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On the Rational Points of the Curve
f (X,Y )q = h(X)g(X,Y )

Dimitrios Poulakis

Abstract. Let q = 2, 3 and f (X,Y ), g(X,Y ), h(X) be polynomials with integer coefficients. In this

paper we deal with the curve f (X,Y )q = h(X)g(X,Y ), and we show that under some favourable

conditions it is possible to determine all of its rational points.

1 Introduction

Let K be a number field and F(X,Y ) an absolute irreducible polynomial of K[X,Y ]

such that the algebraic curve C defined by the equation F(X,Y ) = 0 has genus ≥ 2.
Faltings proved that the set of rational points of C over K is finite (see [10]). Faltings’

proof and its simplifications (see [1, 27]) do not give us a method for determining
all the rational points of C. For this task, there are only three methods which are

applicable to particular families of curves, except for showing that C has no rational

points because C(Qp) is empty for some completion Qp of Q . Chabauty’s method
(see [4, 6, 11]) is applicable in the case where the Mordell–Weil rank of the Jacobian

of C over K is smaller than the genus of C. Some generalizations of it are given in

[2,3,9,12–14,28]. The method of Dem’janenko and Manin (see [8,20]) is applicable
in the case where there are m independent morphisms from C to an elliptic curve with

rank over K smaller than m. Some applications of it are given in [16, 26]. Finally, the
method of heterogeneous spaces [7], which is influenced by Chevalley–Weil theorem

[18, page 45], [5]), can be applied in some cases to reduce the problem to some

curves whose arithmetic is known. The above methods have been applied mainly to
curves of the form F(X,Y ) = Y q − f (X), where f (X) ∈ Q[X] and q = 2 or 3.

Some examples of non-superelliptic equations can be found in [24], which handles

the equation X4 + (Y 2 + 1)(X +Y ) = 0, in [15], which deals with a higher genus curve
that cover a genus 2 curve, and in [22], which studies some plane quartics.

In this paper, we reduce the problem of the determination of rational points of
the curve f (X,Y )q = h(X)g(X,Y ), where f (X,Y ), g(X,Y ), h(X) ∈ Z[X,Y ] and q =

2, 3, to the same problem for a finite family of curves of the form aY q = b(X), where
a divides a fixed integer and b(X) ∈ Z[X]. If the sets of rational points of curves

aY q = b(X) are finite and we are able to determine them, then we can find all the

rational points of f (X,Y )q = h(X)g(X,Y ). Note that sometimes it is possible after
the reduction to complete the solution using elementary methods (see, for instance,

the proof of Proposition 4.3). Bounds for the integral points of these curves have

been calculated using Baker’s method (see [23]).
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To state our results we begin with some notation. Let h(X) ∈ Z[X] \ Z, g(X,Y ) ∈
Z[X,Y ] \ {0}, and f (X,Y ) ∈ Z[X,Y ] \ Z. Suppose that f (X,Y ) and g(X,Y )h(X)

have no common factor and g(X,Y ) is not divisible by a polynomial of Z[X] \ Z. We
denote by R(X) the resultant of f (X,Y ) and g(X,Y ) with respect to Y . Let h(X) =

h1(X)h2(X), where h1(X), h2(X) are polynomials of Z[X] \ {0} without common

roots and with relatively prime coefficients, such that the multiplicities of the roots
of h1(X) are prime to q and q| deg h1. Further, we suppose that h2(X)g(X,Y ) is not a

constant. Write h1(X) = η(X − a1)k1 · · · (X − am)km , where the roots a1, . . . , am are

pairwise distinct. We suppose that R(ai ) 6= 0 (i = 1, . . . , m) and put

Θ = ηm deg R
m

∏

i=1

R(ai).

Let h0 be the leading coefficient of h(X) and R(h1, h2) the resultant of h1(X) and

h2(X). We suppose that f (X,Y ), considered as a polynomial with coefficients in

Z[X], has leading coefficient an integer f0 (so the monomial with the highest power
of Y is not divisible by X). Finally, let γ be the greatest common divisor of the coeffi-

cients of g(X,Y ). Consider now the polynomial F(X,Y ) = f (X,Y )q − h(X)g(X,Y ).
We prove the following theorem.

Theorem 1.1 Let (x, y) ∈ Q2 with F(x, y) = 0 and xh(x) f (x, y) 6= 0. Put A(q) =

qh0 f0R(h1, h2)Θγ. If q = 2, then there is a square-free integer b with b|A(2) and r ∈ Q

such that br2 = h1(x). If q = 3, then there are relatively prime square-free integers c1,

c2 with c1c2|A(3) and s ∈ Q such that c1c2
2s3 = h1(x).

Corollary 1.2 Let B2 be the set of square-free divisors of A(2) and B3 the set of cube-

free integers such that its prime divisors divide A(3). Suppose that for every b ∈ Bq either

the set of rational points of curve bTq = h1(X) or the set of rational points of surface

b−1Tq = h2(X)g(X,Y ) is finite and explicitly determined. Then the set of rational

points of F(X,Y ) = 0 is explicitly determined.

Note that the polynomial F(X,Y ) is not always irreducible. For instance, take

f (X,Y ) = Y a, h(X) = 1 − X2 and g(X,Y ) = Y 2a − X, where a is a positive integer.

Then f (X,Y )2 − h(X)g(X,Y ) = X(1 + XY 2 − X2).
The method of proof of Theorem 1.1 is based on the Chevalley–Weil theorem.

By this theorem, if φ : D → C is an unramified morphism of projective smooth
curves defined over Q , then there is a number field K such that φ−1(C(Q)) ⊆ D(K).

Suppose that the curves defined by F(X,Y ) = 0 and by F(X,Y ) = Tq − h1(X) = 0

are irreducible. Thus, in our case, C and D are the desingularizations of these curves,
respectively. In the proof of Theorem 1.1 we determine K and so we conclude that

the rational solutions to F(X,Y ) = 0 are covered by the rational points of finitely

many twists of Tq
= h1(X) which are explicitly given.

This paper is organized as follows. Section 2 is devoted to the proof of Theo-

rem 1.1. In Section 3, we prove that the desingularization of the curve defined by
F(X,Y ) = Tq − h1(X) = 0 is a an unramified cover of the desingularization of the

curve defined by F(X,Y ) = 0, provided that these two curves are irreducible. In Sec-

tion 4, we present some applications of Theorem 1.1, solving equations of the form
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f (X,Y )q
= h(X)g(X,Y ) over Q . Finally, in Section 5, we obtain, with a completely

elementary method, the rational solutions of the equation studied in [24].

2 Proof of Theorem 1.1

Consider an algebraic number w such that wq = h1(x) and let L = Q(w). Suppose

that L 6= Q . We denote by S the set of prime numbers p such that p|A(q). We
denote by Z(p) the local ring of Z at p and by Dp the discriminant of the integral

closure of Z(p) in L. If z = pru/v, where u, v ∈ Z \ {0} with gcd(u, v) = 1 and

r ∈ Z, then we set ordp(z) = r. Furthermore we denote by x̄, ȳ, f̄ (X,Y ), ḡ(X,Y ) and
h̄i(X) the reductions of x, y, f (X,Y ), g(X,Y ) and hi(X) modulo p, respectively. Since

p ∤ f0h0γ, we have that the polynomials f̄ (X,Y ), ḡ(X,Y ) and h̄i(X) are nonzero. Let

bi, j ( j = 1, . . . , n(i)) be the distinct roots of f (ai ,Y ) = 0. Since p ∤ f0h0, we deduce
that ai and bi j are integral elements over Z(p). Let K be the field generated over Q by

the elements ai , bi, j (i = 1, . . . , m, j = 1, . . . , n(i)). We denote by OK the ring of
integers of K .

Let p 6∈ S. We prove that p is not ramified in L. Suppose first that ordp(x) ≥ 0.
We separate the following two cases:

(i) h1(x) 6≡ 0 (mod p). The discriminant of the polynomial Q(T) = Tq − h1(x)
is ∆(Q) = (−q)qh1(x)q−1. Since ordp(x) ≥ 0, h1(x) 6≡ 0 (mod p) and p 6= q,

we deduce that ∆(Q) 6≡ 0,∞ (mod p). Thus, ∆(Q) is a unit in Z(p). Since Dp

divides ∆(Q), it follows that Dp is a unit in Z(p) and so p is not ramified in L.
(ii) h1(x) ≡ 0 (mod p). Let ℘ be a prime ideal of OK such that ℘ ∩ Z = (p).

We denote by āi and b̄i j the reduction of ai and bi j modulo ℘ (i = 1, . . . , m),
respectively. Since ai and bi j are integral elements over Z(p), we get āi , b̄i j ∈
OK/℘ . The equality h̄1(x̄) = 0 implies that (x̄, ȳ) = (āi , b̄i j) for some i and j.

Next, we consider the element z = h1(x)/ f (x, y)q.

We have h1(x) f (x, y) 6= 0 and so z is a nonzero rational number. The reduction
of z modulo p is

z̄ =
h̄1(x̄)

f̄ (x̄, ȳ)q
=

1

h̄2(āi)ḡ(āi , b̄i j)
.

Since p ∤ R(h1, h2)Θ, we deduce that h̄2(āi) 6= 0 and ḡ(āi , b̄i j) 6= 0. So, z̄ is a nonzero
element of the finite field Fp and hence z is a unit in Z(p). Putting ω = w/ f (x, y) we

have L = Q(ω) and ωq = z. The discriminant of the polynomial P(T) = Tq − z

is ∆(P) = (−q)qzq−1 and, since p 6= q, ∆(P) is a unit in Z(p). The discriminant
Dp divides ∆(P) and so it follows that Dp is also a unit in Z(p). Therefore p is not

ramified in L.

Suppose now that ordp(x) < 0. Thus 1/x lies in the maximal ideal of Z(p). Since

q|degh1, we have degh1 = qs, where s ∈ Z. Set θ = w/xs and H(X) = Xqsh1(1/X).
We have L = Q(θ) and θq = H(1/x). The discriminant of B(T) = Tq − H(1/x) is

∆(B) = (−q)qH(1/x)q−1. Thus ∆(B) ≡ (−q)qη 6≡ 0 (mod p) and so ∆(B) is a unit

in Z(p). Since Dp divides ∆(B), we obtain that Dp is also a unit in Z( p). Therefore p

is not ramified in L.

Let q = 2 and write h1(x) = r2b, where b, r ∈ Z and b is square-free. Then

https://doi.org/10.4153/CMB-2009-014-1 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2009-014-1


120 D. Poulakis

L = Q(
√

b). Since every p 6∈ S is not ramified in L and the discriminant of L

is either b or 4b, we deduce that b is a divisor of A(2). Finally, let q = 3 and set

h1(x) = s3c, where c, s ∈ Z and c is cube-free. Write c = c1c2
2 , where c1, c2 are

relatively prime square-free integers. Then L = Q( 3
√

c) and the discriminant of L is

−27c2
1c2

2 , if c1c2 6≡ 1 (mod 9) and −3c2
1c2

2 , otherwise. Since every p 6∈ S is not ramified

in L, c1c2 divides A(3).

3 Geometrical Interpretation

Let Q be an algebraic closure of Q . Suppose that F(X,Y ) is absolutely irreducible
and denote by C a smooth projective model of the curve defined by F(X,Y ) = 0 and

by D a smooth projective curve with function field Q(C)(t), where tq = h1(X). We

prove that D is an unramified cover of C. This is an immediate consequence of the
following result.

Proposition 3.1 The field extension Q(C)(t)/Q(C) is unramified.

Proof Let R = Q(X). If a ∈ Q , then we denote by R̂a the completion of R under

the discrete valuation ring Va of R defined by X − a. Similarly, we denote by R̂∞

the completion of R under the discrete valuation ring V∞ of R defined by 1/X. Let

F(X,Y ) = F1(Y ) · · ·Fr(Y ) be the decomposition of F(X,Y ) in irreducible factors

over R̂b, where b ∈ Q ∪ {∞}. The discrete valuation rings Vi (i = 1, . . . , r) of
Q(C) which extend Vb correspond to Fi (i = 1, . . . , r) and theirs completions are

R̂b(yi) ∼= R̂a[Y ]/(Fi(Y )) (i = 1, . . . , r), respectively (see [19, Chapter 14, §4]).

Let µi be the ramification degree of Vi above Vb. By [17, Proposition 12, page 52],

we have R̂b(yi) = R̂b(π1/µi ), where π = X−b if b ∈ Q and π = 1/X otherwise. Let b

be one of the roots a1, . . . , am of h1(X) with multiplicity k. Then Vi dominates the lo-
cal ring of C at a point (b, c) with f (b, c) = 0. Since R(b) 6= 0, we get g(b, c) 6= 0 and

so, g(X,Y ) defines a unit into Vi . Thus, from the equation f (X,Y )q = h(X)g(X,Y ),
taking the orders at Vi of functions defined by f (X,Y ), h(X) and g(X,Y ) on C, we

deduce that q|µi .

On the other hand, the extension R(t)/R is ramified only above a1, . . . , am with

ramification index equal to q. Thus, if V is a discrete valuation ring of R(t), then the

completion of R(t) at V is R̂a(t) = R̂a((X − ai)
1/q) if V lies above X = ai and R̂a

otherwise (see [19, Chapter 14, §4] and [17, Proposition 12, page 52]).

Let U be a discrete valuation ring of Q(C)(t) which extends Vb. If b 6= ai (i =

1, . . . , m), then the completion of Q(C)(t) at U is R̂b(yi) which coincides with the

completion of Q(C) at U∩Q(C). If b = a j , then the completion of Q(C) at U∩Q(C)

is R̂b((X − a j )
1/µi ). Since q|µi , we have R̂b((X − a j )

1/q) ⊆ R̂b((X − a j)
1/µi ) and

so the completion of Q(C)(t) at U is R̂b((X − a j )
1/µi ). Therefore, the extension

Q(C)(t)/Q(C) is unramified.

4 Applications

In this section we give some applications of Theorem 1.1, determining the rational

solutions of equations of the form f (X,Y )q = h(X)g(X,Y ). In Propositions 4.1 and
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4.2, in order to compute the rank of the elliptic curves involved, we used the package
“algcurves[Weierstrassform]” of Maple 7 for the calculation of a normal form and

next J. Cremona’s program mwrank.

Proposition 4.1 Let n, m ∈ Z with n ≥ 3 and m ≥ 1. Then the only rational

solutions to the equation

Y 2m
= (X2n − 1)(XY − 1)

are (X,Y ) = (±1, 0), (0,±1).

Proof We have X2n − 1 = (X4)2n−2 − 1 = (X4 − 1)[(X4)2n−2
−1 + · · · + 1]. The

discriminant of X2n −1 is −2n2n

and so, the resultant of X4−1 and (X4)2n−2
−1 +· · ·+1

is not divisible by primes > 2. Furthermore the resultant of Y m and XY − 1 with
respect to X is equal to 1. Let (x, y) ∈ Q2 be a solution of the above equation with

y 6= 0. By Theorem 1.1 we obtain there is r ∈ Q such that br2 = x4 − 1, where

b = 1 or 2. Thus, we consider the elliptic curves Eb : bY 2 = X4 − 1, where b = 1, 2.
The curve E1 is birational equivalent to the curve C1 : Y 2

0 = X3
0 + 4X0. The birational

equivalence is given by

(X0,Y0) =

(

2
X − 1

X + 1
, 4

Y

(X + 1)2

)

, (X,Y ) =

( X0 + 2

−X0 + 2
,

4Y0

(−X0 + 2)2

)

.

We have C1(Q) = {(0, 0), (2,±4),∞} and so we obtain the rational point of E1,

(X,Y ) = (1, 0). The curve E2 is birational equivalent to the curve C2 : Y 2
0 = X3

0 +16X0

by the relations

(X0,Y0) =

(

4
X − 1

X + 1
, 16

Y

(X + 1)2

)

, (X,Y ) =

( X0 + 4

−X0 + 4
,

4Y0

(−X0 + 4)2

)

.

We have C2(Q) = {(0, 0),∞} and we obtain again the rational point of E1, (X,Y ) =

(1, 0).

Proposition 4.2 The rational solutions of the equation

(1 + XY + X2 + Y 3)3
= X(X − 1)(X + 1)(X − Y )2

are (X,Y ) = (0,−1), (1,−1).

Proof The resultant of 1 + XY + X2 + Y 3 and (X − Y )2 with respect to X is equal to

R(X) = (1+2X2 +X3)2. Furthermore we have R(0)R(1)R(−1) = 64. Let (x, y) ∈ Q2

be a solution of the above equation with x 6= 0,±1 and x 6= y. By Theorem 1.1, there

is an integer b with b|4 and r ∈ Q such that br3 = x(x2 − 1). Thus we consider

the elliptic curves Eb : bY 3
= X(X2 − 1), where ±b = 1, 2, 4. The correspondence

(x, y) 7→ (−x, y) defines an isomorphism between the curves Eb and E−b. So, we

have to deal only with the following three cases:

(i) b = 1. The curve E1 is birational equivalent to C1 : Y 2
0 = X3

0 + 1. The set of

rational points of C1 is C1(Q) = {(−1, 0), (0,±1), (2,±3),∞}. The birational

equivalence between E1 and C1 is given by the relations

(X0,Y0) = (3X2 − 1 + 3Y X + 3Y 2, 9X3 − 6X + 9Y X2 − 3Y + 9Y 2X)
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and

(X,Y ) =

(

Y0(X0 + 1)

3 − 3X0 + 3X2
0

,
Y0(X0 − 2)

3 − 3X0 + 3X2
0

)

.

Thus we obtain E1(Q) = {(0, 0), (1/3,−2/3), (−1/3, 2/3), (±1, 0),∞}. It fol-
lows that E−1(Q) = {(0, 0), (−1/3,−2/3), (1/3, 2/3), (±1, 0),∞}.

(ii) b = 2. The curve E2 is birational equivalent to C2 : Y 2
0 = X3

0 + 4 and the
birational equivalence is given by the relations:

(X0,Y0) =

(−2Y

X
,

2

X

)

, (X,Y ) =

(

2Y0

4 + X0
3
,
−X0Y0

4 + X0
3

)

.

We have C2(Q) = {(0,±2),∞} and so we deduce that E2(Q) = {(±1, 0),∞}.
It follows that E−2(Q) = {(±1, 0),∞}.

(iii) b = 4. The curve E4 is birational equivalent to C4 : Y 2
0 = X3

0 + 16 and this

equivalence is given by the relations:

(X0,Y0) =

( −4Y

X
,

4

X

)

, (X,Y ) =

( 4Y0

16 + X0
3
,
−X0Y0

16 + X0
3

)

.

We have C4(Q) = {(0,±4),∞} and so, we get

E4(Q) = E−4(Q) = {(±1, 0),∞}

.

By the above procedure we obtain x ∈ {0,±1,±1/3}.

The following equation is solved using only Theorem 1.1 and some elementary

arithmetic.

Proposition 4.3 The only rational solution of the equation

(X + Y )20
= (7X2 − 2)(X2 + Y 2)

is (X,Y ) = (0, 0).

Proof The resultant of (X+Y )10 and X2+Y 2 as polynomials with coefficients in Z[X]

is equal to R(X) = 1024X20. The roots of the polynomial 7X2 − 2 are the numbers

±
√

2/7. We have R(
√

2/7)R(
√

2/7) = 230/720. Let (x, y) ∈ Q2 be a solution of the
above equation with x + y 6= 0. By Theorem 1.1, there is an integer b > 0 dividing

14 and r ∈ Q such that br2 = 7x2 − 2. We separate the following cases:

(i) If b = 1, then there are u, v, z ∈ Z with gcd(u, v, z) = 1 such that u2 = 7v2−2z2.

Thus u2 ≡ −2z2 (mod 7). If 7|u, then 7|z and we obtain 7|v. Thus gcd(u, v, z) >
1 which is a contradiction. So 7 ∤ u. Similarly, we have 7 ∤ z. Hence −2 is a
quadratic residue modulo 7, which is a contradiction.

(ii) If b = 2, then there are u, v, z ∈ Z with gcd(u, v, z) = 1 such that 2u2 =

7v2−2z2. It follows that v is even and so there is w ∈ Z such that u2 = 14w2−z2,

whence u2 ≡ −z2 (mod 7). As in the previous case, we have 7 ∤ u and 7 ∤ z. Thus

we deduce that −1 is a quadratic residue modulo 7, which is a contradiction.
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(iii) If b = 7, then there is a ∈ Q such that 7(2k+1)ea2
= x2 + y2, where e = ±1

and ord7(a) = 0. Let a = a1/a2, x = x1/x2, y = y1/y2, with ai , xi , yi ∈ Z

(i = 1, 2), gcd(a1, a2) = gcd(x1, x2) = gcd(y1, y2) = 1 and 7 ∤ a1a2. Suppose
that e = 1. Thus we have

72k+1(a1x2 y2)2
= (x1y2a2)2 + (y1x2a2)2,

and since 7 ∤ a2 we obtain that 7|(x1 y2)2 + (y1x2)2. If x1 y2 and y1x2 are not

divisible by 7, then we obtain −1 is a quadratic residue modulo 7, which is a
contradiction. Consider the case 7|x1 y2 and 7|x2 y1. Then either 7|x1 and 7|y1

or 7|x2 and 7|y2. If 7|x1 and 7|y1, then we deduce that 7|x2 y2 and so either 7|x2

or 7|y2, which is a contradiction. Suppose that 7|x2 and 7|y2. If ord7(x2) 6=
ord7(y2), then the above equality gives

2min{ord7(x2), ord7(y2)} > 2ord7(x2) + 2ord7(y2),

which is a contradiction. If ord7(x2) = ord7(y2), then x2 = 7rx3 and y2 = 7r y3,

where x3, y3, r ∈ Z, 7 ∤ x3 y3 and r > 0. Thus 7|(x1 y3)2 + (y1x3)2 and x1 y3, y1x3

are not divisible by 7. It follows that −1 is quadratic residue modulo 7, which is

a contradiction. Finally, we consider the case e = −1. We have

(a1x2 y2)2
= [(x1y2a2)2 + (y1x2a2)2]72k+1.

Since 7 ∤ a1, we have 72k+1|(x2 y2)2. It follows that 7|(x1 y2)2 + (y1x2)2. Working

as previously, we deduce a contradiction.

(iv) If b = 14, then, working as in case (iii), we obtain a contradiction.

Therefore there is no solution (x, y) ∈ Q2 with x + y 6= 0. If x + y = 0, then we

obtain x = y = 0.

Next, we determine the rational solutions of two classes of equations.

Proposition 4.4 Let p be an odd prime number ≡ 17(mod24) for which 2 is not a

quartic residue. Then the equation

(X2 + Y 2)2
= (4pX4 − 1)(3X2 + Y 2)

has no rational solution.

Proof Let (x, y) ∈ Q2 be a solution of the above equation. The resultant of X2 + Y 2

and 3X2 + Y 2 with respect to X is R(X) = 4X4. We have

R(1/ 4
√

4p)R(−1/ 4
√

4p)R(1/i 4
√

4p)R(−1/i 4
√

4p) = 1/p4.

By Theorem 1.1, there is an integer b > 0 dividing 2p and r ∈ Q such that br2 =

4px4 − 1. Hence, we have the following cases:

(i) If b = 1, the since p ≡ 1(mod8) and 2 is not a quartic residue modulo p,

the equation Y 2 = 4pX4 − 1 has no solution in rational numbers (see [25,

Proposition 6.5, page 316]).
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(ii) If b = 2, then it follows that there are u, v, z ∈ Z with gcd(u, v, z) = 1 such that
2v2z2 = 4pu4 − z4. If ord2(4pu4) = ord2(z4), then 2 + 4ord2(u) = 4ord2(z),

whence 4|2 which is a contradiction. Thus ord2(4pu4) 6= ord2(z4) and so

1 + 2ord2(vz) = min{2 + 4ord2(u), 4ord2(z)},

whence we deduce that 2|1, which is a contradiction.
(iii) If b = p, then there is a ∈ Q such that p(2k+1)ea2 = 3x2 + y2, where e = ±1

and ordp(a) = 0. Let a = a1/a2, x = x1/x2, y = y1/y2, with ai , xi , yi ∈ Z

(i = 1, 2), gcd(a1, a2) = gcd(x1, x2) = gcd(y1, y2) = 1 and p does not divide
a1a2. Suppose that e = 1. Thus we have

p2k+1(a1x2 y2)2
= 3(x1 y2a2)2 + (y1x2a2)2.

Since p ∤ a2 it follows that p|3(x1 y2)2 +(y1x2)2. If p ∤ x1 y2 and p ∤ y1x2, then −3

is a quadratic residue modulo p. But since p ≡ −1 (mod 6) this is impossible.

Suppose that p|x1 y2 and p|y1x2. Then either p|x1 and p|y1 or p|x2 and p|y2. If
p|x1 and p|y1, then we deduce that p|x2 y2 and so either p|x2 or p|y2, which is

a contradiction. Next, we suppose that p|x2 and p|y2. If ordp(x2) 6= ordp(y2),
then we have

2min{ordp(x2), ordp(y2)} > 2ordp(x2) + 2ordp(y2),

which is a contradiction. If ordp(x2) = ordp(y2), then x2 = psx3 and y2 =

ps y3, where x3, y3, s ∈ Z, p ∤ x3 y3 and s > 0. We have p|3(x1 y3)2 + (y1x3)2 and

p ∤ x1 y3, p ∤ y1x3. It follows that −3 is quadratic residue modulo p, which is a
contradiction. Finally, we consider the case e = −1. We have

(a1x2 y2)2
= [(x1y2a2)2 + (y1x2a2)2]p2k+1.

Since p ∤ a1, we have 72k+1|(x2 y2)2 and we deduce that p|(x1 y2)2 + (y1x2)2.

Working as previously, we get a contradiction.

(iv) If b = 2p then, working as in case 2, we obtain a contradiction.

Proposition 4.5 Let p be a prime ≡ 7 or 11(mod16), a be a nonzero integer with

(a/p) = 1 and µ be a positive integer. Furthermore, if p ≡ 7(mod16), then we suppose

that a has a prime divisor q with q ≡ 3 or 5(mod8). Then the only rational solution to

the equation

Y 2
= (X4 + p)(X2µ + aY 2)

is (X,Y ) = (0, 0). Here (a/p) denotes the usual Legendre symbol.

Proof The resultant of Y and X2µ + aY 2, as polynomials with coefficients in Z[X], is
equal to R(X) = X2µ. We have

R( 4
√

−p)R(− 4
√

−p)R(i 4
√

−p)R(−i 4
√

−p) = p2µ.

Let (x, y) ∈ Q2 be a solution of the above equation with xy 6= 0. By Theorem 1.1,

there is an integer b > 0 dividing 2p and r ∈ Q such that br2 = x4 + p. We have the

following cases:
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(i) b = 1. The curve E : Y 2
= X4 + p defines a principal homogeneous space for

the elliptic curve F : Y 2 = X3 − 4pX which has exactly two rational points at

infinity (see [25, page 310]) and so, it is isomorphic to F over Q . Furthermore,
F is isogenous to G : Y 2 = X3 + pX (see [25, page 310]). By [25, Proposition

6.2, page 311], we have rang G(Q) = 0. Thus F(Q) = {(0, 0),∞}. It follows

that the affine curve E has no rational point.
(ii) b = 2. Suppose first that p ≡ 11(mod16). Multiplying 2r2 = x4 + p by an

appropriate integer, we deduce that 2u2 = v2 + pw2, where u, v, w are relatively

prime positive integers. Thus (2/p) = 1. Since p ≡ 3(mod8), we obtain a
contradiction. Suppose p ≡ 7(mod16). Then there is s ∈ Q such that 2s2 =

x2µ + ay2. Multiplying by an appropriate integer we get 2u2 = v2 + aw2, where
u, v, w are relatively prime positive integers. It follows that (2/q) = 1, which is

a contradiction because q ≡ 3, 5(mod8).

(iii) If b = p, then there is s ∈ Q such that ps2 = x2µ + ay2. It follows that
pu2 = v2 + aw2, where u, v, w are relatively prime positive integers. Hence

(−a/p) = 1. Since p ≡ 3(mod4), we have (−1/p) = −1 and so (a/p) = −1,

which is a contradiction.
(iv) b = 2p. Working as above we get a contradiction.

5 The curve X4 + (Y 2 + 1)(X + Y ) = 0

In this section we determine all the rational solutions of the equation handled in [24]

in a completely elementary way.

Proposition 5.1 The rational solutions of the equation

X4 + (Y 2 + 1)(X + Y ) = 0

are (X,Y ) = (0, 0), (−1, 0).

Proof We apply the birational transformation X = (1 − V )/U , Y = −1/U to the

above curve and we obtain the curve (1 − V )4
= UV (U 2 + 1). Let (u, v) ∈ Q2

be a point of this curve with uv 6= 0. Suppose that u > 0 (and so, v > 0). Then

u = u1/u2 and v = v1/v2, where u1, u2, v1, v2 are positive integers with gcd(u1, u2) =

gcd(v1, v2) = 1. Thus (v2 − v1)4u3
2 = u1v1v3

2(u2
1 + u2

2).

We have gcd(v2v1, v2 − v1) = gcd(u2, u2
1 + u2

2) = 1 and so u3
2|v1v3

2 and v1v3
2|u3

2,

whence u3
2 = v1v3

2. Hence (v2 − v1)4 = u1(u2
1 + u2

2). Since gcd(u1, u2
1 + u2

2) = 1, there

are A, B ∈ Z such that u1 = A4 and u2
2 = B4 − (A4)2. Thus u2

2 = B4 − (A2)4. We
have either B2 = A4 = 1 or B2 = 1 and A = 0 (see [21, Chapter 4, page 17]). Thus

(u1, u2) ∈ {(1, 0), (0,±1)}, which is a contradiction. If u < 0, working as previously,

we get a contradiction.
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