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Almost Everywhere Convergence of
Convolution Measures

Karin Reinhold, Anna K. Savvopoulou,
and Christopher M. Wedrychowicz

Abstract. Let (X, B, m, 7) be a dynamical system with (X, B, m) a probability space and 7 an invert-
ible, measure preserving transformation. This paper deals with the almost everywhere convergence
in L'(X) of a sequence of operators of weighted averages. Almost everywhere convergence follows
once we obtain an appropriate maximal estimate and once we provide a dense class where convergence
holds almost everywhere. The weights are given by convolution products of members of a sequence
of probability measures {v;} defined on Z. We then exhibit cases of such averages where convergence
fails.

1 Introduction
1.1 Preliminaries

Let (X, B, m) be a non-atomic, separable probability space. Let 7 be an invertible,
measure preserving transformation of (X, B, m). Given a probability measure 1 de-
fined on 7, one can define the operator pf(x) = > ., w(k) f(t*x) for x € X and
f € LP(X) where p > 1. Note that this operator is well defined for almost every
x € X and that it is a positive contraction in all L?(X) for p > 1, i.e,, ||uf|l, < || flp-

Given a sequence of probability measures {1, } defined on Z, one can subse-
quently define a sequence of operators as follows: p, f(x) = ZkeZ (k) f (7%x). The
case where the weights are induced by the convolution powers of a single probability
measure defined on 7 has already been studied. More specifically, given p a proba-
bility measure on 7, let " denote the n-th convolution power of i, which is defined
inductively as " = p"~! % i, where p?(k) = (u* p)(k) = Z]‘ez w(k — j)u(j) for all
k € Z.In [2] and [3] the authors studied the sufficient conditions on y that give L?,
(p > 1), convergence of the sequence of operators of the form

paf () =Y (k) f ().

kez

The type of weighted averages that will be considered in this paper are those whose
weights are induced by the convolution product of members of a sequence of proba-
bility measures {v;} defined on Z. Given this sequence of probability measures {v; },
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we define another sequence of probability measures {1, } on Z in the following way:

H1 =1y,

M2 = Vq * Uy,

Ly = VLK k.

We then define the sequence of operators

pn ) =Y (xR f(rx) = (k) (7).

kez kez

Note that these operators p, f (x) are well defined for almost every x € X and that
they are positive contractions in all L (X), for 1 < p < oo.

If one defines T}, f(x) = Ekez U (k) f(T5x), we may view g, f(x) = vy * --- *
v, f(x) as the composition of T1, Ty, ..., Ty i.e., iy f(x) = T}, - - - T1 f(x). Therefore,
the almost everywhere convergence of p, f(x) may be viewed as a special case of the
almost everywhere convergence of the sequence S, f(x) = T, - -- T} f(x), where the
T;’s are positive contractions of L? Vp > 1. If one defines

Suf(0) =T7 - T, Tp- - T1 f(x),

where T} denotes the adjoint of T;, one encounters a much studied situation. In our
case this would correspond to successive convolution of v; and 7;, where 7; is defined
by 7i(k) = vi(—k). When f € L? for 1 < p < oo and the T;’s are positive con-
tractions and T,1 = T;;1 = 1, Rota established the almost everywhere convergence
[11]. Akcoglu extended this result to the situation where the T;’s are not necessarily
positive [1]]. Concerning p = 1, Ornstein constructed an example of a self-adjoint
operator T satisfying the above for which T---Tf(x) = T"f(x) fails to converge
almost everywhere [7].

The above failure when p = 1 is in contrast to the almost everywhere convergence
of the Cesaro averages % ZZ:1 T f(x) (see [8]).

1.2 Definitions and Past Results

Before we mention a few of the results regarding weighted averages with convolution
powers, some definitions are essential.

Definition 1.1 A probability measure i defined on a group G is called strictly ape-
riodic if and only if the support of 1 cannot be contained in a proper left coset of G.

A key theorem by Foguel that we will use repeatedly is the following.

Theorem 1.2 ([4]) If G is an abelian group and G denotes the character group of the
group G, then the following are equivalent for a probability measure ji:
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(i) s strictly aperiodic;
(i) ify# 1,y € G, then

] < 1.

Definition 1.3 If p > 0, the p-th moment of 1 is given by >, [k|P ju(k) and is
denoted by m,, (). The expectation of y is Ekez kpu(k) and is denoted by E(p).
In [2]] Bellow and Calderén proved the following theorem.

Theorem 1.4 Let p be a strictly aperiodic probability measure defined on 7. that has
expectation 0 and finite second moment. The sequence of operators

paf () =Y " (k) f (%)
kez
converges almost everywhere for f € L'(X).

The proof of this theorem involves translating properties of the measure into
equivalent conditions on the Fourier transform of the measure.

2 Convolution Measures

In this section we discuss sufficient conditions on the sequence of probability mea-
sures {;} so that the operators

paf () =Y ) f(r*x) = (x5 1) (R) f(755)
kez kez

converge a.e. for f € L!(X). We will show that the maximal operator of this sequence
is of weak-type (1, 1), and then we establish a dense class where a.e. convergence
holds. Almost everywhere convergence will follow from Banach’s Principle.

2.1 Maximal Inequality
To establish a maximal inequality we will use the following theorems.

Theorem 2.1 ([2]) Let (u,) be a sequence of probability measures on 7,
f: X — R and the operators

(nf)) =D (k) f(745).
kez

Let Mf(x) = sup,, |unf(x)| denote the maximal operator. Assume that there is 0 <
a < 1andC > 0 such that forn > 1,

Ly

‘x‘lﬂx

[pn(x+ y) — pa(x)] < C forx,y € Z,2]y| < |x].

Then the maximal operator M satisfies a weak-type (1, 1) inequality; namely, there
exists C such that for any A > 0

m{xeX:(Mf)x) > A} < EHle forall f € L'(X).
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A sufficient condition to obtain the assumption of Theorem 2.1]is given by the
following corollary.

Corollary 2.2 ([2]) Let p, be a sequence of probability measures defined on 7. and let
[1,(t) denote its Fourier transform fort € [—1/2,1/2). We assume that

1/2
sup/ ) (1)||t] dt < oo
n J—1/2

Then there exist 0 < o < 1 and C > 0 such that forn > 1

Iyl
‘x‘lJra

[pn(x + y) — pa(x)] < C forx,y € Z,2]y| < |x].

Theorem 2.3 Let (v,) be a sequence of strictly aperiodic probability measures on 7.

such that

(i)  E(vy) =0 Vn;

(i) @(n) =35, ma(vi) = O(n);

(iii) there exist a constant C and an integer Ny > 0, such that
n>Nopandt € [—1/2,1/2).

Then for ji,, = vy * - - - % v, we have that

()] < e for

12
sup/ | ()| |t] dt < o0,
n /2

and therefore the maximal operator M f(x) = sup,,c; | 1in f (x)| is weak-type (1,1).

Proof Without loss of generality we can assume that Ny = 1. Let a,, = 4m*m,(v,).
Under our hypothesis one can show that for 0,(t) = >, v,(k)e*™™ and t €
[—1 / 2,1 / 2),

ph(t)] < aplt], forte[—1/2,1/2),
o) < ay, fort e [—1/2,1/2).

Observe that since ji,, = vy % -+ - % Uy,

fn(t) =[] 23®),

i=1

) =TI e @),

i=1 i=1
T
n n n n n
@) = T]ww @+ >3 T wwy @wd @
j=1i=1 j=1 k=1 i=1
i#] keAj i)k
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These imply that
A//(t)| <Za e —(n—1)Ct? +Z Zake (n—2)Ct? |t|2
j=1 k=1
k#j
S 47'['2@{)(7’1)67(”71)('}2 + 167T4¢(1’l)267(n72)Ct2|t|2,
so that

1/2 1/2 ,
[ e < oo [ e i ar
-1/2

—1/2
1/2 ,
+ 167r4¢(n)2/ e~ =VC 13 dy
—1/2
S I1 +I2a
where
1/2
I, = 4m%¢(n) e~ (ICE 1| gt = g ¢(n)/ (n=1)Ct'y gy
—1 2
(n—1)Ct? 1/2 5 ==1c 1
e ] sl S )
¢ (n) 2n—ncle =8\ e T am o1
o(n) i
=4 2 (1 I )
Cn—np\ ¢ ’
and
1/2 , 1/2 ,
L = 167 ¢(n)? / e~ =V 1P dr = 327t p(n)? / e~ (mACL3 gy
—1/2 0

1/4
= 16m*¢(n)’ / e "Iy dy
0

—(n=2)Cu | 1/4 1 1/4
— 167t 2(_M€ N / —(n=2)Cu 4 )
oW\~ Tacle Tzac ), © "
(n—2)C
— 3 1 1/4
— 167 2(7 e B —(n—2)Cu
™ gn) 4n—-2)C (n— 2)2C26 0
_ (n=2)C
= 167*9(n? (— 5 — ! )
n-2C -

(- () - () )

Both integrals I; and I, are bounded, given that ¢(n) = O(n) . Hence,

1/2
sup/ | (1)|[t] dt < oo [ |
noJo1p
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Lemma 2.4 ([O]) Let f(t) be a characteristic function of a random variable X. Then
for all real numberst, 1 — | f(2t)]* < 4(1 — | f()]?).

This lemma helps us prove the following result, which is a modification of a theo-
rem found in [9]].

Lemma 2.5 If|(u(t)| < c <1for > |t| > band for some b such that |b| < i, then
()] < 1= 12€2 for |¢] <b.

Proof Fort = 0 the claim is obvious. Choose t such that |¢t| < b. We can find n such
that 27"b < |t| < 27""1b. Then b < 2"|t| < 2b. Hence |1(2"t)| < c. Lemma 24

implies that by induction 1 — | £(2"t)]> < 4"(1 — |f(¢)|*) holds for all ¢ and any
characteristic function f. Using the fact that fu(r) = f(27¢) for —1/2 <t < 1/2, we

have that
1—|pQ")) =1 — [f2n2mt)]* < 4"(1 — |f@rt)]?) = 4" — |u(0)]?),
which implies that
1 1 1-¢
| 2 > _ | n 2 > _ _ 2 > - - 2
1—|p0)|* > 4n(l |p2"0)|%) > 4n(l ‘) > TR
Then |fu(1)] < 1 — 12€4 for |t| < b follows. m

Lemma 2.6 If uis a strictly aperiodic probability measure on 7 and [i(t) denotes the
Fourier transform of p fort € (—1/2,1/2], then there exist positive constants ¢ < 1

and d such that ,

1—c¢
8d2

which implies that there exists C > 0 such that |fu(t)| < e=* fort € [~1/2,1/2).

t* for|t| <d,

A <1 -

The third condition of Theorem 2.3 replaces the condition of strict aperiodicity in
the case when all of the v;’s are the same measure, i.e., v; = V.

Lemma 2.7 Let {v,} be a sequence of probability measures on 7. The following are
equivalent.

(i) V6>0

lim sup |2,(¢)| < 1 (asymptotically strictly aperiodic).
n— 00
[t|>6

(ii) There exist C and Ny such that
|2, ()] < e_Ctzforn > Np.
Proof (ii) = (i) is obvious. To show that (i) = (ii) , since for § > 0

lim sup |9,(¢)] < 1,

n=00 1156
given € > 0, we can choose § > 0 and N € Z such that SUP| =5 |9,(1)] < 1 — € for
n > N. By Lemmal24 |#,(t)| < 1 — Kt? for some constant K, n > N and |t| < § .

So that there exists a constant C such that |, (¢)| < e " forallt € [—1/2,1/2) for
n > N. [ |
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2.2 Dense Set and Almost Everywhere Convergence in L' (X)

Lemma 2.8 Let yi, be a sequence of probability measures on 7. such that
(i) thereis0 < a < 1andC > 0 such that forn > 1

«
[ (x + ) — pa(x)] < lecyjmx,y € 22ly| < |«
n— 00
(ii) f1,(t) —— O fora.e.t € [-1/2,1/2).
n—o0o
Then ||pn — ptn * 1|1 — O.

Proof Note that by the first assumption,
lpn(k) = pn * S1(K)| = [pn(k — 14 1) — pu(k — 1)

<C———, for2 —1].
_C(k—l)”“’ or2 < |k—1|

This implies that the sequence |, (k) — 1, %01 (k)| is bounded by a summable function.
By Lebesgue’s dominated convergence theorem the condition ||, — t, %01 |1 T
holds if we show that |, (k) — p,(k — 1)] n—)—oo> 0 for all k. Indeed, observe that

1/2

n(k) _ n(k _ 1) — An(t)(efzﬂikt . e*Z?Ti(kfl)t) dr
Iz 12 i

—1/2

1/2 ‘ .
< / fin ()] e 271 — ™| dt — 0asn — oo,
~1/2

by (ii) and the bounded convergence theorem. ]

Theorem 2.9 Let (v,) be a sequence of strictly aperiodic probability measures on 7.

such that

(i) E(v,) =0, Vu;

(ii) ¢(n) =X, my(vi) = O(n);

(iii) there exist a constant C and an integer Ny > 0, such that
n>Nopandt € [—1/2,1/2).

The sequence of operators {1, f } converges almost everywhere in L' (X).

()] < e Cr for

Proof Since the maximal operator has been shown to be of weak-type (1, 1) (Theo-
rem[2.3)), it is enough to show that convergence holds on the dense class { f+g—goT :
for = f, g €Ly} Clearly, u, f converges almost everywhere for 7-invariant func-
tions f. Then to show that (p,g—1,(go7)) converges almost everywhere for g € L,

it is enough to show that || t,g — px(g ° 7)||0o 2%, 0. But

| ing — Mn(goT)Hoo < | png — (o * 5l)gHoo
< ”un — Mn * 61||1Hg||007

=
so that it is enough to show ||, — f, * 1|1 "%, 0, which holds according to
Lemma 2.8 ]
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3 Collections with Uniformly Bounded Second Moments

Lemma 3.1 Let A C C* be the set
A= {(alaQZaZhZZ) o tay = 1,611,612 Z 03 |Zl| = |22| = 1}?
and let S(5,n) C A be the set

S(0,m) = {(a1,a2,21,22) : ar,a, > dand |z — 25| > 1n},0< 06,0 < n}.

IN

Then there exists p = p(8,m) < 1 such that for (ay, a2, z1,22) € S(6,7), |a121 +ax2,|
p holds.

Proof By the triangle inequality for points in A |a;z; +a,2;| = 1ifand only ifa;z) =
Aapz; for A > 0, which implies that (a;, a;, 21, z,) € A. Therefore F(a;, a;,21,2,) =
a121+a,2, has modulus 1 on A only on the set R = {(ay, ay,21,22),a1 = ay,21 = 25}
Observe that the points in S(8, ) are bounded away from R. Since S(d,7) is a com-
pact subset of A and F is continuous on A, the claim follows. [ ]

Lemma 3.2 Let v be a probability measure on /. with m;(v) < a and

sup v(fZ+r1) < p<1.
B,r€Z

Suppose 1/s is a rational number in (—1/2,1/2] with |s| < M and |l] < L%j Then
there exists 0 < o = o(a, p) < 1 such that |0(1/s)| < o.

Proof Let [s| < M. For |I| < [s/2], we have 0(}) = 3= _, v(m)e*™ ™19 Write
d = gcd(l,s); thenl = da, s = df, and m = v + r for some 0 < r < /3. Then

B—1

r=0

By assumption there exist two cosets 57 + 11, S+ r, and a value 6 that depends only
on M and p, such that v(5Z + r), v(BZ + r;) > §. Therefore,

I o ,
ﬁ(*) = v(BZ+ r1)62mr1(0¢/,‘3) +v(BZ+ 1,2)62mr2(a'//3)
S

+ Z V(m)ehi'"(”‘/m.
mé f1+rUB(Z+r),
Also since ged(a, ) = 1,
‘eZﬂirl(a/ﬂ) o eZ7rirz(a/;3)| _ |1 - eZm'(rzfrl)(a/ﬁ)| >n>0,

where 77 depends on M and p since || < |s| < M. Therefore, by Lemma [3.1] there
existsa 0 < ¢’ = 0’/(M, p) < 1 such that

[V(BZ+ 1) D) 4 y(BL + 1)) D < o (W(BL A+ 1) + v(BL+17)).

It follows that there exists 0 < o = (M, p) < 1 such that

p(l/s)| < o. [ |
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Theorem 3.3 Let v be a probability measure on 7. with my(v) < a and

sup v(BZ+1) < p<1.
B,reZ

—ct?

Then there exists a ¢ = c(a, p) such that |D(t)| < e

Proof By hypothesis and using Chebyshev’s inequality there exist § = (p,a), M =
M(a), and integers k, j such that |k|,|j| < M and v(k),v(j) > 0. Lets = k — j,
and consider the points {£ : p = 0,£1,...,+ LI—;lJ }. By Lemma[32]and the mean

value theorem, for p = £1,..., j:‘%‘ there exists an € = ¢e(a) such that for all t €
(% — €, % + ¢€) we have |P(t)| < o + 1_7”, where o is the value in Lemma[3.2l Let
I,=(2—¢L+e),wherep=0,+1,..., iL%J, and ¢ a point in the complement

of § = J, I,. We have

(ty) = V(k)ezmkm + V(j)ezmjto + Z l/(m)EZWimtO.

m#k,j
Now |2kt — 2mijto| — |1 — 2™ | and this is greater than a value > 0, which
depends only on s and € which depends only on m,(v) which is bounded by a. Thus

by Lemma[3.1] A -
[v(k)e™ ™ + v (j)e™ | < o (v(k) + v(j))

and therefore |#(ty)| < ¢’/ < 1 for some value o'’ = o'/(p, a). We therefore have
for |t| > € avalue 0’/ = max(o,0’’) < 1 dependent on p and a only, such that
|#(t)] < o’’. By Lemma [Z4] there exists a ¢’ such that |¢(t)] < 1 — ¢/t? < 1 for
0 < |#| < e. The conclusion follows by choosing a value ¢ small enough so that
&(1)] < e fort € (—=1/2,1/2]. n

Combining Theorems2Z.9land B3] we get the following theorem.

Theorem 3.4 If v, is a sequence of probability measures on 7. such that for all n,
(i)  E(ws) =0,

(i) mi(v) <a,

(iii) sup,sup, s vn(BZ+a) < p <1,

(iv) @(n) = Y my(v;) = O(n).

Then i, f (x) converges a.e. for all f € L'(X).

Remark 3.5 Let

l —
U —
2
w®=3,"  k=o.
0 otherwise,

where 1 > a, > 0 and a, — 0 fast enough so that H:; a, > 0. Then, using
an argument similar to that in [3]], one may show that the sequence i, f does not
converge a.e. for some f € L. Of course, the sequence v, (k) does not satisfy the
condition sup,, sup,, 5 vu(BZ+ o) < p while it does satisfy the condition m, (v,) < a.
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4 The Strong Sweeping Out Property
4.1 Introduction

In this section (X, B, m, 7) and 7 are as previously. Here we discuss cases where the
operators p, f(x) = Zkel ,un(k)f(Tkx) fail to converge, whereas before i, = v} *
-+ % 1. The case where 1, is given by the convolution powers of a single probability
measure (, on 7, i.e., i, = (", has been studied. In the event of convolution powers,
the probability measure ¢ given by 1 = %(50 + d1) is the prototype of bad behavior
for the resulting sequence of operators (u" f)(x). Using the central limit theorem,
it was shown in [3]] that the bad behavior of this prototype is typical, at least if y
has my () < oo and E(u) # 0( [3]). In [6], this result was extended to probability
measures with E(u) = 0 and m,(p) < oo for p > 1.

Definition 4.1 The sequence of measures (i, is said to have the strong sweeping out
property, if given € > 0, there is a set B € B with m(B) < e such that

limsup p,xp(x) = lae., liminfu,xp(x) =0a.e.

We will use the following in our constructions.

Proposition 4.2 ([10]) For any sequence of probability measures iy on 7. that are
dissipative, i.e., limy_, oo N (k) = O for all k € Z, if there exists b > 0 and a dense
subset D C {~ : |y| = 1} with liminfy_ o |in(Y)| = b for all v € D, then for any
ergodic dynamical system (X, B, m, T) the sequence ji, is strong sweeping out.

4.2 Strong Sweeping out with Convolution Measures

Theorem 4.3 Ifv, = a,d,, + (1 — a,)y,, where 7, is a probability measure, Y x,
either — 0o or — —oo and ) (1 —a,) < oo, then {1, = vy *- - -1, } is a dissipative
sequence.

Proof Without loss of generality, assume that | x,, — co. Suppose
Vy = an(sx,, + (1 - an),Yn

as above. Then we have > P(Z, # x,) <> (1 —a,) < oo, where Z, is a sequence of
independent random variables having distribution v,. By the Borel-Cantelli lemma
P(Z, # x,1.0) = 0. Letw € (Z, # x, infinitely often)‘. Then

N
SNW) =D Znw) = Dzt > X
m=1 Zyy(w)FXm Zin(W)=%m

> —c(w) + Z X; — 00 as N — oo,

Zn(w)=%m

as c(w) is a constant depending on w. Hence Sy(w) — oo with probability 1. There-
fore, when k is fixed, P(Sy = k) — 0. Indeed, since

P(NQI(Sm(w) > kVm > N)) =1
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and the sequence of sets is increasing, we have P(S,,(w) > kVm > N) — 1. But
P(Sy > k) > P(S,, > kVm > N)so P(Sy(w) = k) <1—P(Syw) > k) — 0.
Hence, lim, o0 ptn(k) = lim, o0 (v * -+ % v,)(k) = 0 and {u,} is a dissipative
sequence. |

Corollary 4.4 Let v, = a,0y, + (1 — a,)vn, where v, is a probability measure on Z,
such thatx, € 7, (1 — a,) < 00, |x,| > 1 and Y x, — 00 or — oo. Then for any
ergodic dynamical system (X, B, m, T) the sequence j1, = vy *- - - %1, is strong sweeping
out.

Proof Theorem[43]limplies that the sequence y,, = vy * - - - * 1, is dissipative. Note
that for r € [—1/2,1/2) we have

n n

Hin(8)| = IH p(t)| = ZH laje™ 2™ 4+ (1 — a))%(1)|
=1 =1

=

> 1|l — (1 = apl)]| = lﬁllazl ~(—a| = f{(zW )
1 =1 —1

=

1 N
al<2——) >c[Jar>c’ >0.
a I=1

1

The result follows by Proposition[4.2] Note that we have used the fact that for a; > 0,
> (1 — a;) < oo implies that [ ] a; converges to a nonzero value. [ |

Lemma 4.5 Letv, = a,0x,+(1—a,)vy,, where~y, is a probability measure, E(v,,) = 0,
|xn| > ¢, and a, > d for some constants c and d. Then my(v,) > —%—, where o = dc?.

1—a,’

Proof Since E(v,) = ayx, + (1 — a,)E(7y,) = 0, 2% = E(~,). Therefore

> a,—1

my (V) = apxs + (1 — ay)ma(v,) > apxi + [E(y,) 7 (1 — ay)

2 “;21’921
= a,x, +
1—a,
a
> .
1—a,

This provides a lower bound on the second moment, i.e., my(v,) > 2-. Ifin

addition > (1 —a,) < oo, once we allow [[a, > ¢ > 0, the second moments m,(v,,)
cannot grow arbitrarily slowly. ]

Example 4.6 Let a, be a sequence such that > (1 — a,) < oo. Letb, = [],

1—a,
where [x] denotes the integer part of the number x. Consider the measures given by

1+ 2b, B

3426, 7
vl =4 L k= p
U Y3+2, 00"

1

3+2b,’ k=—b,—1.
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These measures satisfy the assumptions of Theorem[4.4] As such, the sequence p,, f =
(11 % -+ * v,) f is strong sweeping out. It is noteworthy that all the measures in this
example additionally satisfy the property

2b% +4b, +2

ma(va) = 3+2b

b

which implies that the second moment grows like -—. One might think of this
sequence v, as

1 _
v b+ S0 ) = e+ (- 4,

where vy, = 1/2(0_p, + d_p,—1).
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