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HOMOMORPHISMS OF DISTRIBUTIVE P-ALGEBRAS

WITH COUNTABLY MANY MINIMAL PRIME IDEALS

M.E. ADAMS, V. KOUBEK AND J. SICHLER

According to a result of Lee, varieties of pseudocomplemented

distributive lattices form an io+i chain B , c B c B, c . .. cB
~ — 1 ~U ~1

in which B . is the trivial variety and B is the variety

of Boolean algebras. In the present paper it is shown that the

variety B, contains an almost universal subcategory B in

which the members of Eom(B}B*) associated with minimal prime

ideals of B form a countably infinite set for any B,B' e B .

In particular, B contains arbitrarily large algebras whose

nontrivial endomorphisms form the countably infinite right zero

semigroup. Our earlier results concerning categorical properties

of varieties of pseudocomplemented distributive lattices show

that no further reduction of the right zero count is possible.
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428 M. E. Adams, V. Koubek and J . S i ch l e r

1. Introduction.

A pseudocomplemented distributive lattice or a p-algebra is an

algebra (L;v,*,*,0,l) of type (2,2,1,0,0) such that (L;v ,i\,0 ,1)

is a distributive (0,1)-lattice equipped with an additional unary

operation * of pseudocomplementation defined by the requirement that

y <i* if and only if x i^y = 0 in the lattice (L;V,A,0,1) . According

to Ribenboim [7 23, pseudocomplemented distributive lattices form a variety

B . The lattice of subvarieties of B was shown, in Lee [6], to be

the countable chain B 7 c B- c B. c . . . c B in which fl j is the

trivial variety, B consists of Boolean algebras, and B, is the variety

of Stone algebras.

These varieties present an interesting spectrum of interdependence

between the complexity of their algebras and their relative richness as

categories. For instance, a Stone algebra S is uniquely determined

within B. by its abstract endomorphism monoid End(S), and B contains

at most two nonisomorphic algebras with isomorphic endomorphism monoids

in.
On the other hand, for every infinite cardinal K the variety B

contains 2 (the maximal possible number) of pairwise nonisomorphic

algebras whose endomorphism monoids are isomorphic [7], while in the

variety B a proper class of algebras with isomorphic endomorphism

monoids can be found [2]. These earlier results suggest that B, is the

variety most suitable for further investigations.

The present note shows that the categorical structure of B, is

considerably richer than that of B. . To formulate the main result,

Theorem 1.1 below, the following observations are in order.
For any minimal prime ideal J of a p-algebra A , the mapping

h:A -*• {0,1} given by h {0} = I is a p-algebra homomorphism [3].

Since any p-algebra A has minimal prime ideals, there always are such

homomorphisms between any two of them, and the endomorphism monoid

End(A) has at least one right zero. In fact, the submonoid of all right

zeros of End(A) is in a one-to-one correspondence with the set of all
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minimal prime ideals of A .

Throughout the note, a homomorphism g : A -> B is if

g(A) = {0,1} ̂ B .

A category C is Universal if every full category of algebras is

isomorphic to a full subcategory of C . One of the consequences of

universality (see Pultr and Trnkova [7 7]), is the existence of a proper

class of nonisomorphic rigid objects, that is, objects whose endomorphism

monoids consist of the identity endomorphism alone. Because of the

existence of constant endomorphisms, p-algebras do not form a universal

category.

Apart from the minimal prime ideal count, constant homomorphisms

h : A -»• B do not reflect any of the structural complexity of A . To

investigate the categorical richness of varieties of p-algebras more

meaningfully, almost universal categories of p-algebras were defined in

[7] as categories containing a class D of objects such that all non-

constant homomorphisms between members of D form a universal category.

Observe that almost universality requires that non-constant homomorphisms

never compose to a constant one.

The variety B_ is the smallest almost universal variety of p-

algebras [7]. When of infinite cardinality K , the p-algebras

constructed in [I] have 2K minimal prime ideals and hence 2K right

zero endomorphisms, so that only a set of these algebras can have

isomorphic endomorphism monoids. Attempting to reduce the right zero

count, [2] exhibits a proper class of algebras in B whose endomorphism

monoids are finite; on the other hand, [2] shows that the requirement of

only finitely many right zeros causes a loss of control over non-constant

endomorphisms. Stated more precisely, the latter result says that any

infinite almost rigid p-algebra in B. (that is, an algebra whose only

non-constant endomorphism is the identity) must have infinitely many

minimal prime ideals. The present note complements [2] by demonstrating

that a class of algebras in B3 whose set of minimal prime ideals is

countably infinite determines an almost universal category.

THEOREM 1.1. The variety B contains an almost universal

subcategory B in which the constant members of Eom(B3B') form a
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430 M. E. Adams, V. Koubek and J. Sichler

countably infinite set for any B, B' in B .

In particular, B_ contains a proper class of algebras whose

endomorphism monoids are isomorphic to the countable right zero monoid.

It may be of interest to note that the variety B satisfies the variant

of Theorem 1.1 with "countably infinite set" replaced by "an m-element

finite set" [Z].

The proof of Theorem 1.1 will be carried out using Priestley's

duality [ SI whose relevant features we briefly review first. The

reader is referred to Davey and Duffus [4] or Priestley [70] for more

detailed information.

A mapping f : P -*• P' between posets P, P' is order preserving

if x<y in P implies f(x)<f(y) in P' . For any subset S of P

set IS) = {xeP: 3s e S x>s] and (Si = {x e P: Ss e S x < s] ; a subset

S of P is increasing if IS)=S , decreasing when (S1=S . If

Mln(P) denotes the set of all minimal elements of P , then

M±n(S) = Min(P) n (Si for any S c_P ; when S = {x} , we write Kin(x)

instead of Mindx}) . A poset P equipped with a topology T is

totally order disconnected if for any x,y eP with x$y there exists a

x-clopen decreasing set S £P such that y e S and x e P\S .

PROPOSITION 1.2. (Priestley [S]). The category D of all (0,1)-

homomorphisms of distributive (0,1)-lattices is dually isomorphic to the

category T of all continuous order preserving mappings of compact

totally order disconnected spaces (henceforth called Priestley spaces).

The Priestley space (X,x,<) dual to a distributive lattice D

consists of the inclusion ordered prime ideals of D , so that Minfoyl

is nonvoid for every x e X . Conversely, elements of the lattice D are

represented by clopen decreasing subsets of X . The dual of a (0,1)-

lattice homomorphism h:D' •*• D is the T-morphism f such that, for any

prime ideal J of D (that is, an element of the Priestley space

(X,T,< ) dual to D ), f(I)eX is the prime ideal h'1 (I) of D'.

A Priestley space (X,-z,<) is the dual of a p-algebra if and only

if \_S) is clopen for every clopen decreasing S ̂ _X ; such an ordered

space will be called a p-space. The dual / of a p-algebra

homomorphism, called a p-map, is a continuous order preserving mapping
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such that f(nin(x)) = Min(f(x)) for all elements x of its domain (see

Priestley [9]). The constant homomorphisms of p-algebras defined earlier

are thus represented by constant p-maps whose value is a minimal element

of the appropriate p-space.

According to Lee L61, a p-algebra A lies in the variety B, if

and only if every prime ideal of A contains at most three minimal prime

ideals. We summarise these remarks as follows.

PROPOSITION 1.3 (Priestley [9] and Lee [6]). The Variety B3 of

pseudooomplemented distributive lattices is dually isomorphio to the

category of all p-spaces (X,T£) satisfying \Min(x)\ <3 for all

xeX j and of all continuous order preserving mappings f between such

spaces such that f(Min(x)) = Min(f(x)) for all x in the domain space

of f.

2. The construction.

If S = (X^T,^) is a p-space representing an algebra from B_ then

MinfxJ has at most three elements for every x e X . The p-spaces

constructed below to prove Theorem 1.1 consist of their minimal elements

and of elements x for which MinCxJ has exactly three members. For

any p-map f : S •*• S' of such spaces, Proposition 1.3 shows that the

/-image of any triple {a,b,c} = Minfx.) for which there exists an

x e S\nin(S) with Minfx,) = {a3b,c} is either a singleton contained in

MinfS'J or the three-element subset {f(a),f(b),f(c)} = Wi.n(f(x)) of

Mint's'J . The restriction of / to Min(S) is thus a t-map (see the

definition below).

The initial step describes the countable set M = Min(S) common

to all spaces S to be constructed, and the set T of all triples

{a3b,c} £ M for which each S contains an x with \Mn(x) = {a,b,c} .

The set M is the disjoint union of A = {a.:jeu} , B= {b .:j e 22},

3 3
and C= {c.:je3} } while T i s the union of the following s e t s :

3

{{bl>bS'b13}'{o0>Cl>°2}} >

T0 = {{a2i>a2i+l>a2i+2}:iebi} u
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U;- lQ>H,aJ3b<2i+2j+3) :ie223 j e 4} ;

the addition of indices for members b-, of B is carried out in the

K

arithmetic modulo 22 .

It is easy to verify that (M3T) is a partial Steiner triple

system (see [7]) in that it satisfies:

(*) for every pair {x3y} c_ M there exists at most one triple

{x3y3z} eT .

We say that f:(M3T) + (M',T') is a t-map if f(M) c_M' and if

the /-image of every triple {x3y3z} e T is either a singleton or a

triple in T' . Hence if t. = {x.3y .,z.} eT for ie{0,l} , then
Z- % 1r %

f(zQ) = f(z2) follows from {f(xQ),f(yQ)} = {fCx^.ffy^} for any t-
map / into a t r ip le system (M'ST) in which (*) holds; in what
follows, this observation i s frequently used without further reference.

First we aim to show that the only nonconstant t-map
f:(M\C,T\{C}) •*• (M,T) i s the inclusion of M\C into M . To this end,
set D = {an,an}aCi3a.} , and le t ~ denote the kernel of f .u i z o

LEMMA 2 . 1 . If f(bk) = fd>kH) for some ke22 and i e {1,2}

then f is constant on B u D .

Proof. The pair ^V'^V-M'^ collapsed by f is contained in a

triple from UQ unless k is even and i = 2 ; since V' includes

triples ibk,a0tbk+3h ttk+i,a03bkH+3} 3 in the latter case \ ~

implies ^V+z^^V-^i+Z ' E:"-ther waY/ / collapses some triple

e U0 ' T h e e x i s t e n c e ' i n uj ' o f t r i P l e s {b
s-3'

a

and ^bs_y
a2'bs+2^

 n o w i m P l i e s a
0 ~

 aj • U s i n9

{b 3a.,b ^s with even r e 22 we see that / collapses all members of

U. ; thus f is constant on B . Since each a- e. D lies in a triple
u i*

whose other two elements are in B , we conclude that f is constant on

B vD . 0

https://doi.org/10.1017/S0004972700013411 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700013411


Homomorphisms of p-algebras 433

LEMMA 2.2 . If f(b ) = f(b ) with r even and s odd then f

is constant on B u D .

Proof. There ex i s t s some k e 11 such tha t s=r+2k+3 . If

ke {9,10} then Lemma 2.1 gives the desired conclusion, so tha t i t

suffices t o consider k e {0,. .. ,8} .

For any j e 4 set r(j) = s- (2j+3) and s(j) =r+2j+3 ; thus

s(j)-r(j) = r-s+2(2j+3) = 2(2j-k)+3 . For each ke {2,...,8} there

exists a j e 4 with 2j e {k-2,k-l\ and, therefore s(j)-r(j) e {-1,1} .

Since {bv(.),a.,hs}, {bT,a^,bs{.)} a re t r i p l e s i n i^ , from & r ~ & s

i t fol lows t h a t b , . ,~£> ,.. for each je4 . Thus, by Lemma 2 . 1 , f

i s c o n s t a n t on B u D .

I f k = 0 then s = r + 3 and / c o l l a p s e s t he t r i p l e {b ,an,b } ;
P U S

in particular, an~b . Applying this fact to {b -,an,b _} and

{£> ,b +-,b „} , we obtain b -~b - . Hence / is constant on BuD

by Lemma 2.1.
For k = l we have s = r+5 , so that i> ~b^_c • Using triples

and {b ,,2> , .,b _} now yields an~b . . From

is obtained, and hence the previous case

of k = 0 applies again. D

LEMMA 2.3. If fib ) = fib ) for distinct elements of B with

s - r even, then f is constant on B u D .

Proof. For r,s odd, the use of {b -,,an,b } and {b -,,an,b }

shows that b ~~b , ; with no loss of generality we may thus assume
v—6 s—o •

that v,s are even.

From ^b.a^jb^.}, {b ,an,b ,.} e Un it now follows that
S J. S i O J.

br+5~hs+S which, in turn, yields b ^ - b ^ since U>jH.2>
a0*hi*S)

{hs+2>aO>hs+S] « e triples in ^ . Now b^^-b^^ follows

inductively for all i e 11 . Since b ^ b , the least nonzero integer

j for which b ~bg. is less than 11 , so that 2kj ~2 Cmod 22; for
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some k . Clearly i>.~i>_.. for all i ; in particular, b. "J,, . =£>„

which, in view of 2.1, completes the proof. D

LEMMA 2.4. The restriction of f to BuD is either one-to-one

or constant.

Proof. As seen above, / is either one-to-one on B or constant

on BuD.

Should f(a.)=f(a.) for distinct a.,a-e.D then
t' 0 1-3

f(h2i+3)=f(b2j+3) s i n c e Ul contains triples « > a i

{b n,a •ibl). _} ; thus f is constant on BuD . The same conclusionU J cd+d

follows when f(a.)=f(b.) because of the existence of a triple

{£>..,a.jfc,} e £/, for any £ £ 4 and j e 22 . 0
Q "V K 1

PROPOSITION 2.5. Jf / ; (M\C,T\{C}) -»• f ^ W is a non-constant

t-map then f(m) =m for all m e M\C .

Proof. For any m e M let deqdn) , the degree of m , be the

number of triples in T that contain m . It is easy to see that at

least eleven triples containing a given a. e D are contained in BuD,
Is

and that deg(a.) Z 4 for a l l a.eA\D} 5 <deg(b .) <7 for a l l j € 22 ,
1> 1> Q

and degCe,.) = 1 for ke3 .

Suppose that f is one-to-one on BuD. Since each a. e. D has

degree at least eleven in BuD and because all elements outside D are

of a smaller degree, f(D) = D . Since / is one-to-one on BuD and all

elements outside BuD are of degree less than five, it also follows

that f(B) =B . Thus / permutes the triples entirely contained in B ;

observe that bnJ b CJ &,_ are of degree 3 in B , that all other

bo. .. have S-degree two, and that each b0. lies in a single triple

contained in B . Since / preserves S-degrees, i t permutes each of the

sets E= {b2i:i e 11}3 F = {b2i+J:i ^0,2,6} , and G= {b^b^b^} . The

images f i t j , f(t^ of S-triples tJ = {b^b^bj, tg= {byb4>b5>

intersect in a member of F and contain one element from each of E , F,

and G . Since t_, t- is the only pair of S-triples with these
1 o
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properties, if(t^),f(t-)} = {£,,.,£,} ; in particular, / preserves

{b^b^i , and f(&,J =bjg since {b ̂ b 5,b 13) e T . Similarly, the

quadruple of consecutive B-triples t. = {.b .,b . n,b . 0} with i = 5,7,9,11

connects b^ to £>7- through elements outside of G , while there is no

such quadruple connecting bn and ib,_ . Therefore f is the identity

1 Id
mapping on G and, consequently, also on the union {bj,...,b^.,} of the

six triples considered. It now easily follows that f is the identity

mapping on B .

Using triples {bn,a .,b0 . -} with je4 and the fact that
u 3 z 3 T" o

f(b-,)=b, for all k e 22 shows that / maps D= {ag,aj,ag3a-}

identically onto itself.

Altogether, the t-map / is either constant or the identity on

Bui?. To complete the proof we need to determine how / extends to A .

We set 4, ={a.j..,,a,. } and proceed inductively for k £ 4 .

Since {ar>,a7,a.} and {an,a.-,ac} are triples in T. and because
c, o 4 J. 0 o U

f is a i-map into a triple system satisfying (*) , the values f^&J

and f(<Xc) are uniquely determined by f \ V : if f(a.)=V for all

a • € D then f(a.)=f(ac)=V , while f(a.)=a. for i = 4,5 follows when

f\D is the identity. Thus f is either constant or the identity on

B \j {aQ,... ,a5) . Using {a4,as,a6} e TQ and {a2,as,a8) e 2^ , in the

first case we obtain f(aj = V = f(aa) and hence also f(an) = V since
0 0 I

{as,a-,ag} eT. , so that / is constant on B uA . If, on the other •

hand, f is the identity on B u {an,...,ac} then these three triples

guarantee that f is the identity also on B uA. .

Assume that f is either constant or the identity on some B u A,

with k>.4 . If f(z)=v for all z e B u Afe then f(a2k+2
)=V s i n c e -f

collapses the triple f V 8 j a 2 W ^ 2 h f J J a n d f(a2k+l)=V n o W

follows when ^a9fc->a2fe+7->a5>l:j.9̂  e ̂"/j :"-s use(^' hence / is constant on
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BuAk+l ' I f ? i s t h e i d e n t i t y o n BuAk t h e n f(a2k+2) =a2k+2

follows from (*) applied to the first triple, and a subsequent

application of (*) to the second one shows that f is the identity on

BuAk+1. a

Let Tp be the category whose objects W have the form

W = (Y,oy<, y.,y^) for some compact totally order disconnected space

(Yj,a,^) and y.,y^e.Y . The morphisms of T. are all order preserving

continuous mappings that also preserve each of the two distinguished

elements. To prove Theorem 1.1, a full embedding $ of the dually

universal category T. , (see [5]) into the category dual to that of all

nonconstant homomorphisms between algebras from B will be constructed

as follows.

We set <b(W) = <S(Y3a,<,y ,y ) = (X,i,<>) = S , where X is the

disjoint union Y U M u (T\{C}) for the triple system (M,T) defined

earlier. The partial order <, on X is the extension of (Y,<) defined

by

a <y for all 0 e. C and all y e Y ,

m<t for all m e M\C and all t e T with met.

It is clear that M = Min(S) and that MinfxJ has exactly three

elements for every x eX\M .

Set A. = {a~,^eA:keu} for i = 0,l,2, and let Z be a x-clopen

set just when it satisfies

(a) if i e 3 and Z nA. is infinite then a. e Z ,

(b) if i e 3 and c, e. Z then A.\Z is finite ,

(c) if 3 e 2 and Z n T . is infinite then y . e Z ,

0 3
(d) if j e 2 and y . e. Z then 7. \ Z is finite ,

«7 3
(e) ZnY is a-clopen.

The singletons {a.} , {y .} thus compactify the respective discrete
t J

subspaces J4 . for i e 3 and 21. for j e 2 . Being the union of the
1 3

compact space W with these five compact spaces, $ (W) i s compact.
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To see tha t $(W) i s t o t a l l y order disconnected, choose u^V i n

X a r b i t r a r i l y . Since the subspace X\(Yu C) i s d i s c r e t e , and (xl} [x)

are f i n i t e for any xeX\(Yu C) , i t suff ices to consider the case of

ueY and u e Y u C . If V = o. for some ie3 then A.uiv] i s a T -

v ^

clopen decreasing set not containing u . Finally, let u3V eY . Then

V € V and u e Y\V for some a-clopen decreasing subset V of Y . If

J= {j £ 2:y . € V} then v(T .:j e J) u M u V is a x-clopen decreasing subset
3 3

of X containing V but not u . This shows that $ (W is a Priestley

space.

To prove that $(W) is the dual of a p-algebra from B, we need

to show that [V) is T-clopen for every T-clopen decreasing Vc_X . If

V(\C = 0 then also Vn (YuC)=0; hence V , and thus also (Vl , is a

finite subset of the discrete space X\(Y u C) . If 1= ii e 3:a. e V} is

nonvoid then IV) consists of Y together with all but finitely many

elements of u(A.:i eI) uT„ uT and only finitely many members of each
1s U J.

A. with j e 3\J . Hence ZV) is clopen as was to be shown.
3

For any morphism f of £„ define $(f) as the extension of f

by the identity mapping of X\Y = Mu (T\{C)) . It is clear that $ is a

well-defined one-to-one functor of T. into the category of

p-spaces dual to algebras in S_ , and that Q(f) is nonconstant for any

morphism f of To . Since M is the countably infinite set of minimal

elements of each $(W) , there are only countably many constant

homomorphisms between algebras represented by these spaces. The proof

of Theorem 1.1 will be completed once it is shown that every nonconstant

continuous order preserving p-map g:Q(W) -*• <b(W) has the form g=$(f)

for some morphism f:W-*-W in To .

The nonconstant p-map g maps the minimal set M of $CW into

the minimal set M of $(W) . Since {u,v3w} ̂ _M is the set MinfoJ

for some x e X just when {u3v,w} e T , and because the restriction of

g to M is a t-map, from Proposition 2.5 and (*) it immediately

follows that g is the identity mapping on the set X\(Y\iC) . By

continuity, g is also the identity mapping on C and g(y.) =y'. for
3 3
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j e 2 . Since Y i s the se t of a l l elements xeX for which Min(x) = C ,

the r e s t r i c t i o n f = g f- Y maps Y i n to Y' . Recall tha t the ordered

subspace Y of $(W) i s homeomorphic and order isomorphic to the ordered

space We T. . Because i t maps the dis t inguished elements y n, u , of W

t o the corresponding J/ljJ/i e V , the r e s t r i c t i o n f=g>W i s , indeed,

a morphism from W i n to W in the category T_ ; since g i s a lso

the i d e n t i t y on $(W)\Y , we see that g=9(f) as required. The proof

of Theorem 1.1 i s now complete.
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