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Abstract

For a finite group G, we denote by µ(G) the minimum degree of a faithful permutation representation of
G. We prove that if G is a finite p-group with an abelian maximal subgroup, then µ(G/G′) ≤ µ(G).
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1. Introduction

For a finite group G, the minimal faithful permutation degree µ(G) is defined as the
least positive integer n such that G is isomorphic to a subgroup of the symmetric group
S n. A faithful permutation representation of degree µ(G) is called a minimal (faithful)
permutation representation of G. By Cayley’s theorem µ(G) ≤ |G|, and it is easy to
see that equality holds if and only if G is cyclic of prime power order, a generalized
quaternion 2-group or the Klein 4-group [7].

If H is a subgroup of G, then µ(H) ≤ µ(G), but the situation for quotient groups can
be quite different. For example, Neumann pointed out in [11] that the direct product of
m copies of the dihedral group of order 8 has a natural faithful representation of degree
4m but it has an extraspecial quotient which has no faithful permutation representation
of degree less than 2m+1. On the other hand, particular classes of quotients behave
just like the subgroups. For example, µ(G/N) ≤ µ(G) provided G/N has no nontrivial
abelian normal subgroups (Kovács and Praeger [10]). Using this result, Holt and
Walton [6] proved that there exists a constant c such that µ(G/N) ≤ cµ(G)−1 for all finite
groups G and all normal subgroups N. (The constant is approximately 5.34.)

If A = A1 × · · · × Ar is an abelian group, with each Ai cyclic of prime power order
ai, then µ(A) = a1 + · · · + ar ([14] and [12, Ch. II, Theorem 4]; see also [7, 8]). Thus,
in particular, µ(A/N) ≤ µ(A) for every subgroup N of A. According to [9], the question
whether µ(G/N) > µ(G) can happen with G/N abelian, goes back at least to Easdown
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and Praeger [3], the conjecture being that it cannot. In the last paragraph of Section 1
of [4], it was shown that a minimal counterexample G would have to have prime-power
order and N would have to be the commutator subgroup G′ (see also [2, 10]).

In this note, we carry on the analysis of a such a counterexample, showing that it
cannot be a nonabelian finite p-group with an abelian maximal subgroup. Namely, we
prove the following.

T. Let G be a nonabelian finite p-group with an abelian maximal subgroup.
Then µ(G/G′) ≤ µ(G).

Notation is standard. We refer to [1] for notation and terminology about
permutation groups. If H is a subgroup of a group G we denote by ρH the standard
representation of G on the right cosets of H. All groups considered are finite.

2. Proof of the theorem

Recall that if AB = A × B is a direct product of groups A and B, a subgroup G of AB
is called a subdirect product of A and B if AG = BG = AB.

L 1. Let G be a subdirect product of two groups, A and B, such that G/G′ is not
a subdirect product of A/A′ and B/B′, and set

R = G′(B ∩G) ∩G′(A ∩G), L = G′(A ∩G)(B ∩G).

Then R/G′ is isomorphic to a section of A′ which is a central section of A, and if A is
nilpotent then G/L is not cyclic.

P. Since G is a subdirect product of A and B, we have A × B = AG = BG and
A �G/(B ∩G), B �G/(A ∩G). As G/G′ is not a subdirect product of A/A′ and B/B′,
it is easy to see that R >G′ > 1. Observe that A ∩G′ = G′ or B ∩G′ = G′ would imply
that R = G′, which is a contradiction. Hence A ∩G′ <G′ and B ∩G′ <G′ and no
generality is lost by assuming that A ∩G′ = B ∩G′ = 1. Then A ∩G and B ∩G lie
in the centre Z(G) of G (because they are normal subgroups which avoid the derived
group). Let α : G→ A be the restriction to G of the projection of A × B on the first
component, that is (ab)α = a whenever a ∈ A, b ∈ B. Note that Gα = A, ker α = B ∩G,
Rα = G′α = A′, and of course (Z(G))α ≤ Z(A). Now A ∩ R = (A ∩ R)α ≤ Rα = A′ and
A ∩ R ≤ A ∩G = (A ∩G)α ≤ (Z(G))α ≤ Z(A) show that A ∩ R is a subgroup of A′

which is central in A. Since G′ ≤ R ≤ AG′, by Dedekind’s law, R = (A ∩ R)G′. As
A ∩G′ = 1, this yields R = (A ∩ R) ×G′, whence R/G′ � A ∩ R. The first statement of
the lemma is proved.

Observe next that the complete inverse image of A′(A ∩G) under α is L, so G/L is
isomorphic to the largest abelian quotient of A/(A ∩G). Suppose that A is nilpotent.
If A′ � A ∩G, then A/(A ∩G) is a nonabelian nilpotent group. As such, it must have a
noncyclic abelian quotient, therefore in this case G/L cannot be cyclic. If A′ ≤ A ∩G,
that is, if G′α ≤ A ∩G, then G′ lies in the complete inverse image of A ∩G under
α, so G′ ≤ (A ∩G)(B ∩G). In this case L = (A ∩G)(B ∩G) ≤ Z(G), and as a central
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quotient of a nonabelian group can never be cyclic, the desired conclusion is once
more at hand. �

We quote in the following lemma a consequence of [7, Theorem 2] that will be
useful in what follows. We denote by Cpα the cyclic group of order pα.

L 2. Let U be an abelian group of exponent dividing pn, n > 1. If V is a subgroup
or a quotient of U of order |U |/p, then µ(U) ≤ µ(V) + pn − pn−1.

P. If U � V ×Cp, the claim holds because pn − pn−1 ≥ p. Otherwise, an
unrefinable direct decomposition of U has the same number of cyclic direct summands
as V , the difference being that a Cpm in V is replaced by a Cpm+1 in U. (When V is a
subgroup, this follows immediately from [9, Lemma 1]; when V is a factor group,
it comes dually.) In this case, µ(U) = µ(V) − pm + pm+1 and the claim holds because
m + 1 ≤ n and so pm+1 − pm ≤ pn − pn−1. �

Recall that a subgroup H of a group G is called meet-irreducible if it is not the
intersection of two subgroups H1, H2, with Hi > H for i = 1, 2.

L 3. Let P be a nonabelian p-group which is a transitive permutation group
of degree pn such that the stabilizer of a point is meet-irreducible. Suppose that P
contains a nontransitive maximal abelian subgroup M. Then every section of P′ which
is central in P has order at most p and P/P′ is isomorphic to one of the following
groups, where α ≤ n − 2:

(i) Cpα ×Cp ×Cp;
(ii) Cpα+1 ×Cp;
(iii) Cpα ×Cp2 .

In particular µ(P/P′) ≤ pn−1 + p.

P. Let S be the stabilizer of a point in P. Then S ≤ M, since M is not transitive,
and |M : S | = pn−1. It follows that {xpn−1

| x ∈ M} is a normal subgroup of P contained in
S , so it must be 1 as S is core-free. Moreover, as S is meet-irreducible, M/S is a cyclic
group. Thus, by a result of Ore on monomial representations [13, Ch. IV, Theorem 1],
P embeds into the wreath product Cpn−1 wr Cp in such a way that M embeds into the
base subgroup B. Observe that B has the structure of anA-module isomorphic toAA,
whereA = (Z/pn−1Z)Cp, and subgroups of B which are normalized by P are precisely
the A-submodules. In what follows we identify M with its image in AA and denote
by W the augmentation ideal ofAA.

Since P′ is contained in M ∩W and since every section of M which is central in P
is a trivialA-module, the last sentence of [5, Lemma 1.2.1] gives that every section of
P′ that is central in P has order dividing p. To prove the second part of the claim, note
that, by [5, Lemma 1.2.1] and using the same notation, P′ = W j for some j > 0. By [5,
Proposition 1.2.2] (and using the same notation, except for replacing n by n − 1) the
largest trivial submodule of AA/W j is easily seen to be A(n − 1, j + 1)/W j if W j < W
and AA/W otherwise. Hence M/P′ is a subgroup either of Cpn−2 ×Cp or of Cpn−1 .
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Using that M/P′ is a maximal subgroup of the noncyclic P/P′ and by arguing as in the
proof of Lemma 2, the second claim of the lemma follows. �

Recall that by [16], µ(G) = µ(H) + µ(K) whenever G is a nilpotent group with a
nontrivial direct factorization G = H × K. In particular, whenever G is a subdirect
product of two nilpotent groups A and B, we have µ(G) ≤ µ(A) + µ(B). We will use
this fact in the remainder of the article without making reference to it.

L 4. Let G be a finite nilpotent group and suppose that µ(H/H′) ≤ µ(H) for each
homomorphic image H of G such that µ(H) < µ(G). If G has a minimal faithful
representation with an abelian transitive constituent, then µ(G/G′) ≤ µ(G).

P. Suppose that G has a minimal faithful representation on a set Ω with an
abelian transitive constituent A = G∆, and set B = GΩ\∆. Then µ(G) = µ(A) + µ(B). As
G is a subdirect product of A and B and A is abelian, G′ = 1 × B′, so G/G′ is a subdirect
product of A and B/B′. Now B is a homomorphic image of G with µ(B) < µ(G); so by
hypothesis µ(B/B′) ≤ µ(B). Hence

µ(G/G′) ≤ µ(A) + µ(B/B′) ≤ µ(A) + µ(B) = µ(G),

as wanted. �

P   T. Let G be a finite p-group with an abelian maximal subgroup
M and assume, for a proof by contradiction, that G is a counterexample of minimal
degree. In particular, G is nonabelian. By [7, Lemma 1] there exists a faithful
representation ρ of G on some set Ω which not only has minimal degree but is such
that each point stabilizer is meet-irreducible. Let ∆ be an orbit of maximal length pn in
such a representation ρ, and set Γ = Ω \ ∆, A = G∆ and B = GΓ. Then G is a subdirect
product of A and B, and A is nonabelian by Lemma 4. As B has an abelian maximal
subgroup as well, minimality of µ(G) implies that

µ(B/B′) ≤ µ(B) = µ(G) − pn. (1)

Let S be the point stabilizer in G of a point of ∆. By our choice of ρ, this S is meet-
irreducible. By Lemma 4, G has no abelian transitive constituent, and so n ≥ 2. Finally
note that the exponent of G, and hence of G/G′, is at most pn.

Assume first that M is not transitive on ∆. Then A satisfies the hypothesis of
Lemma 3 and so each section of A′ which is central in A has order at most p and

µ(A/A′) ≤ pn−1 + p. (2)

Thus if G/G′ were a subdirect product of A/A′ and B/B′, using (1) and (2) we would
get

µ(G/G′) ≤ µ(A/A′) + µ(B/B′) ≤ pn−1 + p + µ(G) − pn ≤ µ(G),

contradicting that G is a counterexample. Therefore Lemma 1 applies, yielding that
R/G′ is isomorphic to a section of A′ that is central in A and that G/L is not cyclic.
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In particular G/R, which is easily seen to be a subdirect product of A/A′ and B/B′, is
not the whole direct product of these groups, so

µ(G/R) ≤ µ(A/A′) + µ(B/B′) − p. (3)

Since sections of A′ which are central in A have order dividing p, we have that
|R/G′| = p. So, first by applying Lemma 2 with U = G/G′ and V = G/R and then
by using (3) and (2), we get

µ(G/G′) ≤ µ(G/R) + pn − pn−1 ≤ µ(A/A′) + µ(B/B′) − p + pn − pn−1

≤ pn−1 + p + µ(G) − pn − p + pn − pn−1 = µ(G),

which is again a contradiction.
Hence M is transitive on ∆. Then S is not contained in M and |M : M ∩ S | = pn.

Since M is an abelian maximal subgroup of G, we have that G = SM and S ∩ M
is a normal subgroup of G. Now if the kernel of the action of G on ∆, coreG(S ),
were bigger than S ∩ M, then, by maximality of M, it would be coreG(S ) = S and
we would have that A = G/S � M/M ∩ S is abelian, contradicting Lemma 4. Hence
coreG(S ) = S ∩ M and A = G/S ∩ M.

Suppose first that M/M ∩ S is not cyclic. Then there exist two subgroups S 1, S 2

such that S 1 ∩ S 2 = M ∩ S and S 1S 2 = M. In particular, if |M : S 1| = pk, then 1 ≤
k ≤ n − 1 and |M : S 2| = pn−k. Consider the action of M on the set Ω via ρ and let
{K1, . . . , Kr} be a set of representatives of the point stabilizers of this action, one for
each orbit, where we assume K1 = S ∩ M. Let σ be the representation of M defined
by setting σ = ρS 1 + ρS 2 +

∑r
i=2 ρKi . Then σ is a faithful representation of M of degree

µ(G) − pn + pn−k + pk, whence

µ(M) ≤ µ(G) − pn + pn−k + pk. (4)

By Lemma 2, applied with U = G/G′ and V = M/G′, we have that

µ(G/G′) ≤ µ(M/G′) + pn − pn−1. (5)

Observe that M abelian and G′ > 1 imply that

µ(M/G′) ≤ µ(M) − p. (6)

Hence, using (5), (6) and (4),

µ(G/G′) ≤ µ(M/G′) + pn − pn−1 ≤ µ(M) − p + pn − pn−1

≤ µ(G) − pn + pk + pn−k − p + pn − pn−1

= µ(G) − (pn−k−1 − 1)(pk − p) ≤ µ(G),

which is a contradiction.
Therefore, M/M ∩ S must be cyclic. Then, A = G/M ∩ S is a nonabelian group

with a cyclic maximal subgroup. The structure of nonabelian p-groups with a cyclic
maximal subgroup is well known (see for example [15, 5.3.4]) and shows that A/A′

is either Cpn−1 ×Cp or C2 ×C2. In either case µ(A/A′) ≤ pn−1 + p, and one obtains a
contradiction as in the case when M is not transitive on ∆. This proves the theorem. �
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