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CP violation: K mesons

15.1 Introduction

Most of the symmetries in elementary-particle physics are continuous. A typical
example is the symmetry of rotations around an axis, where the angle of rotation can
assume any value between zero and 2π . In addition to continuous symmetries, there
are also discrete symmetries, for which the possible states assume discrete values
classified with the help of a few integers. For instance, snowflakes exhibit the dis-
crete symmetry of rotations under 60◦ and crystals exhibit various types of discrete
symmetries. In elementary-particle physics there are three discrete symmetries of
basic importance: parity, charge conjugation and time-reversal.

Parity is the reflection of space coordinates and will be denoted by P. Under
parity there are two states – the object and its space reflection. Parity is familiar from
quantum mechanics, where the eigenstates of Hamiltonians are classified according
to their properties under space reflection. For spherically symmetric potentials the
wave functions are proportional to the spherical harmonics Y �

m(θ, ϕ) whose parity
is (−1)�. For a long time it was assumed that the fundamental interactions respect P,
but a critical review of experimental evidence led two theoreticians, T. D. Lee and
C. N. Yang, to suggest that parity may be violated by the weak interactions. One
year later, an experiment led by C. S. Wu brought the proof that the P symmetry is
indeed violated by weak interactions.

The symmetry of charge conjugation, to be denoted by C, exchanges particles
with antiparticles. One can imagine building an antiworld by replacing all particles
by antiparticles. In the antiworld the three interactions gravity, the strong force, and
electromagnetism are the same, but the weak interactions are different. For example
in the antiworld muon-type antineutrinos are right-handed and produce µ+ which
are also right-handed. In comparison neutrinos are left-handed and always produce,
in high-energy reactions, left-handed µ−. In the weak interactions the C symmetry
is broken. However, it was assumed, at that time, that the observed processes do
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15.2 General properties 181

respect the combined CP transformation, the one obtained by applying both C and
P transformations.

There is a fundamental reason why CP symmetry plays a crucial role. It is inti-
mately linked to the time-reserval transformation (T). This transformation consists
of “looking” at an experiment running backward in time. Although, at the macro-
scopic level, one can distinguish the real sequence of events from the time-reversed
one in terms of large-scale phenomena such as entropy or the expansion of the
Universe, this is not a priori evident for microscopic interactions, i.e. it is not a
priori evident that the amplitudes for reactions and for the time-reversed reactions
are equal.

The analysis of CP violation is facilitated by an important theorem known as CPT
theorem. It states that any local field theory based on special relativity and quantum
mechanics is invariant under the combined action of C, P, and T. A consequence
of the theorem is that CP symmetry implies T symmetry, because any CP violation
should be compensated by T violation.

Until 1964 the decays and interactions of particles showed that the CP symmetry
was conserved; this created the belief that microscopic phenomena also obey the
T symmetry. In 1964 CP violation was observed in an experiment dedicated to the
study of K0 and K̄0 mesons. Since then it has become an active topic of research,
with CP violation having been observed so far in the K and the B mesons. In this
chapter we study the properties of mesons under discrete symmetries, leaving the
study of fermions for more specialized articles and books.

15.2 General properties

We describe now the properties that govern the decays of neutral pseudoscalar
mesons, such as K0, D0, and B0

d, when the interactions obey the CPT and CP sym-
metries. The results guide us to properties of these reactions that indicate breakdown
of CP and/or CPT symmetries.

For simplicity of presentation we shall consider the K0 as an example and describe
properties of the K0–K̄0 system; however, the results are general and hold for the
other mesons too. We adopt the phase convention

P|K 0〉 = |K 0〉, P|K̄ 0〉 = |K̄ 0〉, (15.1)

C |K 0〉 = |K̄ 0〉, (15.2)

T |K 0〉 = 〈K 0|, (15.3)

with similar relations being valid for the antiparticle |K̄ 0〉. Even though |K 0〉 is
a pseudoscalar particle, we chose a convention that under parity |K 0〉 transforms
into itself, since with this choice it is easier to keep track of the minus signs. The
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182 CP violation: K mesons

freedom to make this choice comes from the fact that parity transformation requires
P2 = 1; thus there is still freedom of the overall sign.

The decays of the mesons are mediated by the weak interactions, whose oper-
ators are Hermitian. Non-Hermitian terms appear in loop diagrams from energy
denominators; however, Hermiticity still holds when we consider the dispersive
and absorptive parts separately, as we discuss next. For instance, the semileptonic
decay has the amplitude

a� = 〈π−�+ν|HW|K 0〉 (15.4)

with HW the weak Lagrangian, which is Hermitian. Similarly, the contributions to
the mass matrix, with i and j being K 0 or K̄ 0, have the general form

Hi j = mKδi j + 〈i |HW| j〉 +
∑

n

〈i |HW|n〉〈n|HW| j〉
MK − En + iε

. (15.5)

The first two terms appear for i = j . The last term originates from box diagrams and
is present for �S = 2 transitions with j = K0 and i = K̄0. The last term is decom-
posed into two Hermitian matrices by decomposing the energy denominator into a
principal part denoted by P and a δ-function term. The Hamiltonian decomposes
as follows:

Hi j = Mi j − i

2
	i j , (15.6)

with a dispersive term

Mi j = mKδi j + 〈i |HW| j〉 + P
∑

n

〈i |HW|n〉〈n|HW| j〉
MK − En

(15.7)

and an absorptive term

	i j = 2π
∑

n

〈i |HW|n〉〈n|HW| j〉δ(En − MK). (15.8)

These terms satisfy the Hermiticity relations

Mi j = M∗
j i and 	i j = 	∗

j i . (15.9)

More relations follow from CP and CPT invariance. We present the conditions
as two theorems.

Theorem 1 For a Hamilton operator that is CPT-invariant the amplitudes for the
decays of particles and antiparticles are the complex conjugates of each other.

Proof Let us denote the amplitude for K0 decay by

AI = 〈X I |HW|K 0〉. (15.10)

https://doi.org/10.1017/9781009402378.016 Published online by Cambridge University Press

https://doi.org/10.1017/9781009402378.016


15.2 General properties 183

Then, using (C PT )HW(C PT )−1 = HW, we obtain

AI = 〈X I |(C PT )−1 HW(C PT )|K 0〉
= 〈K̄ 0|HW|X̃ I 〉 = Ā∗

I , (15.11)

where |X̃ I 〉 = C P|X I 〉, i.e. the CP conjugate state and

Ā I = 〈X̃ I |HW|K̄ 0〉. (15.12)

By applying the theorem to the diagonal elements of the mass matrix Hi j and
using Hermiticity of the dispersive and absorptive parts, we obtain

M11 = M22 and 	11 = 	22. (15.13)

This is the statement that CPT invariance demands the equality of masses and
widths for particles and antiparticles. When we apply the theorem to off-diagonal
elements, we obtain the relation

M12 = M∗
21 and 	12 = 	∗

21, (15.14)

which is not new, but the Hermiticity relations in Eqs. (15.9).
It follows now that the mass matrix in the |K 0〉 and |K̄ 0〉 has the form

M − i

2
	 =

(
M11 − i

2	11 M12 − i
2	12

M∗
12 − i

2	
∗
12 M11 − i

2	11

)
. (15.15)

As mentioned already, the form of the diagonal elements follows from conserva-
tion of the CPT symmetry. We can make them different, thus introducing by hand a
violation of CPT invariance, and study the modifications in the lifetimes and other
properties of the states.

The presence of the off-diagonal matrix elements implies the mixing of the states
K0 and K̄0. The physical states are a mixture of them, obtained by diagonalizing the
mass matrix, which will be presented in the next section. Additional restrictions,
which we describe in the next theorem, are introduced by CP symmetry. �

Theorem 2 For a Hamiltonian that is CP-invariant, the decay amplitudes for
particles and antiparticles are relatively real.

Proof

(i) As before we denote by AI and Ā I the decay amplitudes for particles and antiparticles,
respectively.

(ii) CP invariance implies

HW = (C P)−1 HW(C P). (15.16)
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184 CP violation: K mesons

(iii) Then the matrix elements are related,

AI = 〈X I |(C P)−1 HW(C P)|K 0〉
= 〈X̃ I |HW|K̄ 0〉 = Ā I . (15.17)

We can apply the theorem in cases in which |X I 〉 is a specific final state or in the
case |Xi 〉 = |K̄ 0〉 which refers to the mass matrix.

Let us consider the latter case first. Taking |X I 〉 = |K̄ 0〉 and |X̃ I 〉 = |K 0〉, we
obtain the relation

〈K̄ 0|HW|K 0〉 = 〈K 0|HW|K̄ 0〉 . (15.18)

In this and the following equations HW can be the lowest-order Lagrangian or
may include higher-order terms with possible contractions between fields. It follows
now that, when we consider the dispersive and absorptive terms separately, they
are relatively real. This is a stronger restriction than the Hermiticity requirement of
Eq. (15.15), where they were complex conjugates of each other. We shall use these
properties in the next section, where we will define the parameter ε.

For decays of particles the theorem says that the amplitudes for particles and
antiparticles are relatively real. This indicates a strategy for detecting CP violation.
It consists of measuring the phase difference of the two amplitudes relative to a third
standard phase, such as the phase occuring in the time development of states, the
phase in a Breit–Wigner propagator, or some other known phase. We shall describe
several methods in the next sections. �

15.3 Time development of states

In the following sections of Chapter 15, we shall assume that CPT is a good sym-
metry of Nature and study cases in which the CP symmetry is broken. The fact that
there are off-diagonal elements in Eq. (15.5) means that |K 0〉 and |K̄ 0〉 are not mass
eigenstates but the physical states are mixed states. The physical states are obtained
by diagonalizing the matrix in Eq. (15.15). Beyond the solution of the physical
states we are interested in learning how the elements M12 and 	12 are produced. In
gauge theories they originate from box diagrams and lead, for the various mesons,
to terms of different magnitudes, so that the physical properties of K0, D0, and B0

mesons are very different. We describe first the time development of the states.
We are interested in defining a state that is a superposition of |K 0〉 and |K̄ 0〉 and

has the time development

ψ1(t) = (B1|K 0〉 + D1|K̄ 0〉)eiE1t , (15.19)
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15.3 Time development of states 185

with B1 and D1 being constants. The time evolution is described by the Schrödinger
equation

i
d

dt
ψ1(t) =

(
M − i

	

2

)
ψ1(t), (15.20)

whose stationary solutions are determined by the eigenvalue problem(
H H12

H21 H

)(
B1

D1

)
= E1

(
B1

D1

)
, (15.21)

with a similar equation for the second eigenvalue E2.
The solutions have energies E1,2 = H ± √

H12 H21 and the eigenfunctions

ψ1,2 =
(

1
±q/p

)
e−iE1,2t with

q
p

=
(

H21

H12

)1
2

= eiξ , (15.22)

respectively. We have written the wave functions in terms of the parameter q/p
and have not yet normalized them. The reason for this is that one frequently uses
another parameter, ε, which is defined by

q

p
= 1 − ε

1 + ε
= [M∗

12 − (i/2)	∗
12]1/2

[M12 − (i/2)	12]1/2
= eiξ , (15.23)

which will be used later on. The dynamics of each problem resides in the matrix
elements of the Hamiltonian, which are calculated in terms of the box diagrams.
We describe the results of these calculations in the next section. They provide us
with values for M12 and 	12, which turn out to be complex functions indicating
CP violation in the mass matrix.

Let us discuss the physical states. On substituting q/p into Eq. (15.19), we obtain
at t = 0 two normalized states,

|KS〉 = 1√
2(1 + |ε|2)1/2

[
(1 + ε)|K 0〉 + (1 − ε)|K̄ 0〉], (15.24)

|KL〉 = 1√
2(1 + |ε|2)1/2

[
(1 + ε)|K 0〉 − (1 − ε)|K̄ 0〉]. (15.25)

Each state has its own time development given by e−iES,Lt . The subscripts S and
L indicate the short- and long-lived states. When ε = 0, |KS〉 and |KL〉 are even
and odd eigenstates of the CP operator. For Re ε �= 0 the states are no longer CP
eigenstates, indicating that the symmetry is broken in the construction of the states.

There are two special properties we wish to discuss. The states are not orthogonal
to each other, but have an overlap

〈KS|KL〉 = 2 Re ε

1 + |ε|2 . (15.26)
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186 CP violation: K mesons

This follows from the fact that the mass matrix, in general, is not Hermitian. The
second property occurs when ε is purely imaginary. We can use the states |K 0〉 and
|K̄ 0〉 or new states

|K̃ 0〉 = eiα|K 0〉 and |
�
K 0〉 = e−iα|K̄ 0〉 (15.27)

rotated by a constant phase α. A purely imaginary ε can be eliminated by the
appropriate redefinition of the states in Eqs. (15.24) and (15.25). The real part of
ε cannot be eliminated. A real part of εK has been established for the K 0-meson
system. For B0 mesons εB is, to a good approximation, purely imaginary and there
is no CP violation in the construction of the physical states.

For the time development of the states we separate the eigenvalues into their
respective dispersive and absorptive parts,

MS,L − i

2
	S,L = ES,L = E1,2,

which define the mass and width differences

ML − MS − i

2
(	L − 	S) = 2

√
H12 H21. (15.28)

A general state is a superposition of the physical states KS and KL, with constant
coefficients C1,2 describing how the state was created at time t = 0:

ψ(t) = C1e−i[MS−(i/2)	S]t |KS〉 + C2e−i[ML−(i/2)	L]t |KL〉. (15.29)

The decay of the state proceeds through strangeness-changing couplings, which
requires that we rewrite them in terms of |K 0〉 and |K̄ 0〉. The time development of
a state that at time t = 0 began as |K 0〉 is given by

ψ1(t) = N

[
f+(t)|K 0〉 + q

p
f−(t)|K̄ 0〉

]
, (15.30)

with

f± = e−i[MS−(i/2)	S]t ± e−i[ML−(i/2)	L]t , (15.31)

with N a normalization constant. Similarly, a state that starts at t = 0 as |K̄ 0〉 has
the time development

ψ2(t) = N ′
[

f−(t)|K 0〉 + q

p
f+(t)|K̄ 0〉

]
. (15.32)

These equations indicate that a state that started as a pure |K 0〉 will develop in time a
|K̄ 0〉 component through the interference of the two terms. The fact that it involves
an interference phenomenon makes possible the separation of the amplitudes, as
well as determination of the factor q/p.
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15.3 Time development of states 187

Let us consider an experiment in which a state |K 0〉 was created. This state will
evolve into a mixture of both K0 and K̄0. In fact the probabilities of finding at time
t the |K 0〉 and |K̄ 0〉 components are

|〈K 0|K 0(t)〉|2 = | f+(t)|2 = 1

4

[
e−	1t + e−	2t + 2 cos(�M t)e−	t

]
and

|〈K̄ 0|K 0(t)〉|2 =
∣∣∣∣q

p
f−(t)

∣∣∣∣
2

= 1

4

∣∣∣∣q

p

∣∣∣∣
2[

e−	1t + e−	2t − 2 cos(�M t)e−	t
]
,

with 	1 = 	S, 	2 = 	L, and 	 = 1
2 (	S + 	L). Similar formulas hold for a state

that starts as |K̄ 0(t)〉. The detection of |K 0〉 or |K̄ 0〉 in the final state is carried out
by observing their decay products. Thus the final formulas involve an additional
amplitude, which introduces its own phase. The time development of the states
allows the accurate determination of�M and of relative phases. In fact, this property
is used heavily in the analysis of experiments.

15.3.1 Simplified formulas for K0 mesons

Numerous experiments with K-meson beams were able to determine �M , �	,
and the parameter εk . The results suggest several approximations that simplify the
equation considerably. For neutral K mesons the mass and width differences are
comparable:

�MK = ML − MS = 3.52×10−15 GeV, �	K = 	L −	S = −7.36 × 10−15 GeV .

(15.33)
Measurements in the decays of the particles determine εK to be small,

|εK| = (2.27 ± 0.02) × 10−3, (15.34)

with a phase of approximately 45◦. At the end of this section we describe an
experimental method that determines |εK|.

For small εK the exponent ξ which occurs in Eq. (15.23) is small and allows the
following approximations:

H12 ≈ √
H12 H21(1 − iξ ),

H21 ≈ √
H12 H21(1 + iξ ).

From the definition of εK it follows that

εK = H12 − H21

H12 + H21 + 2
√

H12 H21
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188 CP violation: K mesons

and, using the above approximations,

εK = i Im M12 + 1
2 Im 	12

2
√

H12 H21
= i Im M12 + 1

2 Im 	12

�M − (i/2)�	
. (15.35)

The fact that the phase is 45◦ means that Im M12 and Im 	12 are comparable.
Furthermore, the magnitude of |εK| implies that the denominator is much larger,
i.e.

Im M12, Im 	12 ≤ Re M12 or Re 	12, (15.36)

giving the final result

H12 = Re M12 − i

2
Re 	12 (15.37)

and √
H12 H21 ≈ Re M12 − i

2
Re 	12. (15.38)

The simplified formulas of this section hold only for the K0 system. For this case
the mass difference is

�M = 2 Re M12 (15.39)

and the width difference is

�	 = 2 Re 	12. (15.40)

We shall discuss the theoretical determination of these quantities in the next section.
Before leaving the discussion of the K mesons, we discuss the measurement of
Re εK from semileptonic decays.

Let us consider a beam that consists of KL mesons. This beam is created in
accelerators by producing intense beams of K0 or K̄0 mesons and setting up an
experiment far away from the production region, where the KS particles have already
decayed. Next we consider the decays

KL → π−�+ν (15.41)

and

KL → π+�−ν̄, (15.42)

distinguished by the charges of the pions and leptons. We denote the decay ampli-
tudes as

a� = 〈π−�+ν|HW|K 0〉, (15.43)

ā� = 〈π+�−ν̄|HW|K̄ 0〉. (15.44)
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15.4 The K 0 –K̄ 0 transition amplitude 189

Assuming CP invariance for the amplitudes, Theorem 2 says that the two amplitudes
are equal,

a� = ā�, (15.45)

which, together with the definition of KL, determines the asymmetry

δ = 	(KL → π−�+ν) − 	(KL → π+�−ν̄)

	(KL → π−�+ν) + 	(KL → π+�−ν̄)
= 2 Re ε

1 + |ε|2 . (15.46)

The experimental value for the asymmetry is

δ = (3.27 ± 0.12) × 10−3, (15.47)

which is consistent with the magnitude and phase given earlier in this section. The
separation into magnitude and phase is obtained by comparing the semileptonic
decay with the KL → ππ decays, which we shall describe in a following section.

15.4 The K0–K̄0 transition amplitude

The theoretical calculations of the matrix elements M12 and 	12 are far from being
understood. For these as well as other matrix elements, there have been developed
several methods that provide acceptable values and even make successful predic-
tions. For K0 mesons there are short- and long-distance contributions, with the
dominance of the short-distance contributions being harder to justify, because the
strong coupling constant αS(q2) is large and the quarks are confined into hadrons.
For the B0 mesons, on the other hand, the dominance of the top quark in intermediate
states makes short-distance dominance more reliable.

The diagonal elements of the mass matrix are created by the strong interactions.
The off-diagonal term M12 involves a �S = 2 transition and receives contributions
from the box diagrams, as described in Section 14.7. The method consists of calcu-
lating an effective �S = 2 Hamiltonian in the free-quark model and then taking its
matrix element between the K0 and K̄0 states. The �S = 2 Hamiltonian generated
by this method was described in Section 14.7:

H�S=2
W = − G2

16π2
M2

W Q�S=2
[
λ2

c E(xc) + 2λcλt E(xc, xt) + λ2
t E(xt)

]
, (15.48)

with the various terms defined as follows. The variable xi = m2
i /M2

W and the
couplings of the quarks at the various vertices produce the factors

λi = V ∗
idVis. (15.49)

Their numerical values are determined by the CKM-matrix elements with λc being
of O(λ) and λt of O(λ5) in the Wolfenstein parametrization. The functions E(xc)
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190 CP violation: K mesons

and E(xc, xt) are obtained from the integration over the loop. We wrote down E(xi )
in Eq. (14.52) and the second function is given as

E(xi , x j ) = −xi x j

[
1

xi − x j

(
1

4
+ 3

2

1

(1 − xi )
− 3

4

1

(1 − xi )2
ln xi

)
+ (i ↔ j)

− 3

4

1

(1 − xi )(1 − x j )

]
. (15.50)

For

m2
c 
 M2

W, E(xc) → −xc

and for

m2
t � M2

W, E(xt) → −1

4
xt + 3

2
ln xt,

which indicates that the various terms in (15.50) are comparable.
Finally, there is the operator

Q�S=2 = d̄γµ(1 − γ5)sd̄γ µ(1 − γ5)s,

which represents the external lines of the box diagram. The matrix element XK =
〈K 0|Q�S=2|K̄ 0〉 contains the long-distance contribution of this calculation. A good
deal of effort has been invested in its calculation. In various situations so far, we have
encountered the calculation of two-quark operators (currents) between hadronic
states, for which there are reliable numerical estimates – sometimes extracted from
experimental data. Estimates of matrix elements for four-quark operators are less
reliable and are still a subject of research. A simple estimate of such matrix elements
is given in Eq. (16.5), which can be taken over for the K mesons by making the
replacements FD → FK and MD → MK.

The absorptive part 	12 is in principle also calculable in terms of the box diagrams
by setting the intermediate states on the mass shell, i.e. replacing the propagators
by δ-functions. For K mesons the physical intermediate states are u quarks, making
the absorptive part a long-distance effect. This term is calculated by low-energy
methods with the intermediate states being 2π, 3π, . . . mesons. The calculation
carries a large uncertainty because the amplitudes and their relative phases are not
known.

The situation is different for heavy mesons, in particular the B0−B̄0 system, in
which there are many intermediate states with multiparticle final states dominating
the decay. For heavy mesons the sum over intermediate states will be replaced by the
quarks and will be calculated as the absorptive part of the diagram. This is known
as the quark–hadron duality, whereby hadronic matrix elements are replaced by
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15.5 CP violation in amplitudes 191

the corresponding quark diagrams. Finally, the matrix elements are taken between
hadrons, for which approximations are again necessary.

We close this section by deriving two approximate formulas describing the mass
and width differences of neutral B mesons. The general formulas for width and
mass differences are

�M = 2 Re

[(
M12 − i

2
	12

)(
M∗

12 − i

2
	∗

12

)] 1
2

, (15.51)

�	 = −4 Im

[(
M12 − i

2
	12

)(
M∗

12 − i

2
	∗

12

)] 1
2

. (15.52)

For these equations, we need assume only that the CPT symmetry is exact. For K0

mesons the data imply the approximations which were described in Section 15.3.1.
For the B mesons the situation is different. Estimates of 	12 and M12 using the
effective Hamiltonians of this section lead to the estimate (Paschos and Türke,
1989)

	12 ∼ 0.1M12

and with almost the same phase; consequently for B mesons

�MB = 2|M12| and �	B = 2|	12| (15.53)

to a good approximation. The differences in the masses and widths of the K0 and
B0 mesons indicate that each system must be treated separately. The qualitative
differences are understood in terms of the quark substructure which enters the box
diagrams.

15.5 CP violation in amplitudes

Besides the phase introduced in the mass matrix the decay amplitudes have their
own phases. Theorem 1 states that the amplitudes for particle and antiparticle
decays are the complex conjugates of each other. This is a consequence of CPT.
CP symmetry goes one step further and requires the amplitudes to be real relative
to each other. Consequently, evidence for the breakdown of CP symmetry requires
the measurement of phases.

In quantum mechanics the overall phase of a sum of amplitudes can always be
removed, but relative phases among amplitudes are measurable observables. For
this reason all measurements must include at least two phases and the experiments
measure one phase relative to the other.
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Let us denote the final state by 〈 f | and in addition select the final state to be a
CP eigenstate with eigenvalue unity. Examples of such decays are

K0 → π+π−, π0π0. (15.54)

There are two decay amplitudes specified by the isospin of the two pions being
0 or 2. Searches for direct CP violation measure the relative phase of the two
amplitudes and try to establish whether it is the same in K0 and K̄0 decays. We
denote the amplitude

〈(2π )I |HW|K 0〉 = AI eiδI ,

〈(2π )I |HW|K̄ 0〉 = Ā I eiδI with I = 0 or 2. (15.55)

The phases δI are created by final-state interactions of the two pions, which is
a strong-interaction effect independent of the initial state but a function of the
isospin I . Beyond the strong phase there is also a phase of weak origin, which
changes sign as we go from particles to antiparticles. Consequently, we can write
the amplitudes as follows.

AI = |AI |eiθI , (15.56)

Ā I = |AI |e−iθI , (15.57)

where θI is now a phase of weak origin.
Experiments starting with a |K 0〉 or a |K̄ 0〉 beam also observed the mixing

phenomenon, described in Section 15.3, in the decays to π+π− and π0π0. At a
distance corresponding to six to seven lifetimes of the KS mesons the two amplitudes
interfere and show a difference. In this way one can separate the ratios

η+− = A(KL → π+π−)

A(KS → π+π−)
(15.58)

and

η00 = A(KL → π0π0)

A(KS → π0π0)
. (15.59)

If CP is a good symmetry (the CP quantum number is conserved), then these ratios
vanish. The experiments found these ratios to be different from zero. It is customary
to make an isospin analysis of the amplitudes and write them as

A(K0 → π0π0) =
√

2

3
A0 − 2√

3
A2 (15.60)
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and

A(K0 → π+π−) =
√

2

3
A0 + 1√

3
A2 (15.61)

and rewrite the ratios in terms of isospin amplitudes.
Straightforward substitution of the amplitudes gives

η+− = (
√

2A0 + A2ei�) − eiξ (
√

2A∗
0 + A∗

2ei�)

(
√

2A0 + A2ei�) + eiξ (
√

2A∗
0 + A∗

2ei�)
, (15.62)

with � = δ2 − δ0. It is mentioned here that the ratio is phase-convention indepen-
dent. A popular phase convention was introduced by Wu and Yang, which selects
the A0 amplitude to be real and then the answers will depend on the phase of the
A2 amplitude denoted by θ2. We adopt this convention; then, by substituting eiξ in
terms of ε and collecting terms together, we obtain

η+− =
ε

[
1 + 1√

2

∣∣∣∣ A2

A0

∣∣∣∣cos θ2 ei� +
(

i√
2

)∣∣∣∣ A2

A0

∣∣∣∣sin θ2 ei�

]
[

1 + 1√
2

∣∣∣∣ A2

A0

∣∣∣∣ cos θ2 ei� +
(

iε√
2

)∣∣∣∣ A2

A0

∣∣∣∣sin θ2 ei�

] . (15.63)

The expression simplifies if we neglect the second term in the denominator, since
ε|A2/A0|sin θ2 
 1. In this case

η+− = ε + ε′

1 + ω/
√

2
(15.64)

with

ε′ =
(

i√
2

) ∣∣∣∣ A2

A0

∣∣∣∣sin θ2 ei�

and

ω =
∣∣∣∣ A2

A0

∣∣∣∣cos θ2 ei�.

On repeating the analysis for η00 with the same approximations, we obtain

η00 = ε − 2ε′

1 − √
2 ω

. (15.65)

In many models both A0 and A2 are complex and rephasing of the amplitudes is
necessary in order to bring them into accord with the Wu–Yang phase convention.

In summary, in addition to the CP parameter discussed in Section 15.3.1, there
is the parameter ε′. The parameter ε arose from phases in the mass matrix and ε′

from relative phases in the decay amplitudes. The former is referred to as indirect
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CP violation and the latter as direct CP violation. It is also customary to define the
ratio ε′/ε because the phase π/2 − � ≈ 45◦ of ε′ is approximately equal to the
phase of ε and cancels out in the ratio.

Going back to a general phase convention whereby both A0 and A2 are complex,
we should replace θ2 by θ2 − θ0 and the definition of ε′/ε becomes

ε′

ε
= 1√

2|ε|

∣∣∣∣ A2

A0

∣∣∣∣(sin θ2 − sin θ0)

= − ω√
2 ε

1

Re A0

(
Im A0 − 1

ω
Im A2

)
, (15.66)

with

ω =
∣∣∣∣ A2

A0

∣∣∣∣ ≈ Re A2

Re A0
� 1

22.2
.

The remaining problem is the calculation of the imaginary parts of the amplitudes
in Eq. (15.66) because the real parts are much larger, with their numerical values
known from experiments.

15.6 The effective Hamiltonian

K-meson decays involve low-energy interactions mediated by the exchanges of
hadrons and at least one W boson. It is customary to appeal to the quark–hadron
duality and replace the hadrons by quarks and gluons. The weak interaction is a
short-distance phenomenon that is represented by the couplings of the W to quarks.
This is not the only part of the interaction, because there are strong interactions
produced by the exchanges of gluons. A complete calculation must include both of
them. Thus a method has been developed in field theory for this purpose. The method
consists of summing the leading logarithmic contributions of the diagrams. The final
result is an effective field theory with the W and the heavy quarks eliminated or, as
one says, “they have been integrated out.”

Even if we start with one weak operator at momenta comparable to MW, the
exchange of gluons introduces more operators coming from loop diagrams, like
penguin and box diagrams. The effective Hamiltonian has the form

Heff =
∑
a,b

Cab(MW, µ)Qab(µ), (15.67)

with Qab(µ) = q̄(x)	aq(x)q̄(x)	bq(x) with 	a and 	b being matrices in Dirac
space. The constants Cab(MW, µ) are the coefficient functions (Wilson coefficients)
obtained from the renormalization of the operators. They depend on a high energy,
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MW, a low energy scale, µ, and the quarks in the intermediate states. Their general
form is

Ci j (MW, µ) ∼ ln

(
MW

µ

)γ

b

, (15.68)

which is obtained by integrating renormalization equations of quantum chromo-
dynamics (QCD). The exponent γ is known as the anomalous dimension and b
arises from the running of the coupling constant. The calculation of the coefficients
and their accuracy is a theoretical topic of active research whose study is beyond
the scope of this book (Buchalla etal., 1996).

In order to give a general impression of the results, we present here the effective
Hamiltonian for K-meson decays. As mentioned already, it depends only on the
light quarks and contains eight operators:

H�S=1
eff = GF√

2

8∑
i=1

[
Cu

i (µ)λu + Cc
i (µ)λc + C t

i (µ)λt
]
Qi for µ < mc, (15.69)

where λq = V ∗
qdVqs are again the couplings from the CKM matrix, the unitarity of

which implies

λu + λc + λt = 0 (15.70)

and makes possible the elimination of one of them. Once we decide to eliminate
λu, the coefficient functions will appear as differences Cc

i − Cu
i and C t

i − Cu
i . The

substitution makes the coefficient functions less sensitive to the up quark. The
operators which appear are defined as follows:

Q1 = 4s̄Lγ µdLūLγµuL, Q2 = 4s̄Lγ µuL ūLγµdL,

Q3 = 4
∑

q

s̄Lγ µdL q̄LγµqL, Q4 = 4
∑

q

s̄Lγ µqL q̄LγµdL,

Q5 = 4
∑

q

s̄Lγ µdL q̄RγµqR, Q6 = −8
∑

q

s̄LqR q̄RdL,

Q7 = 4
∑

q

3

2
eq s̄Lγ µdL q̄RγµqR, Q8 = −8

∑
q

3

2
eq s̄LqR q̄RdL. (15.71)

Operator Q2 is the original charged-current operator and Q1 is generated from box-
type diagrams, where in addition to the W a gluon is being exchanged (Fig. 15.1).

The penguin diagrams in Fig. 15.2 generate Q3, . . ., Q6. Finally, penguin dia-
grams with the exchange of photons generate Q7 and Q8 (electroweak penguins).
Since the penguin diagrams are important, we present several steps of the calcula-
tion in Section 15.7, where it is also explained how the penguin diagrams generate
the various operators.
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s
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Figure 15.1. Tree and box diagrams.

q q

W

s d

Figure 15.2. A penguin diagram.

Finally, one may also show that not all the operators are independent, since they
satisfy the relation

−Q1 + Q2 + Q3 = Q4.

The coefficient functions Ci (MW, µ) originate from the short-distance interaction
of QCD and have been calculated at the one-loop, as well as the two-loop, level.
The hadronic matrix elements

〈Qi (µ)〉I = 〈ππ, I |Qi (µ)|K 0〉 (15.72)

originate from long-distance interactions, since they involve low energies and
momenta. They represent the low-energy limit of QCD and must be calculated
by low-energy methods. They have been the subject of various calculations, which
we shall mention briefly. Within the framework described in this section we can
outline the calculation of ε′/ε.

Among the amplitudes which enter the calculation, Re A0 and Re A2 are taken
from experimental data (Devlin and Dickey, 1979):

Re A0 = 0.338 × 10−6 GeV and Re A2 = 0.015 × 10−6 GeV.
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They are much larger than their imaginary parts. The amplitudes Im A0 and Im A2

are calculated in terms of the effective Hamiltonian

Im AI = G√
2

8∑
i=1

[(
Cc

i − Cu
i

)
Im λc + (

C t
i − Cu

i

)
Im λt

]〈Qi 〉I . (15.73)

With a phase convention of the CKM matrix whereby Vus and Vud are real, the
unitarity of the CKM matrix provides one additional relation,

Im λt = −Im λc = λ5 Aη. (15.74)

Substitution of this relation eliminates the u quarks in intermediate states, since the
Wilson coefficients for top and charm quarks are subtracted from each other. This
leads to the result

ε′

ε
= GF√

2

ω

|ε|
1

Re A0
Im λt

∑
yt

i (µ)

[
〈Qi (µ)〉0 − 1

ω
〈Qi (µ)〉2

]
, (15.75)

with yt
i (µ) = C t

i (µ) − Cc
i (µ) and ω = Re A2/Re A0. The superscripts denote con-

tributions from top and charm quarks in the intermediate states. The unitarity of the
CKM matrix helps by eliminating the Wilson coefficients of the u quarks and mak-
ing the QCD contribution sensitive to the energy scales between mc and m t, where
the short-distance expansion is acceptable. The Wilson coefficients are available
and have been tabulated (Buchalla et al., 1996).

The hadronic matrix elements have been the subject of numerous calculations.
From the early estimates it was evident that 〈Q6〉0 plays an important role. The
matrix element is generated by the penguin diagrams and, since it involves pseudo-
scalar densities, it is enhanced. In chiral perturbation theory it is expressed in terms
of coupling constants divided by the mass of the strange quark. It was also calculated
by vacuum saturation or the tree contribution of the chiral perturbation theory. It
was noted that the lowest-order contribution must be supplemented by chiral loops
(Bardeen et al., 1987, 1998). The final results indicate that 〈Q6〉0 is important,
especially because it is further enhanced by contributions from chiral loops.

An additional complication arises from the matrix element 〈Q8〉2, whereby in
the penguin diagrams the gluon is replaced by a photon. It was argued that the elec-
troweak term can be very important because it is multiplied by a large factor, 1/ω.
Calculations in chiral perturbation theory indicate that its contribution is moderate
and it is further reduced by loops. A good approximation consists of taking the
dominance 〈Q6〉0 and 〈Q8〉2. As an illustrative example we give typical values for
the Wilson coefficients,

y6 = −0.110 and y8 = 1.15 × 10−3, (15.76)
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and the matrix elements,

〈Q6〉0 = −3.4 GeV3 and 〈Q8〉2 = 0.46 GeV3, (15.77)

obtained in chiral perturbation theory for ms = 150 MeV. The CKM term is pre-
cisely known to be

Im λt = (1.35 ± 0.35) × 10−3. (15.78)

On collecting all terms together in Eq. (15.75), we obtain the value(
ε′

ε

)
K

= 16.9 × 10−4, (15.79)

which is consistent with the experimental values. The contribution of the electro-
weak penguin is less than 20%. Many quantities entering the calculation carry
uncertainties and the final range for the ratio is larger, in the range (10−20) × 10−4

(Hambye et al., 2000). Calculations in the chiral quark model give a similar range.
These values are consistent with the newest experimental values,

(14.7 ± 2.2) × 10−4 NA(48) (Fanti et al., 1999), (15.80)
(

ε′

ε

)
K

=
{

(22.7 ± 2.8) × 10−4 KTeV (Alavi-Harati et al., 1999). (15.81)

At this time it seems that the experiments are more precise than the theory. This
is the outcome of four large experiments that invested great efforts in measuring
precisely decays and interference phenomena in K-meson decays.

It would be an omission not to mention a good deal of work done on lattice gauge
theories, which tries to determine the matrix elements. Unfortunately, their results
are not stable enough yet. They give a wide range of values for the matrix elements
and the CP parameter.

This is an introduction to the calculations of the CP parameter intended for
students who may use it as a guide to the published articles. The bottom line is
that theoretical analyses in the standard model are consistent with experimental
measurements. The CKM paradigm gives a consistent – albeit not very accurate –
picture for the K-meson decays and it remains to find out whether it continues being
successful for mesons containing heavy quarks.

15.7 Calculation of a penguin diagram

In K-meson and B-meson decays an important contribution comes from the penguin
diagram. We have mentioned already that in Eq. (15.71) the penguin diagram with
gluonic corrections produces four operators. It is worthwhile to give several steps
of the calculation, which demonstrate how the various operators are generated. This
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Q Q
ν

νk k + q

µ

W, k

µ
d s

Figure 15.3. Momentum assignments for the penguin diagram.

section contains long algebraic manipulations and is presented here for those who
are theoretically inclined.

The notation for the penguin diagram is introduced in Fig. 15.3. The external
momenta are those of the strange and down, quarks, which correspond to typical
momenta within light mesons and are small relative to the mass of the W boson. For
this reason external momenta are kept in the spinors but will be neglected within the
four-dimensional integral. A peculiarity of the penguin diagram is the presence of
the gluon propagator with momentum q, which is kept throughout the calculation.
Following standard rules, the matrix element is written in the form

MP = g2
w

8

g2
s

q2

∫
s̄γµγ−

k/ + q/ + mi

(k + q)2 − m2
i

γν

λα

2

k/ + mi

k2 − m2
i

γ µγ−d
1

k2 − M2
W

d4k

(2π )4

× Q̄γ ν λα

2
Q ·V ∗

isVid. (15.82)

The quarks in the loop and their masses are denoted by the subscript i and mi ,
respectively. The index for the intermediate quarks occurs also in the CKM matrix
elements Vis and Vid. The rest of the notation is standard, with gw and gs the
weak and strong coupling constants, respectively, γ− = (1 − γ5), and λα the color
matrices.

We follow several of the steps for the calculation of loops described in
Section 14.7.2. We rewrite the matrix element as

MP = g2
w

8

g2
s

q2
s̄γµγ−γαγν

(
λα

2

)
γβγ µγ−d Q̄

(
λα

2

)
Q I αβ(mi , q), (15.83)

with

Iαβ(mi , mi , q) =
∫

d4k

(2π )2

(k + q)αkβ[
(k + q)2 − m2

i

](
k2 − m2

i

)(
k2 − M2

W

)V ∗
isVid.

(15.84)
In this way we have separated the spinor structure from the four-dimensional
integral. We ignored fermion masses in the numerator, since they are small relative
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to the integration momenta, and set s̄q/d = 0 because we consider masses for
external quarks that are small. There is a logarithmic divergence independent of
the quark masses. It is multiplied by

∑
i V ∗

isVis = 0 and vanishes. Similarly, in the
limit in which the gluon momentum transfer q2 is much larger than all internal
quark masses, it is easy to check that the penguin diagram vanishes. However, for
problems involving q2 
 m2

c or m2
t the cancellation is not complete.

The remaining two integrals appear with the factors kαkβ or qαkβ in the numer-
ator. Using the method of Feynman parameters and the integrations described in
Problem 4, the dominant contribution of the integral for mc, m t 
 MW is

Iαβ(mi , q) = −qαqβ

M2
W

1

16π2i
ln

(
M2

W

m2
i

)(
1

3
− 1

2

)
V ∗

isVid, (15.85)

with the 1
3 coming from the kαkβ term and the 1

2 from the qαkβ term. Finally, we
simplify the spin structure by using known identities:

qαqβ s̄γβγνγαγ−d = s̄(2qν − γνq/)q/γ−d = −q2s̄γνγ−d. (15.86)

The q2 factor cancels out the gluon propagator in Eq. (15.82).
On collecting terms together, we arrive at the final result

MP = − G√
2

αs

12π
ln

(
M2

W

m2
i

)
s̄Lγνλ

αdL Q̄γ νλa Q(V ∗
isVid). (15.87)

We note that the coupling s̄L . . . dL contains left-handed quarks, in contrast to the
gluon coupling Q̄γν Q being a vector. By decomposing the latter into left- and right-
handed couplings, we generate two distinct operators. Finally, using an identity for
the product of color matrices,∑

a

λa
i jλ

a
kl = 2

(
δilδ jk − 1

3
δi jδkl

)
, (15.88)

we double the number of operators. In the end, the penguin diagram generates four
operators, Q3, Q4, Q5, and Q6, which were absent at the tree level.

There are two ways to treat the penguin diagram. One of them considers its
contribution as a short-distance operator creating a four-fermion interaction among
the quarks. This would be the case when the top quark dominates a process. The
exchange of additional gluons may still be soft and some sort of summation is
again necessary. A final step is the estimation of the four-quark operator between
hadronic states.

The alternative method considers the four operators generated by the penguin
diagrams as basic operators and sums up higher-order QCD corrections. This is
achieved by considering gluonic corrections to each of the operators Q1, . . ., Q6,
which renormalizes and in addition mixes them up; that is, gluonic corrections to
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one operator generate several of the others. The problem to be solved is one of
coupled differential equations. The initial conditions are defined at high momenta
when only Q2 has an initial value and all other operators are zero. Following this
method (Peskin and Schroeder, 1995; Buchalla et al., 1996), one arrives at the
effective Hamiltonian similar to that in Eq. (15.69). The theory is effective because
the additional corrections are proportional to higher powers of αs(p2), which for
large momenta become very small.

Problems for Chapter 15

1. Introduce in Eq. (15.62) the Wu–Yang phase convention, then substitute for eiξ in terms
of ε and derive Eqs. (15.63) and (15.64).

2. (i) The normalizations that occur in Eqs. (15.30) and (15.32) describe how many K0 or
K̄0 mesons, respectively, are present at time t = 0. Argue that for normalized wave
functions |K 0〉 and |K̄ 0〉 they should be N = N ′ = 1

2 .
(ii) Consider the time development of the state |K 0〉 and the decays to π+π−. Describe

the interference term and find an argument justifying the large interference at a
distance corresponding to six to seven lifetimes of the KS meson.

3. Show that the operators Q1, Q2, Q3, and Q4 satisfy the relation

−Q1 + Q2 + Q3 = Q4.

4. The calculation of the integral in Eq. (15.84) contains in the numerator two terms: one
with kαkβ and the other with qαkβ . Write each of the integrals in terms of Feynman
parameters. The four-dimensional integrations are of the form∫

d4k

(2π )4

{kα, kαkβ}
(k2 + 2k · p − �)3

= 1

32π2i

[ {−pα; pα pβ}
� + p2 + iε

+
{

0;
1

2
gαβ ln(� + p2 + iε) + A0

}]
.

The function � contains masses of the quarks, the mass MW, q2, and Feynman parame-
ters. The constant A0 is cut-off-dependent but independent of quark masses; it disappears
when we sum over the quarks in the loop. The remaining two integrations are elemen-
tary. Arrange the integrations in an appropriate way to extract the leading ln(MW/mi )
term and obtain Eq. (15.85).

Comment We described the integrals in the limit mi 
 MW. For m t > MW you can
again study the elementary integrals and obtain a modified logarithmic term.
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