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In this paper we consider mappings induced by matrix multiplication which are defined
on lattices of matrices whose coordinates come from a fixed orthomodular lattice L (i.e. a
lattice with an orthocomplementation denoted by ' in which a ^ b => a v (a' A b) = b). s/mn

will denote the set of all m x n matrices over L with partial order and lattice operations
defined coordinatewise. For conformal matrices A and B the (i,j)th coordinate of the matrix
product AB is defined to be (AB)^ = Vk(Aik ABkJ). We assume familiarity with the notation
and results of [1]. si'mn is an orthomodular lattice and the (lattice) centre of sfmn is defined as
^(s/m^ = {Aes#mn\A

<$B for all Bejtfmn), where we say that A commutes with B and write
AVB if {A v B') A B = A A B. In § 1 it is shown that mappings from sfmn into simr charac-
terized by right multiplication X-+XP (Pes/nr) are residuated if and only if Pe1l>(sfnr').
(Similarly for left multiplication.) This result is used to show the existence of residuated pairs.
Hence, in §2 we are able to extend a result of Blyth [3] which relates invertible and cancellable
matrices (see Theorem 3 and its corollaries). Finally, for right (left) multiplication mappings,
characterizations are given in § 3 for closure operators, quantifiers, range closed mappings, and
Sasaki projections.

1. After Croisot [4] a monotone mapping <j>:sf -»38 from a lattice si into a lattice 38 is
residuated if there is a monotone mapping </>+ :38 -+s$ called the residual mapping corres-
ponding to (j> such that a ^ a^(j)+ for all a ins/ and b<j> + ̂ ) g b for all b in 38. One may show
that <j> and </>+ determine each other uniquely.

THEOREM 1. Given P e s4nt, the mapping (f>: s4mn -> s#mr defined by A(j> = AP is residuated
if and only if Pe %(&?„,). If4> is residuated, B(j>+ = (B'P')', where P' is the transpose of P.

Proof. According to [4], a residuated mapping preserves joins. Hence, by Lemma 2
of [1], if A -* AP is residuated, then Pe%(s/nr). If Pe<8(sfnr), then

[(AP)'P% = yk[pJk A Ah(A'ih v p; t)] = vk[pjk A A',J A /\h*j(A'ih v p'hky] z A'U .

Hence A ^ [(AP)'P']'. Similarly (B'P')'P ^ B.
For left multiplication we have the result:

THEOREM 1 *. Given Pes/nr, the mapping (j>: $itm -> s/nm defined by A(j> = PA is residuated
if and only ifPe<tf(tfJ. If<t> is residuated, B<j>+ = (P'BJ.

Extending the definition of Birkhoff [2, XIII], for P in s$nT and B in s£mr (B in jj/nm), we
define the right-residual B:P (left-residual B\ \P) of B by P as the largest X in stmn (stfrm),
if it exists, satisfying XP f* B (PX ^ B). Such a pair P, B is said to be residuated on the right
{left) if B:P(B: \P) exists.

The first two lemmas are due to Croisot [4], and are used in the proof of Theorem 2.
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LEMMA 1. Let <t>:sf -* 88 be a residuated mapping, and let </>+ be the corresponding residual
mapping. For b in 8$, b(j>+ is the greatest element in the non-empty set {aesf | a<j> ^ b}.

LEMMA 2. In order that the monotone mapping <j>: s/ -* 8S, where si and 3S are lattices, be
residuated, it is necessary and sufficient that for every b in 3D the set {aes/\a<j) ^ b} be non-
empty and contain a greatest element.

THEOREM 2. For P in s#nr the following conditions are equivalent:

(i) PetfOO.
(ii) B: P exists for all B in sfmr.

(iii) B: :P exists for all B in s/nm.

Moreover, ifPeV(sfnr) and Bestmr (Betfnm), then B:P = (B'PJ (B\ \P = (P'B')').

Proof. By Theorem 1 and Lemma 1, (i) implies (ii) and (iii). By Lemma 2 and Theorem 1,
(ii) or (iii) implies (i).

2. Motivated by Molinaro [9], we define two types of equivalence relations. For P in
^(s/nr) define the equivalence relation ¥ p on stmr by A = B ( ¥ P) if A: P = B: P, and define
the equivalence relation jW on sfnm by A = B (P»P) if A '. \P = B\ .P. For Pes4rn define the
equivalence relation ®Pons/nm by A = B(&P) if PA = PB, and define the equivalence relation
P 0 on s/mr by A = B (P0) if AP = BP.

LEMMA 3. For P in ^(st^, each class in simr (s/nm) modulo *PP (p*P) has a smallest
element; the smallest element in the class containing A is (A: P)P (P(A '.'.P)). For P in <tf(s/rn),
each class in $fnm (j^mr) modulo @P (P&) has a greatest element; the greatest element in the class
containing A is PAW P (AP: P).

Proof. Given Pe<$(tfnr) and A =BQ¥P) in sim,\ then (A:P)P = (B:P)P £ B, i.e.,
(A: P)P is well defined on the class containing A and is a lower bound for the class. From
(A:P)P = (A:P)P we obtain A:P^(A:P)P:P. Also, by the definition of right-residual,
[(A: P)P: P]P £(A:P)P^A, which implies that (A: P)P: P£A:P. Hence (A :P)P = A 0PP).
Given Pe^(s/rn) and A = B (QP) in s?nm, it follows that PA;;P = PBy.P. From PA = PA
we obtain A ^ PA'. \P, i.e., PA '.'.Pis well defined on the class containing A in an upper bound
for the class. Now PA ^ P(PA ::P)by monotonicity of multiplication and P(PA :\P)^PA
by the definition of left-residual. Hence PA::P = A (0P) . The remaining two parts of the
lemma follow in a similar manner.

We are now ready to extend a result of Blyth [3] for Boolean matrices, to matrices over
orthomodular lattices.

LEMMA 4. For P in strn, A = B(GP) in s/nmoA' = B'(P,®) in s/mn. For P in <tf(s/nr),
A s BCVP) in stmroA' = B'(P,W) in st\m.

Proof. The first part is an immediate consequence of (AP)' = P'A'. With P in
r), by Theorem 2 we obtain A:P = (A'P')' = (PA")" = (A'WP')'. Thus A = B(¥P) in
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LEMMA 5. For P in %(#/„,), A=B (&pt) in s/nm oA' =B' (pT) in s/nm, and A =B (P.@)

insimroA'=B'(VP)insJmr.

Proof. By Lemma 3, the smallest element in the class containing A modulo P*P is
P(A: :P) = P(P'A')'. The greatest element in the class containing A modulo 0 P . is
P'A\\P' = [P(P'A)']'. Now

A sB(Qpt)o[P(P'A)']' = [P(P'B)']'oP(P'A)' = P(P'B)'oA' s B'(PH>).

The remainder of the lemma is proved similarly.
We say that P in sinr is left (right) cancellable in sirm (simn) if PA = PB (AP = BP)

implies A = B whenever A,Besfrm (A,Besimn). Note that P is left (right) cancellable if and
only if 0 P (P0) is the identity relation on sirm (simn). E will denote a matrix with El{ = <5(J-.

THEOREM 3. If Pe^(sini.) and r :S m (n ̂  m), then the following are equivalent:
(i) P is left (right) cancellable in si rm (sfmn).

(ii) There exists Xes/mn (Yerfrm) such that XP = Ees/mr (PY = Eejzfnm).
(iii) There exists Xe<i?(jtfmn) ( 7 e ^ J ) , such that XP = Eess?mr (PY=Ees/nm).
(iv) P is left (right) cancellable in #(jtfrm) (<#(silmn)).

Proof. Tf P in ^(si^ is left cancellable in sfrm, then 0 P is the identity relation on s4rm.
By Lemma 5, PW is also the identity relation on stfrm. The smallest element of the class con-
taining E in s#rm modulo pt4* is thus E = P'(E'.'. P'). By taking the transpose of each side, we
obtain (i) => (ii). Suppose that X<= stmn and XP = E; then X^E.P. Now

By Theorem 2, E:P = (E'P')' which is in <$(rfmn). For (ui)=>(i), let Xe<8(rfmn) and
XP = Eesfmr. Since two of the three matrices involved are central, (X, P, A) is an associative
triple for any A in sdTm. Hence PA = PB implies that EA = EB, where Ees/mr. Tf r ^ m,
then iL4 = EB implies that A = B. Clearly (i) => (iv). By applying the result (i) => (iii) to
matrices over #(£) we obtain (iv) => (iii).

COROLLARY 1. If Pe'^(s^nr)) and if there exists a positive integer in such that r £m
(n ^ m) and P is left (right) cancellable in sirm (s/mn), then P is left (right) cancellable in sirs

(s/sn) for every r ^ s (n ̂  s).

Proof. Let A be the matrix formed by the first r rows of the matrix described in (iii) of
Theorem 3. For any s ^ r, form A(s) by augmenting A to an s rowed matrix whose last s—r
rows consist of zeros. Thus A(s)e^(sisn) and A(s)P = Eesfsr.

COROLLARY 2. If Pet>(#/„„), n^m, and P is left (right) cancellable in simn (simn), then
PP< = p'p = E.

Proof. Let A be the matrix formed by the first n rows of the matrix described in (iii)
of Theorem 3. Then Ae^(sim) and AP = E. The result now follows from a result of
Rutherford [10, §3].
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3. In this section we consider mappings from simn into itself which arise from matrix
multiplication. Thus for right (left) multiplication by P, we necessarily require that Pes/nn

(Pesimm). After Foulis [5], for an orthomodular lattice si, define S(si) to be the set of all
those monotone mappings $ : si -> si such that there exists at least one, and hence exactly
one, monotone mapping <j)*:si -> si with the property that (a'4>)'(j)* ^ a and (a'(j>*)'<j> Sj a for
every a in si. Foulis shows that, if (j>eS(si), then <f> is residuated, and that </>* is given by
a(j)* = (a'(t)+y. Thus <p:A-*AP (</>:A^>PA) is in S(simn) if and only if Pe<#(sfJ
(Pe^istmm))> a n d in this case 0* is given by right (left) multiplication by P'. A mapping <j>
on a lattice si is called a closure operator if a ^ a(j) and a</> = (a<f))(j> for all a in J / . <j) is called
a quantifier on si if 0$ = o, a S a<t>> a n d (a A b4>)4> = acj) Ab<j) for all a, b in j / .

LEMMA 6. For Pesinn (Pesimm), (j>:A-> AP (</>: A -> iM) « a closure operator on simn

if and only if E g P, P = P2, and (A, P, P) ((P, P, A)) is an associative triple for all A in simn.

Proof. If E S P, then A = AE ^ AP. Conversely, E^ E<j> = EP = P. A<j) = (A(t>)<j>
implies that P = EP = {EP)P = P 2 and (^P)P = ^ P = /IP2. If P = P 2 and (A,P, P) is an
associative triple, then (AP)P = AP2 = AP.

COROLLARY. IfE^P = P2 and PeV(sinn) (Pe<tf(simm)), then 4>:A^AP {4>:A^PA)
is a closure operator on simn.

LEMMA 7. If P = P'esinn, or if E^Pesinn, then P = P 2 o P 0 - ^ Pl7[ A P W / o r all
i,j,k= ],...,n.

Proof. Suppose that P = P' and Pu ^ Pik A PkJ. Then PH ^ Pik A Pki = Pik. Now

PtJ ^ (P,J A PJV) V V ^ / P t t A Py) = P.-; V V ^ / P « A Py) ^ Py ,

i.e. P , ; = Pfj. Conversely, if P = P ' = P 2 , then Pu = Pl7 v V B # j P / t ) i.e. Pu ^ P,fc. Now

Py = (Py V PjV) V V**j(Ptt A Py) = Py V V ^ / P , * A Py) .

Hence Ph- ̂  P l t A PkJ for all / j " , A: = 1,...,«. If P 2> £, then P(i ^ PiS and an obvious mod-
ification of the above proof establishes the result.

LEMMA 8. Given Pesim (PesSmm), the mapping A^> AP (A-> PA) is a quantifier on simn

if and only if E £ P = P 2 = P', Pe^{sim) (Pe<$(simm)), and the columns (rows) of Ppossess
property 3) on L. (See [1, §1] for the definition of property @.)

Proof. For the sufficiency of the conditions, all that remains is to show that

By [1, Lemma 1], (A A BP)P ^APA (BP)P = AP A BP. By Lemma 7, Phk ^ PhJ A Pjk, and
hence, by property 3),

(AP A BP)tJ = V M * A Pkj A (BP)y] = V M * A Pfc; A V»(Btt A Phj A Pyjk)]

^ V*[i4tt A PkJ A V»(B,» A Phkj\ = [(A A BP)P]y .
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Conversely, if A -> AP is a quantifier on s/mn, then, by Janowitz [7, Theorem 2],

As before, A ̂  AP implies that E ̂  P. Let beL and let 5 be such that Btj = b for all
i,j = 1,...,n. Then ABABP = (AABP)P becomes bA\Jk{AikAPkj) = \Jk(AikAPkJAb),
that is, the columns of P possess property 3) on L.

Let s& be a lattice with o and 1, and for a ins/ let ja/(o, a) = {xes/ \ x ^ a}. A mapping
0: .s/ -> $0 is said to be range closed if <j>:jtf -> s/(o, \<j>) is a surjective mapping.

For the next lemma we introduce a notation of Rutherford [10]. If P is a matrix with
entries in an orthocomplemented lattice, let F be the matrix with Pl} = P(J-A (An*jP*,) and
P be the matrix with Pu - Pu A (/\k*tPkJ).

LEMMA 9. G/uen P e #(.<,„) (P e ̂ (s/mm)), fAe mapping A^>AP(A^> PA) is range closed
in simn if and only if any of the following conditions obtain:

(i) (E'P')'P = EAIP (P(P'E')' = EAPI).
(ii) \/h[PhjA(Ak*jPU)] = VhPhjforallj=\,...,n, (V*[Ptt A ( A ^ , ^ ) ] = \lhPlhforall

(iii) /P = /P (P/ = P/), wAere Iu = 1 /or a// i,j.

Proof. First we note that (ii) is the assertion [(£"P')'P]j; = [EAIP]JJ SO that (i)=>(ii).
By [8, Lemma 3.2], A -> AP is range closed if and only if (A'P'yP = AAIP for all A in s/mtt.
When /4 = E one obtains the necessity of (i) and (ii). Conversely, A ^ (A'P')'P and
7P ^ (A'P')'Pimply that AAIP^ {A'P')'P for all ̂  in .s/miI. Since (^y v P^) A PhJ = ^ y A PhJ,
we find that

= V M v A PW A /\k*j(Aik V P^)]

^ Vfc[i4y A Phj A Ak*jP'hk] = A,j A V A [P h ; A A t # j P'hk]

Hence (A'P')'P = AAIP for all ,4 in simn, and (i) =>(ii) =>A^> AP is range closed, (iii) is of
course another way of writing (ii).

COROLLARY. IfPe<g(s/nn) (Pe<tf(s/mm)) and if the elements of each row (column) of P
form a mutually orthogonal subset of L, that is Pu ^ P'ik (Pn ^ Pki) for all i,j, k with j ^ k,
then the mapping A -> AP (A -> PA) is range closed.

LEMMA 10. Given Pe^(ssfnn) (Pe%(s/mm)). A-*AP (A->PA) is range closed in s/mn

if and only ifA'P' = B'P'=>AAIP = BAIP (P'A' = P'B'^>AAPI= BAPI).

Proof. The result follows from [6, Theorem 2].

COROLLARY 1. IfPe ^{stj (P e ̂ (j/mm)) and if A -> AP1 (A -> P'A) is range closed, then,
for A ^ (IP')' (A ;> (P'l)'), A<r+AP(A<r* PA) is a one to one correspondence.

COROLLARY 2. Suppose that P€%(£/„„) (Ps^(s/mJ), P is row (column) consistent and
A -* AP' (A -> P'A) is range closed on s/mn; then A «-» AP (A *-* PA) is a one to one corres-
pondence on s/mn.
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Let si be an orthomodular lattice and let e&sd. Define a mapping 4>e by a(j>c = (a v e') A e
for a in si. Such mappings are called Sasaki projections and are especially interesting members
of S(sf). Foulis notes that when <j> = 0 2 = <j>* e S(sf), <f>isa Sasaki projection if and only if <f>
is range closed. Thus we have the following:

THEOREM 4. Let Pe<&(sfm) ( ? e ^ « J ) , and let P = P2 = P'. The mapping A-+AP
(A -* PA) is a Sasaki projection in sfmn if and only if P is a diagonal matrix, i.e. Pti = o for

Proof. If P is a diagonal matrix, then, by the Corollary to Lemma 9, the mapping A -> AP
is range closed and hence is a Sasaki projection. Conversely, by Lemma 7, P-xi ^ Pik A PkJ

and PJJ ^ Pjk. Since PhJ A Phh = o, it follows from Lemma 9 that

PJk =£ PJJ = V»PW = V»[PWAA^jPJLk] = Pjj*Vk+jP'jk ^ Pjk for ; # fc.

Thus Pyj = PJk A Pjj = o for j # A'.
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