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ON THE RUIN PROBABILITY OF THE GENERALISED
ORNSTEIN-UHLENBECK PROCESS IN THE CRAMER CASE

By DAMIEN BANKOVSKY, CLAUDIA KLUPPELBERG AND ROSS MALLER

Abstract

For a bivariate Lévy process (&, 1/);>0 and initial value Vj, define the generalised
Ornstein—Uhlenbeck (GOU) process V; := e (Vo + fot e~&—dny), t > 0, and the asso-
ciated stochastic integral process Z; := fé e dng, t >0.LetT, :=inf{t > 0: V; <
0| Vo =z} and ¥ (2) := P(T; < oo) for z > 0 be the ruin time and infinite horizon ruin
probability of the GOU process. Our results extend previous work of Nyrhinen (2001)
and others to give asymptotic estimates for ¥ (z) and the distribution of 7; as z — oo,
under very general, easily checkable, assumptions, when £ satisfies a Cramér condition.

Keywords: Exponential functionals of Lévy processes; generalised Ornstein—Uhlenbeck
process; ruin probability; stochastic recurrence equation

2010 Mathematics Subject Classification: Primary 60H30; 60J25; 91B30
Secondary 60H25; 91B28

1. Introduction

Let (¢, n) = (&, n:)r>0 be a bivariate Lévy process on a filtered complete probability space
(2, F,TF, P), and define the generalised Ornstein—Uhlenbeck (GOU) process (V;);>0 by

t
V, i=eb (Vo +/ e b d’ls)v t=0, (1.1)
0

and the associated stochastic integral process Z = (Z;);>0 by

t
Z ::f e 5 dn. (1.2)
0

The random variable Vj is not necessarily independent of (V;);~¢. To avoid trivialities, assume
that neither & nor n are identically 0.

Such processes have attracted attention over the last decade as continuous-time analogues of
solutions to stochastic recurrence equations (SREs); cf. Carmona et al. [7], [8] and Erickson and
Maller [12]. The link between SREs and the GOU process was made in [10]. GOU processes
turn up naturally in stochastic volatility models (e.g. the continuous-time GARCH model of
Kliippelberg et al. [21]), but most prominently as insurance risk models for perpetuities in life
insurance or when the insurance company receives some stochastic return on investment; such
investigations started with Dufresne [11] and Paulsen [27]. More references are given later.

This paper is intended to fill a gap left between Bankovsky [2] and Bankovsky and Sly [3],
where more details on the insurance background can be found. Define

T, :=inf{t >0: V, <0 | Vp =z}, z2>0
© Applied Probability Trust 2011
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16 D. BANKOVSKY ET AL.

(with the convention throughout that inf & = 00), and let
V() = P(inf Vi <0 ‘ Vo = z) - P(inf 7 < —z) —P(T, <00), 2z>0, (1.3)
>0 t>0

be the infinite horizon ruin probability for the GOU process. Note that ¥ (z) is a nonincreasing
function of z, and we can ask how fast it decreases as z — 00.

Our main result, Theorem 2.1, provides a very general asymptotic result for ¥ (z) as z — oo
for the case when lim;_, o, Z; exists as an almost-sure finite random variable and shows that,
under a Cramér-like condition on &, 1r(z) decreases approximately like a power law. This is
an extension of a similar asymptotic result of Nyrhinen [26], who, like us, utilised a discrete-
time result of Goldie [15] for the proof. We use more recent developments in the theory of
discrete-time perpetuities and the continuous-time GOU process to update Nyrhinen’s results.
In Section 3 we provide some examples which cannot be dealt with by the prior results but
satisfy the conditions of our theorem.

To conclude this introduction, we describe some previous literature relating to the GOU
process and its ruin probability, beginning with those papers which examine the GOU process
in its full generality. The process appears implicitly in the work of de Haan and Karandikar [10]
as a continuous generalisation of an SRE. Basic properties are given by Carmona et al. [8].
A general survey of the GOU process and its applications is given by Maller et al. [24]. Exact
conditions for no ruin (¥ (z) = 0 for some z > 0) are given by Bankovsky and Sly [3] whilst
conditions for certain ruin (¢ (z) = 1 for some z > 0) are examined by Bankovsky [2].

The study of the GOU process is closely related to the study of integrals of the form Z,
defined in (1.2). It was shown in Lindner and Maller [23] that stationarity of V is related to
convergence of a stochastic integral constructed from (£, 1) in a similar way to Z.

Among the few papers dealing with Z in its full generality, Erickson and Maller [12] gave
necessary and sufficient conditions for the almost-sure convergence of Z; to a random variable
Zso ast — 00, and Bertoin er al. [4] presented necessary and sufficient conditions for the
continuity of the distribution of Z,,, when it exists. Fasen [13], using point process methods,
gave an account of the extremal behaviour of a GOU process.

There are a larger number of papers dealing with V and Z when (&, 1) is subject to restrictions.
We discuss a selection of those papers which are relevant to ruin probability. Harrison [17]
presented results on the ruin probability of V when £ is a linear deterministic function and
is a Lévy process with finite variance. His approach is based on an exponential martingale
argument, which corresponds to the Cramér case. The heavy-tailed case is investigated by
Kliippelberg and Stadtmiiller [20] and extended by Asmussen [1]. See also Kliippelberg et al.
[22] and Maulik and Zwart [25].

Paulsen [27] generalised Harrison’s results, and presented new ruin probability results for
V, when & and n are independent with finite activities. This independent case is also treated
in Kalashnikov and Norberg [18] and Paulsen [28], [29]. Chiu and Yin [34] generalised some
of Paulsen’s results to the case in which 7 is a jump-diffusion process. Cai [6] and Yuen et al.
[36] presented results when 7 is a compound Poisson process.

Most works containing restrictions on (€, n) focus on the case in which Z; converges to Zs
ast — o0; cf. Yor [35] and Carmona et al. [ 7]. Gjessing and Paulsen [14] studied the distribution
of Z when & and n are independent with finite activity, and obtained exact distributions for
some special cases. Hove and Paulsen [30] used Markov chain Monte Carlo methods to find
the distribution of Z, in some special cases. Kliippelberg and Kostadinova [19] and Brokate
et al. [5] provided results on the tail distribution of Z, when 7 is a compound Poisson process
plus drift, independent of &.
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2. Main results

Our main results apply under a Cramér-like condition on &: assume that
Ee ™ =1 forsome w > 0. (2.1)

The following consequences of (2.1) are well known and easily verified. Condition (2.1)
implies that E&; is well defined, with E&;” < oo, E$1+ € (0,00], and E&; € (0, o0], and
so lim;_. & = oo almost surely (a.s.). Furthermore, Ee %! is finite and nonzero for all
o € [0, w], and ¢(@) := InEe~*¢! is finite at least for all @ € [0, w). The derivatives ¢’ («)
and ¢’ («) are finite at least for all « € [0, w), and ¢”(«) € (0, 0o] for all @ > 0. So c(a) is
strictly convex for & € [0, 00) and u* := ¢/ (w) = — E[£1e %] € (0, 00].

We will need the Fenchel-Legendre transform of c, defined as

c*(v) ;= sup{av — c(a): a € R}, veR. (2.2)
Next, let
ap = supf{a € R: c(a) < 00, E|Z1]* < o0} € [0, 0], (2.3)
and define the constant
xp := lim € [0, o0].

a—ao— (o)

A distribution is spread out if it has a convolution power with an absolutely continuous
component.

Theorem 2.1. Suppose that the following conditions hold:

(Cl) ¥(z) > 0forall z >0,

(C2) there exists w > 0 such that Ee~"§ = 1 (i.e. (2.1) holds),
(C3) there existe > 0and p,q > 1 with1/p + 1/q = 1 such that

E[efmax{l,w+€}p§'|] <00 and E[|nl|maX{1‘w+€}‘I] < 00.

Then 0 < xo < 1/u* < oo, the function

xc*(1/x)  forx € (xo, 1/u*),

R(x) := forx = 1/u*,

is finite and continuous on (xg, 00) and strictly decreasing on (xo, 1/u*), and we have

lim (In z)f1 InP(T, <xInz) = —R(x) foreveryx > xp. (2.4)
77— 00
In addition,
lim (Inz) ' Iny(2) = —w. (2.5)
—>0

If, further, the distribution of &1 is spread out then there exist constants C_ > 0 and k > 0 such
that
Y(Z) =C_+o0(z ™) asz— oo. (2.6)
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Remark 2.1. (i) ¥ (z) > Oforall z > Ois of course a logical assumption to make in the context
of Theorem 2.1, though not necessarily easy to verify. Necessary and sufficient conditions
for it in terms of the Lévy measure of (£, n) are given in [3]. The moment conditions in
Theorem 2.1 are also easily expressed in terms of the Lévy measure of (£, n); cf. Sato [32,
p. 159]. They imply that E[supo—,; | Z;|™{1:¥+8}] < 0o (see Lemma 5.1 below). We also
have E[In(max{1, |11]})] < oo in Theorem 2.1, and lim;_, o & = 00 a.s., 50 Z; converges a.s.
to a finite random variable Z4, as t — oo by Proposition 2.4 of [23] or Theorem 2 of [12].

(ii) Let Z, =7, — info<s<; Zs be the process reflected in its minimum, and set
(M, Q,L):= (@, Z1,—e" Z)).

Then the value C_ in (2.6) is given by Equation (2.19) of Goldie [15], namely,

co—-1 E[((Q n Mmin{i, inf zt}) )w - ((M inf Z,) )w]
wu* t>0 t>0
When & and n are independent, it was pointed out by Paulsen [29] that this constant can be
written in a slightly different form, which, by Theorem 4 of [3], is also true in the dependent
case. Namely, let G(z) := P(Zy =< 2), h(2) :=E[G(~Vr,) | T; <o00] €[0,1], and h :=
lim;_, 5 h(z). Then

C_=

E[(Q +MZx) )" — (MZs))"].

wu*rh
(iii) The requirement that &; is spread out can be replaced with the less restrictive requirement
that £7 be spread out, where T is uniformly distributed on [0, 1] and independent of £. We omit
details of this, which can be carried out as in [29].

3. Examples

In this section we provide examples of Lévy processes for which (C1)—(C3) of Theorem 2.1
are satisfied. Note that (C2) and (C3) involve only the marginal processes & and n, and they
apply to all examples treated in the literature so far; cf. Kliippelberg and Kostadinova [19]
for detailed references. The only condition which may involve dependence between & and 7
is (C1).

We denote the characteristic triplet of (£, n) by ((J¢, V), Z¢,y, Ilg ;). The characteristic
triplet of the marginal process & is denoted by (%, o2, I[1g), where

Ye = Ve +/ xTg p(d(x, ¥)) (8.1)
{lx|<)N{x24+y2>1}

and 052 is the upper-left entry in the matrix X¢ ,. Similarly for . The random jump measure
and Brownian motion components of (&, n) will be denoted respectively by N¢ ; and (Bg, By));
see Section 1.1 of [3] for further details.

Example 3.1. (Bivariate compound Poisson process with drift.) Let (N;);>0 be a Poisson
process with intensity A > 0, and, independent of it, let (X;, ¥;);en be an independent and
identically distributed (i.i.d.) sequence of random 2-vectors. For yg, y;; € R, set

Ni
Em) = Qe vt + Y _(Xi Y, 120,

i=1
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with E | X| < oo, and A, y¢, and E X such that y¢ + AE X > 0. For this process,
c(@) =InEe %! = —aye — A(l — Ee ) < 00

for @ € R such that Ee %X is finite, with ¢/(0) = —y —AE X < 0.
We consider the special case where (X, Y) is bivariate Gaussian with mean (my, my) and
positive definite covariance matrix

2
. o ox,y
EX,Y = X 2 .
ox,y Oy

Then (C3) obviously holds. For (C2), note that

2.2
oy«

cla) = —aye — k(l — exp{—mxa + }> — 00 aso — 00. (3.2)
Consequently, a Lundberg coefficient exists and (C2) is satisfied. To establish (C1), we note
that (€, n) is a finite variation process and invoke Remark 2(2) of [3], also using the notation
from that paper. In fact, by Remark 2(2), ¥(z) = 0 for some z > 0 would imply that
Px y(A3) =P(X <0, Y <0) =0, which obviously is not the case. So condition (C1) holds.

Example 3.2. (Brownian motion with drift.) In this case

G n) = (e, vt + (Ber, Byp), >0,

where y¢ > 0, and (Bg, B;)); is bivariate Brownian motion with mean 0 and positive definite
covariance matrix; it is easily seen that (C1)—(C3) are satisfied.

Example 3.3. (Jump diffusion & and Brownian motion n.) Let (B;);>o be Brownian motion
with mean 0 and variance o2, let (N¢)r=0 be a Poisson process with intensity A > 0, and let
(Xi)ien be i.i.d. random variables, all independent. Set

Ny
@mm=o@mn+(&+§:&ﬁ), t>0,
i=1
where ye > 0, and assume that y¢ + AE X > 0. Condition (C1) holds, since the Gaussian
covariance matrix is of the form
(0> +A1EX?* 1
23777 = 1 2>

o

and, hence, is not of the form excluded by Theorem 1 of [3]. Moreover, c(«) is the same as in
(3.2) with the addition of a term «?52/2, so again ¢/(0) = —y —AE X < 0.

(a) Now assume that X is, as in the Merton model, normally distributed with mean mx and
variance oy. Then (C2) and (C3) are satisfied just as in Example 3.1.

(b) The picture changes slightly when we consider Laplace distributed X withdensity f(x) =
pe ¥l /2forx e Randp > 0. ThenEe ™ = p((p+a) '+ (p—a) V) /2for—p <a < p
with singularities at —p and p. Moreover,

@) = -y +a02+A£( ! - ! )
: 2\p—?  (p+a?)
implying that ¢’(0) = —yz < 0. So a Lundberg coefficient w > 0 exists. Since the normal

random variable B; has absolute moments of every order, for (C3) to hold, it suffices that
w < p, which is guaranteed, since p is a singularity of c.
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Example 3.4. (Subordinated Brownian motion & and spectrally positive n.) Let (B;);>0 be a
standard Brownian motion, and let (S;);>¢ be a driftless subordinator with ITg{R} = co. For
constants u, yg, and y;,, define

&) = (Ve, vt + (B(Sy) + S, St t>0.

Subordinated Brownian motions play an important role in financial modeling; cf. Bankovsky
and Sly [9, Chapter 4]. The bivariate process above has joint Laplace transform

exp{(a1ye + a2yy)t} Elexp{ai (B(S;) + uS;) + 25}
= exp{(a1ys + aoyy)t} Elexp{Wp(a1)S: + (@10 + a2) S}l
= exp{t[Vs(Wp (o) + a1pu +az) + a1ys + ayyl),

where Wp and W are the Laplace exponents of B and S, respectively. Thus, W (o) = —a?/2.
By setting «p = 0 and t = 1, we obtain

c(@) =InEe ™" = Wg(Wp(—a) —ap) — ays = Us(—1a? —ap) — aye.
Consider the variance gamma model with parameters ¢, A > 0, where S is a gamma subordinator

with Lévy density p(x) = cx~'e ™ for x > 0 and Laplace transform Ee™*5 = (14-u/A)"¢.
Assume that yz +cp /A > 0 and y; < 0. Now, Ws(u) = —cIn(l — u/A), giving

c(a) = —ays —cln(l + a a_)

Here c() is well defined for & € (1 — /0% + 2, . + /2 + 22), which includes 0, and
c'(0) = —ye — cu/A < 0. Then, since c(p + +/ w2 + 2)) = oo, the Lundberg coefficient w
exists.

In order to check (C1), we have, in the notation of Theorem 1 of [3], ITg ,(A2) = Ig ,(A3) =
0, since 1 has only positive jumps, and 6, = 0. Now, with u > 0,
A ={x<0,y>0:y<ue—D}={x=>0,y>0:y <u(c" — D}
Since IT,(R) = oo, n has jumps arbitrarily close to 0, and we have Il ,(A}) > 0 foru > 0,
while Hg,n(Ag) =0. Thus, 04 :=inf{u > 0: Il¢ ,(A}) > 0} = 0. There is no Gaussian

component, so crg = 0, which puts us in the situation of the second item of Theorem 1 of
[3], and to verify that ¥ (z) > 0 for all z > 0, we only need (since 6, = 64 = 0)

g0) =, —/ yIg »(dx, dy) <O.
x24y2<1

But, by (3.1),

Vn="vy —/ yTg 5 (dx, dy) < yy;
0<y<Il, x24+y2>1

thus, g(0) < y, < 0, since we chose y, < 0. Hence, (C1) holds in this model.
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4. Discrete-time background and preliminaries

Our continuous-time asymptotic results will be transferred across from discrete-time ver-
sions, and our first task in the present section is to show how (V;);>0 can be expressed as a
solution of one of two SREs, and give the associated discrete stochastic series for (Z;);>0.
Earlier papers in this area also adopted this approach and we will tap into some of their results
in proving Theorem 2.1.

We begin by describing the discrete-time setup we use. For n € N, consider the SRE

Yn :AnYn—l+Bna (4-1)

where (A, By)nen is an i.i.d. sequence of R2-valued random vectors independent of an initial
random variable Y. The recursion in (4.1) can be solved in the form

n_YonA +ZHAB (4.2)
i=1 j=i+l1

(with [T}_, 1 = 1). From (1.1) we can write, for n € N, denoting f(’:l_l)+ = f(n_l ]’

n—1 n
V, = efr - (eé"—' (Vo + / e 5 dns>> + e / e 5= dny. (4.3)
0 (n—1)+

Thus, if we let Yy = Vj and define the R?-valued random vectors

n
(An’ Bn) = <e$n§n—l , e%‘n / e*%‘.rf dns)’
(n—1)+

then V), satisfies (4.1). An alternative formulation considers for n € N the SRE
Yn = CnYnfl +CnDn, (4-4)

where (Cy,, D;),eN is an i.i.d. sequence independent of Y. The solution is

,,_Yol_[c,+Z]_[c,

i=1 j=i

Using (4.3), it is clear that V,, is a solution of (4.4) if we let Vy = Y and define

n
(Cy, Dy) = <e.-‘5n—fnl,e¥n1 / e 5 dns>. (4.5)
(n—1)+

Then it is easily verified that

n

i—1
Zy = Z ]_[ cj—lol- (4.6)
i=1 1

=1 j=
(with H?’:l = 1). Note that even when & and 7 are independent, the random variables A, and
B,, may be dependent, and similarly for C,, and D,,. But we have the following result.

Lemma 4.1. (A, By)uen and (Cy, Dy),eN are i.i.d sequences.
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Proof. We begin by proving that the sequence (C,, Dy),cn is 1.i.d. Fix n € N, and
define the new Lévy process (és, Ns) = Ewn-1)+s — &n—1, Nu—1)+s — Mn—1) for s > 0. Thus,
(és, Ns)s>0 = (&5, ns)s>0. Note that we can bring the term ebn—1 through the integral sign in (4.5)
and write D, = [ (':1_1) i e~ &-=8-1) dp,. The Lévy process (&, 1) has independent increments,

so (Cp, Dy) is independent of (Cy,, Dy,) for every n # m. Now

n
(Cn, Dn) = (egn_snl’ / e_(%—x—_gnfl) dns>
(n—1)+
_ 1 _
= (e& ’/‘ efss— df’s)
0+
1
<e§l , / e*ésf dns>
0+

= (C1, D).

IIo

Thus, we have proved that (C,, Dp,),eN is an i.i.d. sequence. This implies that (C,,, C,, Dy,),eN
is also an i.i.d. sequence, and then (A,, B;),cN is also an i.i.d. sequence since

n
(Cn’ CnDn) — <e§n_gnl , ef}l /
(

C_SF dns> = (An’ By).
n—1)+

In order to directly access particular results from previous papers, when discretizing V, we
will use the approach via recursion (4.1) and sequence (4.2), whereas when discretizing Z, we
will use the approach via series (4.6). There has been significant attention paid to sequences
of the form (4.2) and (4.6), and they are linked via the fixed point of the same SRE; see Goldie
and Maller [16] and Vervaat [33].

Next we describe two important papers relating to the GOU process and its ruin time. In
them, &€ and ) are general Lévy processes, possibly dependent. The relevant papers are Nyrhinen
[26] and Paulsen [29], which are very closely related to Theorem 2.1.

Nyrhinen [26] contains asymptotic ruin probability results for the GOU process, in which
(&, n) is allowed to be an arbitrary bivariate Lévy process. He discretized the stochastic integral
process Z and deduced asymptotic results in the continuous-time setting from similar discrete-
time results. We describe Nyrhinen’s results in some detail, and then make some comments.

Let (M,, On, Ly),en be ii.d. random vectors with P(M > 0) = 1 and (M, Q,L) =
(M1, Q1, L1). Define the sequence (X,),eN by

n i—1 n
X, = Z ]_[ M;Qi+ [ M;L, with Xy =0. (4.7)
i=1 j=1 j=1

X

For u > 0, define the passage time 7, := inf{n € N: X,, > u} and the function ¢y () :=

InE M. Assume that there exists a w™ > 0 such that E M*" = 1. Define

ag' = supf{a € R: cp(ar) < 00, E|Q|% < 00, E(MLT)¥ < oo} € [0, oo]. (4.8)
Also, let
yi= sup[y eR: P(sup X, > y) > 0} € (—o00, 00]. (4.9)
neN

Nyrhinen provided asymptotic results for X, under the following hypothesis.

+

(H) Suppose that 0 < w™ < oy < oo and j = 0.
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Under hypothesis (H), and assuming that P(M > 1) > 0, the following quantities are well

defined: 1
+. + . :
uroi= € (0,00) and x, := lim
chy(w) O Sap— @)

€ [0, 00).

Let cj,,(v) be the Fenchel-Legendre transform of ¢y, as in (2.2). Define the function
R: (xg, 00) = RU {00}

by

REx) i xch,(1/x) forx € (xg, 1/u™),
forx > 1/ut.

In our situation, R is finite and continuous on (x(;’ , 00), and strictly decreasing on ()car ,1/uh).

Proposition 4.1. (Nyrhinen’s main discrete results [26, Theorems 2 and 3].) Assume that
hypothesis (H) holds. Then the following statements also hold.

(i) Forevery x > x,

lim (Inu) "' InP(zX < xlnu) = —R(x) (4.10)
u—>o0o
and
lim (Inu) "' InP(zX < 00) = —w. (4.11)
u—>00

(ii) If the distribution of In M is spread out, there exist constants C4 > 0 and k > 0 such
that .

u” P(r¥ <00) =Ci+ow™) asu— oo. (4.12)

The constant C4 can be obtained from the formula in Theorem 6.2 and Equation (2.18)

of Goldie [15]. Nyrhinen continues in his Theorem 3 to give equivalences for the condition

y = 00, but they are difficult to verify, as he admits. We discuss these more fully later.
Nyrhinen’s continuous result is obtained by applying his discrete results to the case

(M,, 0,) = <e_(§n_$nl)’ ebn-1 /
(

n—1)+

n

e & dns> =(C; !, Dy) (4.13)

(cf. (4.5)), and

t n
L, = ebn ( sup / e 5 dny — / e 5 dfls)~ (4.14)
n—l<t<nJm—1)+ (n—1)+

The sequence (M, Q,, Ly)nen is ii.d., as follows by an easy extension of our proof of
Lemma 4.1. With these allocations, Z,, can be written via (4.6) in the form

n i—1 n

Zn = Z ]_[ M;Qi =X, — L, || M;. (4.15)
1

i=1 j=1 j=
Nyrhinen proved the following result with equality in distribution.

Proposition 4.2. Let (M, Q,, Ly), and let Z, be as defined in (4.14) and (4.15). Define X,
asin (4.7). Then
sup Z; =X, and sup Z; = mlax X

n—l<t<n 0<r<n m=l1,...,n
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Proof. For n € N, we have

t
sup Z; =Z,—1+ sup / e - dns
(

n—l<t<n n—l<t<nJm—1)+

n
=Zy +f e 5= dns + e 5 Ly
(n—1+

n
=Xy —[[MjLa+e 5L,
j=1

= X,.

This further implies that supy, <, Z; = max;u=1,...n Xm-

.....

Define the first passage time of Z above u > 0 by 77 :=inf{t > 0: Z, > u}. Then
Proposition 4.2 implies that, for all # > 0,

P(zZ <t)=P(rX <t) and P(r/ < o0) =P(r) < c0).

So (4.10) and (4.11) hold with rux replaced by ruz, when hypothesis (H) is satisfied for the
associated values of (M,,, Q,, L,). If, further, the distribution of In M is spread out then (4.12)
holds with X replaced by 2. This is the content of Theorem 4 and Corollary 5 of [26].

Remark 4.1. We make some comments on [26].

(i) We begin with the discrete results. Firstly, the sequence X,, defined in (4.7) converges as
n — oo a.s. to a finite random variable under hypothesis (H). To see this, note that if we choose
L, = L then X, is the inner iteration sequence 7, (L) for the random equation ¢ (1) = Mt + Q.
Goldie and Maller [16] proved that I,, (L) converges a.s. to a finite random variable if and only if
I—[';-:1 M; — Oas.asn — ooand Iy, ¢ < 00, where I ¢ is an integral involving the marginal
distributions of M and Q. Since these conditions have no dependence on the distribution of L,
it is clear that they are precisely those under which X, converges a.s. for i.i.d. (M, Oy, L;).
We now show that these conditions are in fact satisfied under hypothesis (H), and, thus, the
sequences X, and > ;_, ]_['j_:ll M Q; converge a.s., and to the same finite random variable.

Under hypothesis (H) and our assumption P(M = 0) = 0, EIn M is well defined and
Eln M € [—o00, 0). Hence the random walk S, := Z;zl(— InM;)=—1In H?:l M drifts to
o0 a.s., and it follows that ]_[’}:l Mj; — 0O as. asn — o0. Since oeaL > 0, there exists s > 0
such that E|QJ* < oo; thus, EInT |Q| < oo. Hence, Corollary 4.1 of [16] implies that the
integral condition Iy, 9 < oo is satisfied and the sequence Y :_, ]_[l]_zl1 M Q; converges a.s.

(i1) Nyrhinen transfers his discrete results into continuous time, but the corresponding results
are difficult to apply in general. The most problematic assumption is his condition y = oo (see
(4.9)). In our notation, this is equivalent to the condition ¥ (z) > 0 for all z > 0. Theorem 1
of [3] gives necessary and sufficient conditions on the Lévy measure of (£, n) for this, which
are amenable to verification in special cases, as we showed in Section 3. Verifying Nyrhinen’s
condition 0 < wt < aa’ < oo requires finiteness of powers of E |Z1| and E[supy_, -1 | Z;]].
These conditions would be more conveniently stated in terms of the characteristic triplet of (£, 1)
or (at least) the marginal distributions of &€ and 5. In the special case that £ and n are independent
Lévy processes, Theorem 3.2 of [29] does exactly that. However, problems remain. In
Paulsen [29], the condition y = oo is assumed to be true whenever & and 7 are independent and n
is not a subordinator. However, this claim is false. To see this, let (§, ), := (¢t 4+ N;, —t), where
N is a Poisson process with jump times 0 < tp < 71 < ---. This example trivially satisfies
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all the conditions in Paulsen’s Theorem 3.2. However, using 1t6’s formula for semimartingales
and some simple manipulation, we obtain Z; = -1+ (e — 1) Z,N:tl el fe!=N and,
hence, inf;~9 Z; > —1 a.s. (The claim does hold if extra conditions are imposed, in line
with Remark 2(3) of [3].) Finally, it would be desirable to remove the finite-mean assumption
for £ in [29] and replace the moment conditions in [29], which are sufficient for convergence of
Z;, with the precise necessary and sufficient conditions given in Goldie and Maller [16]. Our
Theorem 2.1 addresses all of the above concerns in the most general setting.

5. Proof of Theorem 2.1
The proof requires the following lemma, which was stated but not proved in [2].

Lemma 5.1. Suppose that there exist v > 0 and p,q > 1 with 1/p + 1/q = 1 such that
Ee~ma{Lrréi < o0 and E |y ™Y < 00, Then

t max{1,r}
/ e 5 dn, i| < 00. (5.1)
0

Proof. For ease of notation, let k := max{1, r}. Assume that there exist7 > O and p,g > 1
with 1/p + 1/g = 1 such that Ee *P%1 < 0o and E |51 [¥¢ < oo. We prove the lemma first for
the case in which E 11 = 0. Since 7 is a Lévy process, this implies that 7 is a cadlag martingale.
Since £ is cadlag, e ¢ is a locally bounded process and, hence, Z is a local martingale for
by the construction of the stochastic integral (see, e.g. [31, Theorem 17, Section IIL.5]). Since,
additionally, Zp = 0, the Burkholder-Davis—Gundy inequalities ensure that, for our choices of
P, q, and k, there exists b > 0 such that

t k r z z z=k/2
/ e 5 dn, ]ng [ / e 5= dy,, / e 8- dns] }
0 LLJO 0 z=1
r 1 k/2
— bE ( / e—szd[n,n]s> ]
0

r 1 k/2
<bE ( / sup e d, n]s) }
L 0 0<r<l1

where in the second inequality recall that [, n]s is increasing. (The notation [-, -] denotes the
quadratic variation process.) The last expression equals

[ sup |Z,|maxtlr ] = E[ sup

0<t<l1 0<r<l

E[ sup
0<r<l

I/p
pE[ sup e 0y, y1}/?] < (B[ sup e 7)) ELtn, mt ),

0<t<1 0<t<1

where the inequality follows for our choices of p and ¢ by Holder’s inequality. Since k > 1
and g > 1, the Burkholder-Davis—Gundy inequalities give the existence of ¢ > 0 such that
(using Doob’s inequality for the second inequality)

Ell. m{**) < < sup In|*] < = Ellm|*] < oc.
¢ to<r<i

Thus, it suffices to prove that E[supp<,<; € —PkE] < 00. Now Y, :=e pké’/c where ¢ =
Ee 7K1 € (0, 00) is a nonnegative martingale, and it follows by Doob’s maximal inequality
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that

—pké; 1 k pk
E[ sup e—l’ksf] < max{l,c}E|: sup = - :| < max{—, 1}( P ) Ee Pkl — o0
c

0=<r=<1 o<t<1l €

Hence, the lemma is proved for the case in which E | = 0. In general, write

t k
E[ sup / e 5 dng i|
0<t<l1 0
t k
= E[ sup / e %= d(n, —En +Eny) }
0<r<l1 0
t t k
< E|:< sup / e b d(ns —Emn1)| + |En1| sup / e & ds ) i|
o<t<1|Jo o<t<1|Jo

in which the first term on the right-hand side is finite by the first part of the proof. An application
of Minkowski’s inequality to the second term on the right-hand side completes the proof.

Remark 5.1. If £ and 7 are independent, then Holder’s inequality is not required in the proof
of Lemma 5.1, and a simpler independence argument shows that (5.1) holds if

Ee ™8l - oo and E | ™7} < 0o for some r > 0.

We can put further restrictions on £ and 7, such as in the example in Section 3 of Nyrhinen [26],
which assumes that £ is continuous and 7 is compound Poisson plus drift, which render the use
of the Burkholder-Davis—Gundy inequalities unnecessary and further simplify the conditions.
For general Lévy (£, n), the above inequality is the sharpest we have found.

Proof of Theorem 2.1. We aim to use Proposition 4.1 for passage below rather than above.
We can do this by replacing n by —n. Note that, for z > 0,

T.=inf{t > 0: Z, < —z} =inf{t > 0: — Z; > z} = inf{t > 0: Z; > z},

where we denote Z;, whenn is replaced by —n, by Z;and similarly for the other quantities. Thus,
Z; = —Z;, and it is easily ghecked_that, with (M,,, Q,) asin (4.13), (M,,, Q,) = (M,,, —0,),
and, with L, as in (4.14), L, = —L,, where

n t
I, = _esn< / e b dny —  inf / e‘s“dns>- (5.2)
(n=1)+ n=l<t=n J -1+

From (4.7) we obtain )2,, (I:n) = —X,(L,). Then Proposition 4.1 ensures that (2.4) and (2.5)
hold, if we can prove that the relevant conditions are satisfied for (M , Q, I:), i.e. we must show
that hypothesis (H) holds for the hat variables.

The corresponding § (see (4.9)) is

sup{y eR: P(sup X, (L) > y) > 0} = inf{z eR: P(inf Z; < —z) > 0},
neN >0

) fz = oo if and only if ¥/ (z) > O for all z > 0, which we have assumed.
_We needaw™ > OsuchthatE Mw+A: 1, and this is the case with wt = w under (2.1) since
M =M =e . Also, ¢y (@) =InE MY = c(a), so that aar in (4.8) here equals «g as defined
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in (2.3). Note that the extra term E(M I:*)"‘ = E(M L)% required in (2.3) is superfluous here,
since E(ML™)* = E Z¢, and this is finite for & > 0 if and only if E|Z;|% < oo.

Under the moment conditions of Theorem 2.1, the conditions of Lemma 5.1 hold with
r=w"+e,s0E|Z|* < oo fora = max{l, w+e¢}, and, hence, of > w' + & > wT. Thus,
indeed, hypothesis (H) is fulfilled in the present situation and Proposition 4.1 applies to give (2.4)
and (2.5). Also, o > wt + & > w™ implies that ¢’ (¢g—) > ¢/(w) = pu* = —E& e, and
this is finite since Ee~®19)%1 i3, S0 0 < o < 1/u* < oo.

Suppose further that &1 is spread out. Then the dual version of (2.6) follows from Nyrhinen’s
comments in [26], which we expressed as Proposition 4.1.
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