible for the bounds to have the Sf-property
we must have that (i) neither the X box nor the Y box contains or touches the
origin, and (ii) the X box is properly contained in the Y+ fan.

5. Central symmetry and magnification

We make two observations. Firstly our problem has central symmetry,
and so we perform most of our calculations only for points (x, y) in the first
two quadrants. The results for the other quadrants follow by symmetry
through the origin. Secondly, the state of affairs at any point P is a magnifi-
cation of the state of affairs at any other point on the line OP, for under
the transformation x —>• cox, y -> coy the velocity x is multiplied by co but
its direction remains unchanged.

6. The velocity box

Let xu and yi} be the bounds for x and y determined from (1) and (2),
then they are as follows

(x, y) in 2nd Quadrant
x21 = q ± x + p 2 y ^ x ^ p t x + q 2 y = x 2 2 ;

2/21 = w+Piy ^ y ^ Psx+ViV = 2/22;

(x, y) in 1st Quadrant

^ x ^ qxx-\-q2y = xn;
^ y ^ +

Notice that when (x, y) lies on the positive y axis we can use the bounds
for either the 1st or 2nd quadrant.

At any point P = (x, y) of the x, y plane we set up velocity axes Px, Py
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parallel to Ox, Oy. Please refer to figure 1 again. It can be seen from (3)
and the central symmetry that for any values of a, b, c, d satisfying (2),
the velocity vector x for a solution to (1) instantaneously at P must lie
in a box drawn relative to the Px, Py axes. We call this box the velocity box,
or briefly V box. By definition of the X, X+, X_, Y, Y+, Y_ fans, for any
point P of the plane, we can tell immediately the signs of x and y, and
hence we can sketch the location of the V box, see figures 1, 2. Note that
one side of the V box lies on the x or y axis only for points P on the edges
of the X and Y fans. Also the V box cannot contain or touch the origin P,
for this would give a stationary solution. The coordinates (x, y) of the
corners of the V box are as follows:

(x, y) in 2nd Quadrant

(%i • Vii)> (^22 > 2/21 )> (^22> 2/22)' (^21' 2/22) •

(x, y) in 1st Quadrant

(*ii. 2/ii). (*i2. £11). (*i2.2/12). 0*ii. 2/12)-

(p q pq)

(qppq)

Figure 2. Cases (4, | ) and (4, 2)
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It is necessary for us to study the way that the V box changes as P varies
over the plane, but in view of the properties mentioned in Section 5, we may
imagine P to move in a circle.

7. Motion of the V box

For any point P = (x, y) of the x, y plane, the coordinates (xG, yG),
relative to the Px, Py velocity axes, of the centre of gravity G of the V
box at P are obtained by taking the mean values of a, b, c, din (2). Hence
they are

and by our assumption in section 3 they are not zero.
Next we transform to polar coordinates, x — r cos 0, y = r sin 0.

We let X, oc and fi, /? be the polar coordinates of the centres of gravity of the
X and Y boxes respectively, so that X, [i > 0 and

X cos a = —I(p2+q2)'> A sin a = £(/>!+ft),

{I COS /? = — i(^>4 + ?4); /* s i n 0 = i(^3 + ?3)-

Equations (4) then become

*G = rA sin (a— 6)

yG = rjHsin (/9—0),

and we are in a position to prove

LEMMA 1. Given r > 0, //zere is « non-degenerate ellipse, fixed in the
velocity axes, such that as P moves once round the circle of radius r centred at 0,
the centroid G moves once round the ellipse. The directions of turning are the
same if sin (/?—a) > 0 but opposite if sin (/?—a) < 0. Further in half a
revolution of P, the points 0, P, G are colinear, or more importantly the V box
completely crosses OP, at most twice.

PROOF. Equations (5) show that xG and ya are bounded. Eliminating
0 between these equations gives a second order equation in xG,yG, which
must therefore be the equation of an ellipse. The ellipse cannot be degenerate
because then G would pass through P.

Putting tan <f> = yG\xG and differentiating gives

<j> = 6 (nJX) [{cos <£}/sin ( a - 0)]2 sin (/?—a) and X, /A > 0,

so the part of the lemma about the direction of turning follows immediately.
Notice that we cannot have sin (/S—a) = 0 for then the X fan touches the
Y fan.
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The condition that 0, P, G be colinear yields the equation

A cos a tan2 0— (fx cos /3+A sin a) tan 0+,M sin /? = 0,

which has at most two roots 6 in a range of TI for 0. Thus G either crosses
OP twice, or touches OP once, or does not touch OP as d runs through n,
a half revolution for P. This completes the proof of the lemma.

We note in passing that for a, b, c, d constant, the remarks in the
above lemma still apply. We merely put qx = a = px, etc. Thus in this
constant case the velocity vector either crosses the radius vector twice,
or touches it once, or stays clear of it, as the radius vector rotates through
an angle n. The lines where it crosses or touches will be given by the roots
of the equation

(6) cx*+(d-a)xy-by2 = 0.

8. Transformations

Under the transformation A defined by x = —x', y = y' the pair of
equations

x = ax-\-by, x' = ax' + b'y', V = —b,
become where

y = cx-\-dy, y — c x -\-dy , c = —c,

and if one pair is stable so is the other. The change in sign of b and c must
cause a change in the bounds, namely p'2 = — q2> p'3= —q3, <?2 = —pz,
q'3 = —p3. This change shows that if we reflect the X box in the y axis
we get the X' box, and if we reflect the Y box in the x axis we get the Y'
box. Using these facts we can transform certain cases of our equations into
other cases. We will use A and another transformation B. The two, together
with their effects, are:

( X' is X reflected in the y axis,
A: x = —x , y = y' {

{ Y' is Y reflected in the x axis,

Pi-^P'x —It^-P'i — ?3 -^ Pz Pi -> Pi
i r t i

?1 ""*• 9 l Pi ~~* $2 Pz ~^~ ?3 ?4 ~^ §4

„ ( X' is Y rotated through — \n,
B: x = y', y = —x'\ s 2 'y \ Y' is X rotated through -\-\n.

Pt^P'i —iz^P'z — ?2 -* P'z Pi -* Pi

Notice that the set T is unchanged by A or B.
The X and Y boxes may lie anywhere on the plane, except of course
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that the cases dealt with by theorem 3 have been omitted. In order to
describe the remaining cases we adopt the following notation. We write 2
to denote that a box is in the second quadrant, we write f to denote it
straddles the negative x axis, and so on, and in (3.1), the first number '3 '
refers to the X box, the second number ' 1 ' refers to the Y box. We have 17
cases to deal with and they are listed in Table 1. Transformations reduce
these 17 to 6 basic cases, but no further reduction is possible. We will show
that the bounds have the .^-property in 1 of the 6 cases. That leaves just
5 basic cases, for each of which the bounds may or may not have the 5f-
property, depending on the actual numerical values of the p's and ^'s.
Given the p's and ^'s whether the ^"-property holds can be tested simply
by adding up some numbers in a way which we will describe later.

TABLE 1

Case

(3,1)
(i. i)
(4,1)

(i. 1)
(1.1)
(4.4)
(4,2)
(3,3)

Instructions

Sf
theorem 4, table 3
theorem 4, table 3
B -> (4, 4)
B -> (4, 2)
table 2
table 2
A -> (4, 2)

Case

(3,i)
(2,4)
(1.4)
(3,4)
(1.4)
(4,4)
(3, i)
[hi)
(M)

Instructions

A -* (4, 4)
A -»- (1, 1)

A -* (1. 1)
A -» (4, 1)

A ->• (i, 1)
A -*- (3, 1)
A -> (4, i)
special

B ->
B -»

.9
B ->•

B ->

(4,

(4,

(i.

(1.

2)

4)

1)

1)

9. The constant case

Without preamble we say that we will need the solutions to (1) for
the case in which a, b, c, d are all constants. Putting s = (d—a)2+46c the
solution is

{(d—a)— ^/s]x—2by

| log k\cx*+(d-a)xy-by*\ =

log

(d+a)x

2by—(d—a)x

(d+a) x /(d-a)x-2by

if s > 0,

if s = 0,

)x—2by\
arctan '- if s < 0,

where k is the constant of integration, and the range for arctan is —\n to
+ \n. Please observe the moduli inside the logarithms.

When s > 0 the solutions either look like hyperbolae and have two
asymptotes, or they look figures of 8 which have had their tops and bottoms
pulled to infinity along a single asymptote. When s = 0 the solutions look
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like the figure S with its ends pulled to infinity along a single asymptote.
Finally when s < 0 the solutions are spirals, a special case of which is the
ellipse. We only mention these facts as a matter of interest. All that we will
need will be finite parts of the curves.

10. The basic cases

Cases (4, -|) and (4, 2). Please refer to figure 2 where we have shown
the more important characteristics of these cases. In both of them the X
box lies in the 4th quadrant. The Y box is either in the 2nd quadrant or
straddling the positive y axis, so we have drawn one end of the Y box
dotted to indicate the two possibilities. The mathematical analysis is the
same for both.

TABLE 2: Cases (4, J) and (4, 2)

f— Piiz

s{ < 0 s,- = 0 s{ > 0

—Si L2 ?4—?

V—** L2
1 + arctan ^
2 2

[ a, + q, s3arctan arctan —

a r c t a n = l ' - arctan «i
V—«4 L V—S4 V

log

log

1—?4— VS1

±h log

log

?1 ?4

Pi— {Ii + V^Y

The parametric equation of the line through the origin which touches
the top right corner of the X box is x = —p2£, y = qx£. We also need the
other line which touches the Y box as shown. These two lines divide the
upper half plane into the regions numbered 1, 2, 3, 4, and we have sketched
the location of the V box for representative points of the regions.

For any co > 0, all solutions to (1) and (2) which pass through the
point (co, 0) are moving up and to the left. We call the one which at all
times make as acute an angle as possible with the radius vector the
centrifugal {anticlockwise) contour Cm through {to, 0). To find Cu in the first
quadrant we want the velocity vector to always lie at the top right corner
of the V box as shown. Let us adopt the convention whereby (pqpp) for
example means a = px, b = q2, c = p3, d = pt. Then the inequalities (3)
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show us that the values of a, b, c, d which give Cw for region 1 are (qqqq).
In particular a, b, c, d are constants and so we can find the equation of
Cw from (7).

We need to follow this upper right corner of the V box to get Ca for
region 2, but the bounds (3) show that we must change the values of (abed)
to (pqpq). There is no danger that Cw will go to the origin before reaching
the negative x axis, for this would require the V box to cross OP between
0 and P, and the diagram reveals that this is not possible. Also a solution
could only go straight to infinity in the region labelled 'out', and this
possibility was ruled out in section 3. When Ca moves into region 3 we want
the upper left corner of the V box, so (abed) = {qppq)- Similarly in region 4
we have (abed) = (qpqp), and Ca meets the negative x axis at a finite point
(—(5, 0). By virtue of the remarks of section 5, if <5 > a> then Ca spirals
away to infinity as it goes round and round the origin. If d = &> then Ca

moves round the origin in a fixed orbit. Finally we assert that if d < o>
then the bounds have the ^-property. For suppose we are at any point P
of the plane. A centrifugal contour Cw will pass through P for some value of
w. The tangent to Ca at P is the line from P to a corner of the V box,
so all solutions through P either follow CM or move to points met by centri-
fugal contours Ca- with a>' < ca. No solution can cross the positive x axis in
a clockwise direction, nor can one come to rest. Since d < w the curve Cm

spirals in to the origin forcing all solutions to (1) and (2) in with it.
We may assume that a> = 1 and write dt for the corresponding d. It

then only remains to calculate di, for the bounds have the 5^-property
iff (54 < 1. We must deal with each of the regions 1, 2, 3, 4 separately.
We write s1, s2, s3, s4 for the values of the constant (i—«)2+46c. Since
the s{ may be positive, zero or negative, the equation (7) of Cx may take three
possible forms. Substituting the values of (abed) in (7) gives us the four
equations for the four regions for C1, in terms of the unknown constants of
integration klt k2, ks, &4. Now C1 goes from (1, 0) to (—dt, 0). Let (0, d±),
(—qid2, p3d2) and (—p2d3, qx6z) be the points at which Cx crosses from
regions 1 to 2, from 2 to 3, and from 3 to 4 respectively. We substitute the
two boundary points (1, 0) and (0, dj) in the equation for region 1 to obtain
two equations. Then we substitute (0, dj) and (—<74<52, p3d2) in the equation
for region 2, and similarly for the other two regions. Twice the left hand
sides of the eight equations are the eight expressions (i), (ii), • • •, (viii) below.

Region Twice left hand side

1 flog*! +log|?,|,
U

(iii)j 2

(iv) / \ log
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Twice left hand side
<5!+log \Pzq\~{qi-q1)qip3-p2pl\,

log <5!+log \p3pl-(qi-q1)p2q1-p2ql\,
\9aP\— (Pi—<li)p2.<li—pzcl\\'

Forming the sum (viii) —(vii) + (vi)—(v) + (iv)—(iii) + (ii)—(i) gives us
trivially

Region

(v) 1 3 f log k.
(vi)I I log*;

(vii) \ | log k,
(viii) J I

(8) Gogfl-i

Also we can see from (7) that in each of the 24 possible right hand sides the
<5's cancel out. For each of the 4 regions, and for each of the 3 possible values
of sit we evaluate the differences of the right hand sides (remember st is
constant in each region), and this gives us table 2. The table is used as
follows. We work out s1, s2, s3, s4, then for i = 1, 2, 3, 4 we take the entry

(ppqq)

(qppq)

(qpqp)

Figure 3. Cases ( | , 1) and (4, 1)
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from the i-th row determined by the sign of s(. Finally we add up the values
of the four entries and that of the expression at the head of the table, which
was obtained from (8). If the result is negative then dt < 1 and the bounds
have the ^-property, otherwise they do not.

Cases (f, 1) and (4, 1). In these cases Ca might come into the origin
in less than one revolution, which will happen iff the V box crosses OP
completely between 0 and P. We deal with such situations in theorem 4
below.

THEOREM 4. In cases (-f, 1) and (4, 1) if

q3x
2-{- (qi—pi)xy—p2y

2 = 0 has a positive root x\y, or if

?3a;2+ (Pi~1i)xy—p2y2 = 0 has a negative root x/y,

then the bounds have the £f-property.

PROOF. If the first condition holds then the top left hand corner of the
V box will lie on the radius vector somwehere in the first quadrant, while
if the second condition holds then the bottom left hand corner of the V
box will lie on the radius vector somewhere in the second quadrant. The V
box stands clear of the radius vector on the positive x axis. Therefore the
conditions (9) imply that as the radius vector swings through a half revolu-
tion anticlockwise from the positive x axis, the V box crosses over the radius
vector completely. If it crosses completely once, then by symmetry and
Lemma 1 it crosses completely twice. During the first crossing the radius
vector is 'catching up' with the V box, while during the second crossing the
V box is 'catching up' with the radius vector.

Let OPX be the line where the first corner of the V box crosses the
radius vector and let 0P2 be the line where the last corner crosses the radius
vector, during the first crossing. Let P[ and P'2 be the central images of Pj
and P2 . It follows that no solution to (1) and (2) can move clockwise over
P'1OP1 or anti-clockwise over P'2OP2. Hence all solutions go to the origin
or to one of the fans PXOP2 and P'XOP'2. It is easy to see that once a solution
moves into one of the fans it must go to the origin. This completes the proof
of the theorem.

If neither of the conditions (9) hold then an anti-clockwise centrifugal
contour exists and, by analysis similar to the preceding cases, whether
the ^-property holds can be tested using table 3.

Case (3, 1). The diagram for this case is very similar to figure 3, and
so is omitted. It is easy to see that the V box always crosses the radius
vector completely as it swings through a quarter revolution anticlockwise
from the positive x axis. It follows, using the reasoning of theorem 4, that
in this case the bounds always have the «9"-property.
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TABLE 3: Cases (J, 1) and (4, 1)

295

(9 4—-PiV

l ?4 ^2?3

— Pi Pi)

S< < 0 5; = 0 > 0

Vs
arctan - — arctan —

V-*:
— 1 log

~̂̂ , L2
^ - a r c t a n

2

h arctan —
/—s3 L2 V
ri+^4 r i P*—?i

arctan —
/—st L V—s4

arctan ^ = i i - a r c t a n
V

1

2gi

V

log

log

Figure 4. Case (f,
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Case (§, \). See figure 4. In all previous cases no solution could move
clockwise over the x axis. This case (f, -j) is special because, as can be seen
from figure 4, it may be possible for solutions to move continuously clock-
wise or continuously anticlockwise, and there may be both an anti-clock-
wise and a clockwise centrifugal contour. Solutions may not move con-
tinuously anticlockwise iff

. q3x
2+ (?4—Pi)xy—PzV2 = ° has a positive root or

q3x
i-\-{pi—q1)xy—p2y

i = 0 has a negative root.

To see this please refer to the start of the proof of theorem 4. Similarly
solutions may not move continuously clockwise iff

p3x
2jr (qi—pi)xy—q2y

2 = 0 has a negative root or

Pzx2jr{Pi—qi)xy—q2y2 = 0 has a positive root.

There are four possibilities:
(i) If solutions cannot move continuously clockwise and cannot move

continuously anticlockwise then by reasoning similar to that of theorem 4,
the bounds must have the ^-property.

(ii) If solutions may move anticlockwise but not clockwise then an
anticlockwise centrifugal contour exists and whether the ^-property holds
can be tested using table 3.

(iii) If solutions may move clockwise but not anticlockwise then a
clockwise centrifugal contour exists and whether the ^-property holds can
be tested by applying transformation A and then using table 3.

(iv) If none of the above three possibilities applies, then the V box
must always straddle the radius vector, solutions may move continuously
clockwise or anticlockwise, and there are clockwise and anticlockwise
centrifugal contours, both of which must be tested, as in (ii) and (iii).

11. Summary of method

First try theorems 1, 2, 3. Failing these find your case in table 1,
the case notation is introduced at the end of section 8, and £f (not SP)
mean that the bounds have (do not have) the ^-property. If instructed
to do so change your case by changing your bounds pit qt to p\, q\ by the
transformation A, B of section 8. Then use the table indicated, except that
in cases (f, 1) and (4, 1) one must first try theorem 4. To use a table work
out sx, s2, s3, s4. Then for i = 1, 2, 3, 4 take the value of the entry in the
i-th row of the table indicated by the sign of s{. Finally add up the four
values together with the expression at the head of the table. The bounds
have the ^-property iff the sum is negative. The special case (f, -j) is
explained in the last part of section 10.
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