Bull. Aust. Math. Soc. **84** (2011), 408–**413** doi:10.1017/S000497271100267X

ON MINIMAL DEGREES OF PERMUTATION REPRESENTATIONS OF ABELIAN QUOTIENTS OF FINITE GROUPS

CLARA FRANCHI

(Received 2 December 2010)

Abstract

For a finite group *G*, we denote by $\mu(G)$ the minimum degree of a faithful permutation representation of *G*. We prove that if *G* is a finite *p*-group with an abelian maximal subgroup, then $\mu(G/G') \le \mu(G)$.

2010 *Mathematics subject classification*: primary 20B05. *Keywords and phrases*: permutation representation, finite *p*-group.

1. Introduction

For a finite group *G*, the *minimal faithful permutation degree* $\mu(G)$ is defined as the least positive integer *n* such that *G* is isomorphic to a subgroup of the symmetric group *S_n*. A faithful permutation representation of degree $\mu(G)$ is called a *minimal (faithful) permutation representation* of *G*. By Cayley's theorem $\mu(G) \leq |G|$, and it is easy to see that equality holds if and only if *G* is cyclic of prime power order, a generalized quaternion 2-group or the Klein 4-group [7].

If *H* is a subgroup of *G*, then $\mu(H) \leq \mu(G)$, but the situation for quotient groups can be quite different. For example, Neumann pointed out in [11] that the direct product of *m* copies of the dihedral group of order 8 has a natural faithful representation of degree 4m but it has an extraspecial quotient which has no faithful permutation representation of degree less than 2^{m+1} . On the other hand, particular classes of quotients behave just like the subgroups. For example, $\mu(G/N) \leq \mu(G)$ provided G/N has no nontrivial abelian normal subgroups (Kovács and Praeger [10]). Using this result, Holt and Walton [6] proved that there exists a constant *c* such that $\mu(G/N) \leq c^{\mu(G)-1}$ for all finite groups *G* and all normal subgroups *N*. (The constant is approximately 5.34.)

If $A = A_1 \times \cdots \times A_r$ is an abelian group, with each A_i cyclic of prime power order a_i , then $\mu(A) = a_1 + \cdots + a_r$ ([14] and [12, Ch. II, Theorem 4]; see also [7, 8]). Thus, in particular, $\mu(A/N) \le \mu(A)$ for every subgroup *N* of *A*. According to [9], the question whether $\mu(G/N) > \mu(G)$ can happen with G/N abelian, goes back at least to Easdown

^{© 2011} Australian Mathematical Publishing Association Inc. 0004-9727/2011 \$16.00

409

and Praeger [3], the conjecture being that it cannot. In the last paragraph of Section 1 of [4], it was shown that a minimal counterexample G would have to have prime-power order and N would have to be the commutator subgroup G' (see also [2, 10]).

In this note, we carry on the analysis of a such a counterexample, showing that it cannot be a nonabelian finite p-group with an abelian maximal subgroup. Namely, we prove the following.

THEOREM. Let G be a nonabelian finite p-group with an abelian maximal subgroup. Then $\mu(G/G') \leq \mu(G)$.

Notation is standard. We refer to [1] for notation and terminology about permutation groups. If *H* is a subgroup of a group *G* we denote by ρ_H the standard representation of *G* on the right cosets of *H*. All groups considered are finite.

2. Proof of the theorem

Recall that if $AB = A \times B$ is a direct product of groups A and B, a subgroup G of AB is called a *subdirect product* of A and B if AG = BG = AB.

LEMMA 1. Let G be a subdirect product of two groups, A and B, such that G/G' is not a subdirect product of A/A' and B/B', and set

$$R = G'(B \cap G) \cap G'(A \cap G), \quad L = G'(A \cap G)(B \cap G).$$

Then R/G' is isomorphic to a section of A' which is a central section of A, and if A is nilpotent then G/L is not cyclic.

PROOF. Since *G* is a subdirect product of *A* and *B*, we have $A \times B = AG = BG$ and $A \cong G/(B \cap G)$, $B \cong G/(A \cap G)$. As G/G' is not a subdirect product of A/A' and B/B', it is easy to see that R > G' > 1. Observe that $A \cap G' = G'$ or $B \cap G' = G'$ would imply that R = G', which is a contradiction. Hence $A \cap G' < G'$ and $B \cap G' < G'$ and no generality is lost by assuming that $A \cap G' = B \cap G' = 1$. Then $A \cap G$ and $B \cap G$ lie in the centre Z(G) of *G* (because they are normal subgroups which avoid the derived group). Let $\alpha : G \to A$ be the restriction to *G* of the projection of $A \times B$ on the first component, that is $(ab)\alpha = a$ whenever $a \in A$, $b \in B$. Note that $G\alpha = A$, ker $\alpha = B \cap G$, $R\alpha = G'\alpha = A'$, and of course $(Z(G))\alpha \leq Z(A)$. Now $A \cap R = (A \cap R)\alpha \leq R\alpha = A'$ and $A \cap R \leq A \cap G = (A \cap G)\alpha \leq (Z(G))\alpha \leq Z(A)$ show that $A \cap R$ is a subgroup of A' which is central in *A*. Since $G' \leq R \leq AG'$, by Dedekind's law, $R = (A \cap R)G'$. As $A \cap G' = 1$, this yields $R = (A \cap R) \times G'$, whence $R/G' \cong A \cap R$. The first statement of the lemma is proved.

Observe next that the complete inverse image of $A'(A \cap G)$ under α is L, so G/L is isomorphic to the largest abelian quotient of $A/(A \cap G)$. Suppose that A is nilpotent. If $A' \nleq A \cap G$, then $A/(A \cap G)$ is a nonabelian nilpotent group. As such, it must have a noncyclic abelian quotient, therefore in this case G/L cannot be cyclic. If $A' \le A \cap G$, that is, if $G'\alpha \le A \cap G$, then G' lies in the complete inverse image of $A \cap G$ under α , so $G' \le (A \cap G)(B \cap G)$. In this case $L = (A \cap G)(B \cap G) \le Z(G)$, and as a central quotient of a nonabelian group can never be cyclic, the desired conclusion is once more at hand. $\hfill \Box$

We quote in the following lemma a consequence of [7, Theorem 2] that will be useful in what follows. We denote by $C_{p^{\alpha}}$ the cyclic group of order p^{α} .

LEMMA 2. Let U be an abelian group of exponent dividing p^n , n > 1. If V is a subgroup or a quotient of U of order |U|/p, then $\mu(U) \le \mu(V) + p^n - p^{n-1}$.

PROOF. If $U \cong V \times C_p$, the claim holds because $p^n - p^{n-1} \ge p$. Otherwise, an unrefinable direct decomposition of *U* has the same number of cyclic direct summands as *V*, the difference being that a C_{p^m} in *V* is replaced by a $C_{p^{m+1}}$ in *U*. (When *V* is a subgroup, this follows immediately from [9, Lemma 1]; when *V* is a factor group, it comes dually.) In this case, $\mu(U) = \mu(V) - p^m + p^{m+1}$ and the claim holds because $m + 1 \le n$ and so $p^{m+1} - p^m \le p^n - p^{n-1}$.

Recall that a subgroup *H* of a group *G* is called *meet-irreducible* if it is not the intersection of two subgroups H_1 , H_2 , with $H_i > H$ for i = 1, 2.

LEMMA 3. Let P be a nonabelian p-group which is a transitive permutation group of degree p^n such that the stabilizer of a point is meet-irreducible. Suppose that P contains a nontransitive maximal abelian subgroup M. Then every section of P' which is central in P has order at most p and P/P' is isomorphic to one of the following groups, where $\alpha \le n - 2$:

(i) $C_{p^{\alpha}} \times C_p \times C_p$;

(ii) $C_{p^{\alpha+1}} \times C_p$;

(iii) $C_{p^{\alpha}} \times C_{p^2}$.

In particular $\mu(P/P') \le p^{n-1} + p$.

PROOF. Let *S* be the stabilizer of a point in *P*. Then $S \leq M$, since *M* is not transitive, and $|M:S| = p^{n-1}$. It follows that $\{x^{p^{n-1}} | x \in M\}$ is a normal subgroup of *P* contained in *S*, so it must be 1 as *S* is core-free. Moreover, as *S* is meet-irreducible, *M*/*S* is a cyclic group. Thus, by a result of Ore on monomial representations [13, Ch. IV, Theorem 1], *P* embeds into the wreath product $C_{p^{n-1}} \text{ wr } C_p$ in such a way that *M* embeds into the base subgroup *B*. Observe that *B* has the structure of an *A*-module isomorphic to $\mathcal{A}_{\mathcal{A}}$, where $\mathcal{A} = (\mathbb{Z}/p^{n-1}\mathbb{Z})C_p$, and subgroups of *B* which are normalized by *P* are precisely the *A*-submodules. In what follows we identify *M* with its image in $\mathcal{A}_{\mathcal{A}}$ and denote by *W* the augmentation ideal of $\mathcal{A}_{\mathcal{A}}$.

Since *P'* is contained in $M \cap W$ and since every section of *M* which is central in *P* is a trivial \mathcal{A} -module, the last sentence of [5, Lemma 1.2.1] gives that every section of *P'* that is central in *P* has order dividing *p*. To prove the second part of the claim, note that, by [5, Lemma 1.2.1] and using the same notation, $P' = W_j$ for some j > 0. By [5, Proposition 1.2.2] (and using the same notation, except for replacing *n* by n - 1) the largest trivial submodule of $\mathcal{A}_{\mathcal{A}}/W_j$ is easily seen to be $A(n - 1, j + 1)/W_j$ if $W_j < W$ and $\mathcal{A}_{\mathcal{A}}/W$ otherwise. Hence M/P' is a subgroup either of $C_{p^{n-2}} \times C_p$ or of $C_{p^{n-1}}$.

[3]

Using that M/P' is a maximal subgroup of the noncyclic P/P' and by arguing as in the proof of Lemma 2, the second claim of the lemma follows.

Recall that by [16], $\mu(G) = \mu(H) + \mu(K)$ whenever *G* is a nilpotent group with a nontrivial direct factorization $G = H \times K$. In particular, whenever *G* is a subdirect product of two nilpotent groups *A* and *B*, we have $\mu(G) \le \mu(A) + \mu(B)$. We will use this fact in the remainder of the article without making reference to it.

LEMMA 4. Let G be a finite nilpotent group and suppose that $\mu(H/H') \leq \mu(H)$ for each homomorphic image H of G such that $\mu(H) < \mu(G)$. If G has a minimal faithful representation with an abelian transitive constituent, then $\mu(G/G') \leq \mu(G)$.

PROOF. Suppose that *G* has a minimal faithful representation on a set Ω with an abelian transitive constituent $A = G^{\Delta}$, and set $B = G^{\Omega \setminus \Delta}$. Then $\mu(G) = \mu(A) + \mu(B)$. As *G* is a subdirect product of *A* and *B* and *A* is abelian, $G' = 1 \times B'$, so G/G' is a subdirect product of *A* and *B* and *A* is a homomorphic image of *G* with $\mu(B) < \mu(G)$; so by hypothesis $\mu(B/B') \le \mu(B)$. Hence

$$\mu(G/G') \le \mu(A) + \mu(B/B') \le \mu(A) + \mu(B) = \mu(G),$$

as wanted.

PROOF OF THE THEOREM. Let *G* be a finite *p*-group with an abelian maximal subgroup *M* and assume, for a proof by contradiction, that *G* is a counterexample of minimal degree. In particular, *G* is nonabelian. By [7, Lemma 1] there exists a faithful representation ρ of *G* on some set Ω which not only has minimal degree but is such that each point stabilizer is meet-irreducible. Let Δ be an orbit of maximal length p^n in such a representation ρ , and set $\Gamma = \Omega \setminus \Delta$, $A = G^{\Delta}$ and $B = G^{\Gamma}$. Then *G* is a subdirect product of *A* and *B*, and *A* is nonabelian by Lemma 4. As *B* has an abelian maximal subgroup as well, minimality of $\mu(G)$ implies that

$$\mu(B/B') \le \mu(B) = \mu(G) - p^n.$$
(1)

Let *S* be the point stabilizer in *G* of a point of Δ . By our choice of ρ , this *S* is meetirreducible. By Lemma 4, *G* has no abelian transitive constituent, and so $n \ge 2$. Finally note that the exponent of *G*, and hence of G/G', is at most p^n .

Assume first that M is not transitive on Δ . Then A satisfies the hypothesis of Lemma 3 and so each section of A' which is central in A has order at most p and

$$\mu(A/A') \le p^{n-1} + p.$$
(2)

Thus if G/G' were a subdirect product of A/A' and B/B', using (1) and (2) we would get

$$\mu(G/G') \le \mu(A/A') + \mu(B/B') \le p^{n-1} + p + \mu(G) - p^n \le \mu(G),$$

contradicting that G is a counterexample. Therefore Lemma 1 applies, yielding that R/G' is isomorphic to a section of A' that is central in A and that G/L is not cyclic.

In particular G/R, which is easily seen to be a subdirect product of A/A' and B/B', is not the whole direct product of these groups, so

$$\mu(G/R) \le \mu(A/A') + \mu(B/B') - p.$$
(3)

Since sections of A' which are central in A have order dividing p, we have that |R/G'| = p. So, first by applying Lemma 2 with U = G/G' and V = G/R and then by using (3) and (2), we get

$$\begin{split} \mu(G/G') &\leq \mu(G/R) + p^n - p^{n-1} \leq \mu(A/A') + \mu(B/B') - p + p^n - p^{n-1} \\ &\leq p^{n-1} + p + \mu(G) - p^n - p + p^n - p^{n-1} = \mu(G), \end{split}$$

which is again a contradiction.

Hence *M* is transitive on Δ . Then *S* is not contained in *M* and $|M : M \cap S| = p^n$. Since *M* is an abelian maximal subgroup of *G*, we have that G = SM and $S \cap M$ is a normal subgroup of *G*. Now if the kernel of the action of *G* on Δ , core_{*G*}(*S*), were bigger than $S \cap M$, then, by maximality of *M*, it would be core_{*G*}(*S*) = *S* and we would have that $A = G/S \cong M/M \cap S$ is abelian, contradicting Lemma 4. Hence core_{*G*}(*S*) = $S \cap M$ and $A = G/S \cap M$.

Suppose first that $M/M \cap S$ is not cyclic. Then there exist two subgroups S_1, S_2 such that $S_1 \cap S_2 = M \cap S$ and $S_1S_2 = M$. In particular, if $|M:S_1| = p^k$, then $1 \le k \le n-1$ and $|M:S_2| = p^{n-k}$. Consider the action of M on the set Ω via ρ and let $\{K_1, \ldots, K_r\}$ be a set of representatives of the point stabilizers of this action, one for each orbit, where we assume $K_1 = S \cap M$. Let σ be the representation of M of defined by setting $\sigma = \rho_{S_1} + \rho_{S_2} + \sum_{i=2}^r \rho_{K_i}$. Then σ is a faithful representation of M of degree $\mu(G) - p^n + p^{n-k} + p^k$, whence

$$\mu(M) \le \mu(G) - p^n + p^{n-k} + p^k.$$
(4)

By Lemma 2, applied with U = G/G' and V = M/G', we have that

$$\mu(G/G') \le \mu(M/G') + p^n - p^{n-1}.$$
(5)

Observe that *M* abelian and G' > 1 imply that

$$\mu(M/G') \le \mu(M) - p. \tag{6}$$

Hence, using (5), (6) and (4),

$$\begin{split} \mu(G/G') &\leq \mu(M/G') + p^n - p^{n-1} \leq \mu(M) - p + p^n - p^{n-1} \\ &\leq \mu(G) - p^n + p^k + p^{n-k} - p + p^n - p^{n-1} \\ &= \mu(G) - (p^{n-k-1} - 1)(p^k - p) \leq \mu(G), \end{split}$$

which is a contradiction.

Therefore, $M/M \cap S$ must be cyclic. Then, $A = G/M \cap S$ is a nonabelian group with a cyclic maximal subgroup. The structure of nonabelian *p*-groups with a cyclic maximal subgroup is well known (see for example [15, 5.3.4]) and shows that A/A'is either $C_{p^{n-1}} \times C_p$ or $C_2 \times C_2$. In either case $\mu(A/A') \le p^{n-1} + p$, and one obtains a contradiction as in the case when *M* is not transitive on Δ . This proves the theorem. \Box

Acknowledgement

My interest in this problem dates from the summer of 2001, which I spent at the Australian National University studying with Professor László Kovács. After all these years, I wish to express again my deep gratitude for his help and kind assistance during my stay in Canberra.

References

- [1] J. D. Dixon and B. Mortimer, *Permutation Groups* (Springer, New York, 1996).
- [2] D. Easdown, 'Minimal faithful permutation and transformation representations of groups and semigroups', *Contemp. Math.* **131** (1992), 75–84.
- [3] D. Easdown and C. E. Praeger, 'On the minimal faithful degree of a finite group', Research Report, School of Mathematics and Statistics, University of Western Australia, 1987.
- [4] D. Easdown and C. E. Praeger, 'On minimal faithful permutation representations of finite groups', Bull. Aust. Math. Soc. 38 (1988), 207–220.
- [5] D. L. Flannery, 'The finite irredicible linear 2-groups of degree 4', Mem. Amer. Math. Soc. 129(613) (1997).
- [6] D. F. Holt and J. Walton, 'Representing the quotient group of a finite permutation group', J. Algebra 248 (2002), 307–333.
- [7] D. L. Johnson, 'Minimal permutation representations of finite groups', *Amer. J. Math.* **93** (1971), 857–866.
- [8] G. I. Karpilovsky, 'The least degree of a faithful representation of abelian groups', Vestn. Khar'k. Univ. 53 (1970), 107–115 (in Russian).
- [9] L. G. Kovács and C. E. Praeger, 'Finite permutation groups with large abelian quotients', *Pacific J. Math.* 136 (1989), 283–292.
- [10] L. G. Kovács and C. E. Praeger, 'On minimal faithful permutation representations of finite groups', Bull. Aust. Math. Soc. 62(2) (2000), 311–317.
- [11] P. M. Neumann, 'Some algorithms for computing with finite permutation groups', in: *Proceedings of Groups–St. Andrews 1985*, London Mathematical Society Lecture Notes, 121 (eds. E. F. Robertson and C. M. Campbell) (Cambridge University Press, Cambridge, 1987), pp. 59–92.
- [12] O. Ore, 'Contributions to the theory of groups of finite order', Duke Math. J. 5 (1939), 431-460.
- [13] O. Ore, 'Theory of monomial groups', Trans. Amer. Math. Soc. 51 (1942), 15-64.
- [14] A. Powsner, 'Über eine Substitutionsgruppe kleinster Grades, die einer gegebenen Abelschen Gruppe isomorph ist', *Commun. Inst. Sci. Math. et Mécan., Univ. Kharkoff et Soc. Math. Kharkoff, IV. s.* 14 (1937), 151–157 (translated from Russian); Autorreferat, *Zbl.* 0019.15506.
- [15] D. J. S. Robinson, A Course in the Theory of Groups (Springer, New York, 1982).
- [16] D. Wright, 'Degrees of minimal embeddings for some direct products', Amer. J. Math. 97 (1975), 897–903.

CLARA FRANCHI, Dipartimento di Matematica e Fisica 'Niccolò Tartaglia', Università Cattolica del Sacro Cuore, Via Musei 41, 25121 Brescia, Italy e-mail: c.franchi@dmf.unicatt.it