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An embedding theorem for fields

J.W.S. Cassels

It is shown that every finitely generated field K of
characteristic O may be embedded in infinitely many p-adic
fields in such a way that the images of any given finite set C(
of non-zero elements of K are p-adic units. The result is
suggested by Lech's proof of his generalization of Mahler's
theorem on recurrent sequences. It also provides a simple proof
of Selberg's theorem about torsion-free normal subgroups of

matrix groups.

THEOREM I. Let X be a finitely generated extension of the rational
field Q and let C be a finite set of non-zero elements of K . Then

there exist infinitely many primes p such that there is an embedding

: K >
o Qp

of K into the p-adic numbers Qp for which

loel =1 (all c€cC ).
Here | | denotes the p-adic valuation.

This theorem does not appear to have been stated explicitly before.

The paper of Lech [3] contains implicitly a wesker form in which Qp is
replaced by some algebraic extension of a p-adic field.

Lech uses his result to generalize Mahler's theorem [4] about the
values taken by recurrent sequences to any field of characteristic O .
Indeed Mahler's proof works in a p-adic field and so the generalization is

an immediate consequence of  the original theorem and the embedding.
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Another application is:

THEOREM II (Selberg [6]; see also Borel [1]). Let G be a
finitely generated group of matrices in a field k of characteristic O .
Then G contains a normal torsion-free subgroup of finite index.

Proof. We can take for C +the set of non-zero elements of 4, A-l .
where 4 runs through a set of generators of G , and for K +the subfield
of Kk generated by € . We can also suppose that p # 2 . If a is as
given by Theorem I, the elements of the matrices in oG are all in the

p-adic integers Zp . The subgroup of oG consisting of the matrices of

the type I + pB , where B has elements in Zp , 1s clearly normal and is

torsion-free. EFor we have to show that (I+pB)n # I whenever B # 0 and

it is enough to show this when »n is a prime. But then

(I+pB)n =T +npB + ... + pan and the largest element of #npB is
p-adically greater than the elements of the subsequent terms. The

condition p # 2 is needed when n =p .]

The proof given below of Theorem I follows Lech's argument quite
closely. There is an additional twist, but that is also familiar from

other contexts. We require three simple lemmas.

LEMMA 1. Let
fj(Xl’ Xn) €Z[x,, ..., xn] (1=g4=J)

#0

be a finite set of non-zero polynomials in the indeterminates X., ..., Xn

with rational integral coefficients. Then there are rational integers

a cees @ such that

l’

fj(al, ceeaa) 20 (1=4=4)

Proof. If n =1 pick a

1 distinct from the finitely many roots of

the f3 . If n >1 use induction to pick a a, so that

5y cees

fj(xl’ @ys +--5 @) # 0 and then pick a .
LEMMA 2. Let g(X) € Z{X] be a non-constant polynomial in the

single indeterminate X with rational integral coefficients. Then there
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are infinitely many primes p for which there is a solution b € Z of the

eongruence
g(b) = 0 (mod p) .

Proof. Let B be a root of g(B) = 0 . Then it is enough to show
that there are infinitely many first-degree primes in Q(B) ; and this
follows from elementary analytic number-theory. (See, for example,
Borevich and Shafarevich [2], Chapter V, §3.1.)

LEMMA 3. Qp has infinite transcendence degree over (Q .

Proof. For Qp is uncountable but the algebraic closure of any
extension of (Q of finite transcendence degree is countable.
Proof of Theorem I. We note first that, by taking a larger set for (

if necessary, we may suppose that c_l € C whenever ¢ € C . It will thus

be enough to find primes p and embeddings o for which
(1) loe| =1 (all e €cC ).

Let xl, ooy xm (m = 0) be a transcendence base of K over Q.

Then Z,, ¢eey & are independent transcendentals and
1 m
kK =0y, =, ---,xm)
for some y € K which is algebraic over Q(xl, ey xh) . We can thus put

each ¢ € ¢ into the shape |

e = Uc(y, Tys oens xm)/Vc(xl, cees a%g

where
Uc(.Y, Xps ooes xm] €Z[Y, x5 -een X ] S
v(x, s x) €Z[x, ..., X ]
#0

Here 7 denotes the rational integers and Y, X,, ..., X are
indeterminates.

We can select an irreducible equation G(¥) = 0 for y over
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Q(xl, vees xm) of the shape
6(y) = 2(Y, =, ..., x )
where
HY, X5 oeos X)) € 2[7, Xps onns x";]
If H is of degree g in Y we denote the coefficient of el by
HO(Xl’ cees Xm] , SO
Hy(Xys «oes X)) € Z[X)s onvs X ]

m
#£0 .

The discriminant of @¢(Y) is of the shape A(:cl, v xm) , where

AXys «vos X ) € Z[Xys <oy X ]
#0.

By Lemma 1 we can pick ays cees @y € Z such that

(3) A.(al, ey am) £0,
("") Ho(a19 eeey amJ # 0 s
(5) v (ays --esa) #0 (a1l c € ).

By (4) and Lemma 2 there are infinitely many primes p # 2 for which there

is a solution p € I of the congruence

(6) H(b,al, cees am] =0 (mod p) .
On excluding finitely many of these primes we may also suppose by (3), (4),
(5), that
(7) A[al, ey am) $ 0 (mod p) ,
(8) Ho(al, cees am) $0 (wodp),
(9) Vc(al’ cees am] $0 (modp) (all e €cC ).
By Lemma 3 we can select m independent transcendentals 61, e em

in Qp . On replacing the BJ. by ptej with large positive integral ¢
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if necessary, we may suppose that

|6j|<1 (=4 =m).
Then

.=a,+0, (L=g4=m

£;=a; J( J )
is a set of independent transcendentals in Qp with
10 ~a.l <1.
(10) I«EJ z

Now by (6), (7), (10) and Hensel's Lemma there is an n € Qp with
[n-b| < 1 and
Hn, &, «ves §) =0 .

Thus

Yy->n
defines an isomorphism a of XK= Q(y, z,, ..., xh) with
Q(n: El’ ey gm] < Qp .
Further,

|Uc(ns Els LA ] Em)lfl > IVG(gl’ seey Em)lfl

IA

by (2) and since |§j| =1, |n] =1; and indeed

IVc(gl’ R 4 E”‘1)' =1
by (9) and (10). Hence

10,0 €y oo BV, (6 —os B

=1.

i}

|ac]

This completes the proof.
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