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Summary

Two approaches to the evolution of phenotypic plasticity in heterogeneous environments have
recently been put forward. The first focuses on selection on the character expression within each
environment; plasticity is seen as a by-product of local selection in various habitats. The second
approach focuses on selection on the parameters of the response function of genotypes, and
selection is thought to change the frequencies of ‘plasticity’ genes that affect the function. This
paper discusses the relationship between the two approaches, with emphasis on applications. A

method is described that allows switching from one approach to the other. It is argued that
character state and reaction norm approaches, while to a large extent interchangeable, usually
differ in the response function chosen. This choice, however, may strongly affect the biological
interpretation. The methods outlined in this paper permit one to look at the data from different

perspectives in order to avoid this danger.

1. Introduction

The world of phenotypic plasticity appears to be in a
schismatic phase. One view focuses on selection on the
character expression within each environment (Via &
Lande, 1985; Van Tienderen, 1991 ; Gomulkiewicz &
Kirkpatrick, 1992). Phenotypic selection on a focal
trait may result in a selection response within a
particular environment, which in turn may affect the
expression of the trait in other environments by means
of correlated responses (Via & Lande, 1985). The
evolution of plasticity is thus seen as a by-product of
local selection in various habitats (Via, 1993a). The
other view focuses on selection on the parameters of
the reaction norms of genotypes (De Jong, 19904, b;
Gavrilets & Scheiner, 19934, b), for instance the
parameters of a polynomial function. Selection is
thought to change the frequencies of genes (‘ plasticity’
genes) that affect the shape of the function. Apparent
differences between these, here called character state-
and reaction norm approaches, and their underlying
assumptions on the mechanisms for plasticity have
been discussed at length (Via, 19934, b; Schlichting &
Pigliucci, 1993; Scheiner, 1993a). Indeed, they may
lead to very different descriptions of the selection
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process (Stearns, 1992) and adherents to the different
views sometimes seem to speak different languages.
Falconer (1952) noted that a trait expressed in two
environments could be seen as two characters that are
genetically correlated. Discrete habitats may arise
naturally, such as different host species, or alter-
natively, they may form a subset of environments
from a potentially continuous range. In either case,
data are represented as character values for each
environment. This character state approach was
expanded by Via & Lande (1985, 1987) to model
evolution in several habitats. They concluded that the
additive genetic covariances across environments
strongly affect the outcome of selection: optimal
values for a quantitative trait cannot evolve if the
matrix of genetic (co)variances G is singular. For a
case with only two environments this occurs if there is
no genetic variation in one or both environments, or
if breeding values in the two environments are perfectly
correlated (i.e. plus or minus one). Within this
framework all constraints on the outcome of selection
are reflected in G (Via, 1987). These conclusions may
be particular to the assumed underlying genetic details
(see discussion). However, it seems plausible that
adverse genetic covariances across environments may
retard the evolution of adaptive reactions.
Gomulkiewicz & Kirkpatrick (i992) generalized this
approach for an arbitrary (and potentially infinite)
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number of environments by using genetic covariance
functions and selection gradient functions.

In the reaction norm approach, a genotype is
described by its reaction to an, often continuously
varying, environmental factor (Woltereck, 1909).
Theoretical models mostly use polynomial functions
(De Jong, 19904, b; Gavrilets & Scheiner, 1993a, b),
but other functions can be employed also. Gavrilets &
Scheiner (1993 5) concluded that genetic correlations
between the parameters of the function may strongly
affect heritabilities within a given environment, and
hence responses to selection. Again, constraints may
be reflected as singularity of the matrix of genetic
(co)variances, now of the parameters of the function.

This paper focuses on the following issues. (i) To
what extent are character state and reaction norm
approaches equivalent? (ii) Can we infer the selective
pressures on the parameters of a reaction norm from
data on selection within environments, and vice versa?
(iii)) What is the relationship between the genetic
(co)variances in the two approaches and the under-
lying biological constraints?

2. The relationship between character states and
reaction norms

For phenotypically plastic trait, the character state in
a particular environment i, z,, can be written as a
function of a set of environmental variables for that
environment, x;, and a set of reaction norm parameters
specific for each genotype, g (Appendix 1). For
example, a reaction norm could be written as
z, = go+& XJfood, + g, x temp,+g, x temp?. In this
case, each genotype is characterized by four para-
meters, the intercept g,, a term for the linear effect of
food level g,, and linear and quadratic terms for
temperature, g, and g,. Each environment is charac-
terized by three parameters, the actual food level, the
ambient temperature and its square. For convenience,
a leading one is added to the environmental vector
x; = (1 food, temp, temp?), so that we can write
z, = X;g (Appendix 1). We examine the relationship
between the two approaches for soft and hard
selection, assuming a coarse-grained, spatially het-
erogeneous environment, characters that have multi-
variate Gaussian distributions of genotypic and
environmental values, and functions that can be
written as z = Xg (Appendix 1), ie. z is a linear
function of g. De Jong (1994 ) presented a rigorous
analysis of the model, using a multi-locus population
genetic approach, and assuming hard selection. This
derivation was based on reaction norms that were
written as a Taylor series around the average value for
a particular environmental variable. Earlier papers
(e.g. Gavrilets, 1986; De Jong, 1990a; Gavrilets &
Scheiner, 19934, b) often used a particular subset of
possible linear transformations. Given a linear trans-
formation between g and z, a mathematical relation-
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ship between the character state and reaction norm
approaches exists in genetic covariance matrices,
selection gradients and selection responses, indepen-
dent of the underlying genetics (De Jong, 19945;
Appendix).

The additive genetic covariance matrix of character
states G, and the matrix of function parameters G, are
related through a simple transformation of scale:
G, = XG,X' (eqn 1.2). The matrices can be trans-
formed into one another, and they contain the same
biolo gical information. Constraints in one matrix are
also present in the matrix of the alternative rep-
resentation. However, differences in the order of the
matrix, the scaling and units of the matrix elements,
the correlations among matrix elements, and even the
decomposition in principal components might mis-
takenly be interpreted as differences in underlying
biology.

In the character state approach, the selection
gradient P, describes the selective forces within each
environment; the contributions of the different
environments to the next generation depend on the
relative frequencies of environments and the mode of
selection (hard or soft) (Via & Lande, 1985). Low-
productive environments have a lower impact because
they produce fewer propagules and therefore hardly
affect the trait in the focal or in other environments
(or, such habitats produce less ‘by-product’, Via,
1993a). The selection gradient for function para-
meters, B,, depends both on selection within each
environment and the contributions of the environ-
ments to the next generation. For example, selection
on the slope of the reaction norm depends on the
selective forces in all the habitats, weighted by their
relative importance. Low-productive environments
contribute little and therefore have minor effects on
reaction norms at the level of the global population,
whereas high-productive environments tend to pull
harder at the reaction norm parameters. The two
selection gradients are related by the equality
B, = X*QB, (eqn 1.3), with Q a diagonal matrix of
frequencies of the environment. Again, there is no
fundamental difference between the approaches.

Finally, the changes due to selection in the two
approaches are also related by a simple equality:
AZ = XAg (eqn 1.4).

Although these equalities are independent of the
actual genetic background of the traits, they may not
always contain the relevant information for the
selection process. For a deterministic, Gaussian
quantitative genetic model and weak selection (Lande,
1979; Via & Lande, 1985; Gavrilets & Scheiner,
1993b) the relations are indeed relevant, and con-
nected through familiar selection equations for coarse-
grained environments. The selection equation in the
character state approach, AZ = G,Q B, (eqn 1.5) and
in the reaction norm approach, Ag = G,B, (eqn 1.6)
are in fact mathematically equivalent. De Jong (1994 b)
arrived at this conclusion using a multi-locus selection


https://doi.org/10.1017/S0016672300032729

Selection on reaction norms

model. Other genetic models, for instance, non-
Gaussian distributions of breeding values with non-
zero higher moments or models with epistatic gene
action may require a more extensive set of parameters
to derive expected responses to selection (Barton &
Turelli, 1987; Turelli & Barton, 1990). This applies
both to character state and reaction norm models.

Changes in the parameters of the reaction norm can
also be written as a by-product (Via, 1993a) of
selection within environments (Ag = G,X'Qp,), but
the reverse is mathematically equally possible. But
again these are representations of the same biology. A
choice for one representation above the other is a
matter of preferences rather than underlying biology.
Not all possible reaction norm functions can be
written in the form here discussed, i.e. as a linear
transformation from g to z. For example, the
metabolic rate of a poikilothermic organism might be
an exponential function of temperature; such a
function cannot be inverted which makes it impossible
to switch freely between approaches. However, many
functions may be transformed to, or approximated by
a function linear in g.

3. Data analysis

We focus on data for a number of families of
genetically related individuals in a set of (natural or
experimental) environments. Such split-brood designs
allow estimation of genetic variances within environ-
ments, and genetic covariances across environments.
Variation in the parameters of a reaction norm
function cannot be calculated directly from variation
in the mean values for each family in all environments
(Gavrilets & Scheiner, 199354). This can easily be
understood. Imagine, for instance, a situation without
genetic variation in slopes. Sib-group means will vary
due to individual variation among the members of a
sib groups, and consequently the calculated slopes of
different sib groups will not be the same. The higher
the standard error of the sib group mean per
environment, the higher the variance among sib group
slopes; therefore, variation based on sib groups means
overestimates the true genetic component of variance
among sib-groups. Gavrilets & Scheiner (19935)
present a correction factor for the intercept and slope
of linear reaction norms. Appendix 2 shows how the
genetic covariances of parameters for arbitrary re-
action norm functions with transformation matrix X
can be derived.

Such an analysis proceeds in three steps. Firstly,
components of variance and covariance are estimated
from the data, typically by equating observed and
expected mean squares from analyses of variance
(Falconer, 1989; Fry, 1992). Secondly, these ob-
servable components are converted to genetic vari-
ation within environments, and covariation between
pairs of environments, by taking into account the
relatedness of the individuals. For instance, the

https://doi.org/10.1017/50016672300032729 Published online by Cambridge University Press

117

variance component for full- and half sibs families are
estimates of, respectively, one-half and one-quarter of
the additive genetic variance (Falconer, 1989). These
estimates may be contaminated by non-additive
variation, e.g. full-sib estimates include maternal
effects and dominance variance. Several breeding
designs have been developed to minimize the bias in
the estimated additive component of genetic
(co)variation (Falconer, 1989). The variances and
covariances together comprise the ‘raw’ genetic
covariance matrix G,. Techniques are available that
convert ‘impossible’ covariance matrices (e.g. con-
taining negative variances, or covariances that result
in correlations outside the range {—1, +1}) to proper
(i.e. positive definite) matrices (Hill & Thompson,
1978 ; Hayes & Hill, 1981). In an optional third step,
this covariance matrix can be converted to genetic
variation in the parameters of a particular reaction
norm function (Appendix 2). Genetic variation in
function parameters can be estimated from the genetic
covariance matrix across environments using equation
2.4. In this third step, one has to choose a particular
environmental factor, and a particular function for
the norm of reaction. For planned experiments the
function may simply be a polynomial expansion of the
treatment levels applied. For data from natural
environment, where many environmental factors may
covary, this choice may not be so obvious.

Having selected a particular model] for the data, for
instance a polynomial function, it is possible to
recalculate expected variances within- and covariance
across environments under the assumption that the
model is valid (Appendix 2). These values may differ
from the initial ‘raw’ matrix; ideally, the model
adequately describes the pattern in the data, whereas
the initial matrix contains pattern plus noise. If so, the
character state covariance matrix calculated for a
particular model may be a better representation of the
real genetic covariance matrix than the raw matrix
(Kirkpatrick, Lofsvold & Bulmer, 1990). Further-
more, if intermediate environments exist, it is possible
to intrapolate for values for which there are no actual
measurements. Gomulkiewicz & Kirkpatrick (1992)
used orthogonal polynomials after spline intra-
polation, but essentially their approach is the similar:
genetic covariances are estimated from a particular
statistical method that separates pattern from noise.

4. Selection on developmental time in Daphnia

We use data from an experiment with Daphnia galeata
(Koelewijn, unpubl.) to illustrate the relationship
between character state and reaction norm models.
Newborn offspring from females that were reared
under uniform conditions were individually grown in
test tubes under three temperatures, 10, 15 and 20 °C.
Different food levels were used, but here we analyse
only the data for the intermediate food ievei, with a
culture solution of 40000 cells/ml of a mixture of
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Table 1. Analyses of variance for age at maturity (In-transformed) of Daphnia galeata at three temperature

levels, i.e. 10, 15 and 20 °C*

F-ratio’s
Interaction Unexplained
temperature vs. Within
Temperature Clone by clone groups
Model (D.F.) (D.F.) (D.F.) (D.F.)
A. Main effects 1895*** 3-Q*** —_ 8344
2 (31) 62)
B. Full-factorial 5186*** 8- 2%+ 8-3%*x —
(2 (31 (62)
C. Equidistant linear norms 2707%** 2.0 — 12:3%**
(1) (31) (63)
D. Linear norms 3726*** 3-0%%* 4-1%** 13-1%%*
(1) (31) (31 (32)
E. Equidistant quadratic norms 93-2%** 3-0%** — 8:3*x*
(+ Dt (31 (62)
F. Quadratic norms 5186*** 82k §-3¥** —
) (31) (62)

* Six models were fitted. The within group mean square was 0-00546 (D.F. = 189). Pooled unexplained and within-group
mean square was used as a denominator of the F-ratio’s for Temperature, Clone and Interaction effects. Significance levels:

**: P <001, ***: P <0001.

+ F-ratio refers to addition of quadratic term to a linear model as in (C).

Scenedusmus obliguus and Chlamydomonas globosa (in
a 1:3 ratio) added to filtered lake water, and renewed
three times a week. We analysed the age at maturity
(after log transformation) of 32 groups of newborns
(i.e. asexual offspring of the same mother), with on
average 2-8 replicates in each environment.

Different statistical models were fitted, proceeding
from simple models (e.g. parallel responses of all
genotypes) to the most elaborate model, i.e. the full-
factorial model with in this case three parameters for
each genotype (Tables 1, 2). In general, simple models
will leave pattern in the genotype by environment
table unexplained (underfitting), whereas complex
models explain pattern plus noise (overfitting). Clearly,
an intermediate solution that explains pattern but
avoids overfitting is desirable. Normally, one would
not present the results of all these models, but here we
aim to explain their relationship, the constraints in the
different models, and the computation of genetic
covariance matrices.

The character state approach would typically
involve testing genotypic differences by factorial
analyses of variance, with temperature as a fixed-
treatment factor. A simple main effect model without
interaction (i.e. with reaction norms that are parallel
between all pairs of environments, Fig. 1a), did not fit
the data sufficiently well (Table 1, model A). Clones
that developed faster at one temperature regime were
not necessarily faster at other temperatures. Indeed,
the two-way factorial ANOVA revealed a significant
genotype by environment interaction (Table 1, model
B). Such fully parametrized models that include the
genotype by environment term leave no variation
between clones unexplained (Fig. 15).
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The reaction norm approach could start with a
simple model with equal slopes for all genotypes, but
now with temperature as a covariate for the age at
maturity rather than a factorial treatment. The equal
slopes model left significant variation unexplained
(Fig. 1¢, Table 1, model C), as could be expected from
the significance of the genotype by environment
interaction in the factorial design. Addition of
heterogeneity of slopes (Fig. 1d) improved the fit:
variation in slopes was significant. This model explains
part of the genotype by environment interaction, but
the unexplained variance was still significant (Table 1,
model D) and the linear model unsatisfactory. Finally,
two different quadratic models were fitted: functions
where clones only differed in height (Fig. 1¢) and
functions with differences in height and curvature
(Fig. 1/). The former model is analogous to the main
effects model (B), the latter to the full-factorial model
(A) since only three environments were present. We
concluded that the quadratic model F was statistically
significantly better than the linear and equidistant
quadratic model (Table 1, model F).

How are these models related to genetic covariance
matrices of character states and function parameters?
Variance components were estimated from nested
ANOVA’s for all three environments separately, and
covariance components from the three pairwise
factorial ANOVA’s (Fry, 1992). Since families con-
tained genetically identical individuals, the (co)vari-
ance components due to variation among families
were equated to genetic components; this resulted in
the ‘raw’ covariance matrix G, (Table 3a). These
genetic components may be contaminated with non-
additive genetic variation, and maternal effects
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Table 2. Specifications of reaction norm models corresponding to Fig. 1

Model p X ¢
A. Main effects 1 1 z,
1 Z,
1 Z,
B. Full-factonial 3 1 1 0
1 0 1 —
1 -1 -1
C. Equidistant linear norms 1 1 bt,
( 1 bt,
1 bt,
D. Linear norms 2 1 1
1 1, —
1 4
E. Equidistant quadratic norms 1 1 byt +b,12
1 b t,+b,12
1 byt +b,13
F. Quadratic norms 3 11, 2
1 ¢, 28 —
1 1, £

* Temperature levels were ¢, =10, t, =15 and ¢, = 20. The general model
formulation is z = ¢+ Xg+¢. Column ‘p’: number of parameters that vary in the
population. Column ‘X’: transformation matrix from g to z. Column ‘c’: model
term that is the same for all genotypes, i.e. the assumed mean trend under the
different models. For instance, b is the mean decrease in age at maturity with
temperature (Fig. 1¢).

30
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=
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Fig. 1. Reaction norms of three ciones in an experiment with Daphiiia galeata at three temperature levels. (4) Main
effects model, () full-factorial model (dashed line is mean reaction norm), (¢) equidistant linear norms, (d) linear norms,
(e) equidistant quadratic norms, (f) quadratic norms.
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Table 3. Genetic covariance matrix for age at
maturity (In-transformed) of Daphnia galeata at
three different temperatures

(a) Raw matrix estimated from data, G,

Temperature 10 15 20

10 0-0152

15 0-0028 0-0099

20 —0-0038 0-0011 0-0150

(b) Genetic covariance matrix for parameters of the linear
model (model D), with G, = UG, U,

1 10
5 1 _ 11
X=[1 15], U= (131 0 ,1‘)
1 20 o o
Intercept  Slope
Intercept 0-0915
Slope —0-0057  0-00038

(¢) Genetic covariances of characters across
environments, assuming linear norms (model D)
G; = XG, X!, X as above.

Temperature 10 15 20
10 0-0146
15 0-0048 0-0045
20 —0-0050 0-0042 0-0133
1-0
g2 os}
2
£
2.
8
Q
2 oof
£
k=
[
5
S 05t
~1-0 " . 2 " "

0 5 10 15 20 25 30
Temperature at intercept

Fig. 2. Relationship between the correlation between
intercept and slope in a model with linear reaction norms
and the position of the intercept. Data on age at maturity
(In-transformed) of Daphnia galeata at three temperature
levels, 10, 15 and 20 °C.

(although all mothers were reared under uniform
conditions). The results should be interpreted with
caution, and more elaborate breeding designs are
required to remove these possible biases. The estimated
covariances were not very high (Table 34a), and genetic
correlations across sites computed from these estimates
were close to zero; this was expected given the

https://doi.org/10.1017/50016672300032729 Published online by Cambridge University Press

120

significant g x e interaction in the factorial model. The
amount of genetic variation was lowest at the
intermediate temperature.

The full-factorial (Table 2, model B) and quadratic
model (Table 2, model F) differ in their G,-matrices,
because a different parametrization is used, whereas
the ANOVA results for the observed environments
areidentical (Table 1). Both models give a complete fit
to the data, and consequently, the genetic covariance
matrix under these models (using eqn 2.5) is identical
to the raw matrix (Table 3 ). A quadratic parametriza-
tion may be preferable if one also wants to intrapolate
between the actual temperatures in the experiment (cf.
Fig. 15, f). The matrices of reaction norm parameters
formodels A, C and E were identical, since the models
only differ in the assumed average effect of the
environment (Table 2); only one parameter is esti-
mated, the genetic variance due to deviations from the
mean value per environment (Fig. 14) or due to
deviations from the overall linear or quadratic trend
(Fig. 1¢, e, respectively). The absence of genotype by
environment interaction in these models implies that
all genetic variances within environments are the
same, and all correlations across environments plus
one. The latter would strongly affect the selection
response. Potential differences among environments
in variances and covariances cannot be accommodated
by such models.

A linear model with unequal slopes is different (Fig.
14, Table 3). The genetic correlation between intercept
and slope is r = —0:97. However, this value depends
strongly on the scaling of the environment. Taking the
intermediate temperature as reference point, and using
the differences from this point (— 5,0, +5) instead of
the actual temperatures (10, 15, 20) gives a correlation
r =—0-05 between intercept and slope, despite the
identical spacing of the data. The genetic variance in
slope remains unaffected by such changes in point of
reference. The correlation between intercept and slope
(and also the variance in intercept values) reflects the
scaling of the environment rather than possible
biological constraints (Fig. 2). This artifact may
explain the wide range of correlations summarized by
Scheiner (1993 b). One could cautiously use the mean
environment under natural conditions (if known, and
if constant in time) as point of reference (De Jong,
1994b). For a least-squares linear regression equation,
the estimated trait value in the mean environment
equals the mean trait over all environments, so that
the correlation can be interpreted as the genetic
correlation between the mean trait value and the
plasticity of the reaction norm. For quadratic reaction
norms (Fig. 1/), the dependency of parameters on the
scaling of the environmental variable is even more
complex. Yet, only the quadratic model represented
the pattern in the data accurately. The interpretation
of matrices for function parameters is therefore not
straightforward, and in general they contribute little
in identifying underlying constraints.
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For our Daphnia’s, all models suggest that genetic
correlations across environments are low and that
selection may change the reaction of developmental
time on temperature. This does not imply that selection
responses are expected to be faster than in a situation
with high correlations across environments. For
instance, selection for faster development time in
several environments may initially be enhanced if
developmental time is positively correlated across
environments, i.e. if some clones have a consistent
faster development than others under all circum-
stances. Fine-tuning of the reaction norm, however, is
possibly easier in the absence of strong correlations.
In general, the biological importance of constraints
does not depend on the genetic covariance structure
per se, but on its combination with actual selection
regimes. Hypothetical constraints are the expected
bedfellows of hypothetical selective forces (Antonovics
& Van Tienderen, 1991).

5. Discussion

Character state models were originally developed for
discrete environments, reaction norm models for
continuous environments. However, the distinction
between continuous and discrete environments may
be dim: organisms may distinguish discrete hosts
species or food sources by their quantities of particular
substances, and similarly continuously varying
environments may be perceived as discrete (e.g. the
presence of a substance may be observed rather than
its concentration). The distribution and nature of the
environmental factor is not necessarily a useful
guideline for a choice for one approach or another.
Furthermore, reaction norm models can also be used
for discrete environments (Gavrilets & Scheiner,
1993 b), character state models for an arbitrary number
of environments (Gomulkiewicz & Kirkpatrick, 1992).
Fortunately, character state and reaction norm models
are mathematically largely interchangeable.

The models may differ in the representation of the
response. Reaction norm models typically employ
polynomial functions, character state models do not
use explicit function (i.e. use a full-factorial model).
Simple polynomials or Taylor expansions around the
mean environment (De Jong, 1994b) are related, but
their different parametrizations may lead to different
G-matrices and selection coefficients for reaction norm
parameters. Finding an appropriate model may
increase the reliability of estimated genetic covariance
matrices if the model succeeds in separating pattern
from noise (Kirkpatrick & Heckman, 1989) and
simplify the biological interpretation of the data.
However, there are three potential complications.
Firstly, we may end up with several candidate models.
Although some models will be statistically better than
others, several alternative models may be indistin-
guishable without additional experiments, whereas
they may differ in purported constraints on the
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selection process. Secondly, the choice for a particular
model has the danger that artificial constraints are
introduced and the statistical power of the data
analyses may be too low to detect complexities in
reaction norms (Kirkpatrick & Lofsvold, 1992).
Obviously, such limitations are quite different from
the biological constraints we look for. And lastly and
perhaps most importantly, the choice for a particular
model may make comparisons with other, equally
reasonable approaches difficult, and may also lead to
a different biological interpretation. The methods
outlined in this paper permit a switch between the
various models, which allows one to look at the data
from different perspectives in order -to minimize this
risk.

Deduction of constraints directly from genetic
covariance matrices is not straightforward. Some
specific constraints may be easy to detect in the
reaction norm approach, others in the character state
approach. For instance, suppose that two environ-
ments out of a broader range do not differ in the clue
that triggers the plastic response. Genotypic values in
the two environments would then be the same, and in
the character state approach this would show up as a
correlation across environments close to one. In a
polynomial model this would show up as singularity
in the G-matrix, that may not be easy to decipher.
Alternatively, suppose that reaction norms are linear
over the range of environments studied. This would
show up fairly directly in a polynomial approach, but
could be quite hidden in the genetic covariance matrix
of the character state approach. Looking at the
problem from different angles may therefore be
helpful.

Gomulkiewicz & Kirkpatrick (1992) suggested an
approach to assess the consequences of genetic
constraints by graphing the expected response to
selection under different genetic covariance patterns.
A weighted mean reaction norm can be calculated for
the parental population, using relative fitness as a
weighting factor. The difference between the mean
reaction norm of all parents, and this weighted mean
reflects the strength and direction of selection (Endler,
1986). Furthermore, the predicted mean reaction
norm after one generation of selection can be deduced
from the selective forces and the genetic covariance
structure. By comparing these two norms graphically,
it becomes apparent how much, and in what directions
the predicted response deviates from the selective
forces.

Genetic covariances across environments, or among
function parameters, may not tell the complete story.
Firstly, constraints may exist without singularity of G
or strong correlations, depending on the underlying
genetic architecture (Houle, 1991; Van Noordwijk &
De Jong, 1986; De Jong & Van Noordwijk, 1992), or
on mutational effects on the covariance due to

instance, mutations may cause variation in a particular
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trait, which would suggest that further selection is
possible; however, selection may be offset by muta-
tions that are biased in the opposite direction (Houle,
1991). These theoretical studies concerned the cor-
relation among different traits within a single en-
vironment, but similar arguments could be developed
for the correlations across environments. Secondly,
the covariance structure may change in time. For
instance, Schlichting & Pigliucci (1993) emphasized
the importance of epistasis and suggest that their
effects may only show up as long term effect on
selection responses. The speed and direction in which
genetic covariance matrices change may depend on
the underlying genetic and developmental system.
Constancy of the G-matrix would imply that if
evolution is unconstrained now (G not singular), it
will never become constrained, and if there are
constraints now, evolution will be constrained forever.
It seems that an essential element in evolution is
missing in this view. Lenski’s studies on virus resistance
in E. coli clearly demonstrated that genetic covariances
change during the course of evolution. Negative side-
effects of novel resistance genes (and hence a negative
correlation between performance with and without
the virus) were eliminated during 400 generations of
selection (Lenski, 19884, b). It seems wise to in-
vestigate the importance of constraints by other
methods than genetic covariances and correlations,
e.g. by evaluating of possible costs of plasticity (Van
Tienderen, 1991), by artificial selection experiments
(summarized in Scheiner, 1993 54), or by studying the
functional and developmental background of the
traits (Maynard Smith et a/. 1985). Even then, radical
changes in underlying architecture of plastic reactions
may come unexpected.

We would like to thank S.Via, R.Gomulkiewicz, S.
Scheiner, C. Schlichting and G. de Jong, who all contributed
in developing the ideas presented in this paper, and S.
Gavrilets and F. van Eeuwijk for comments on an earlier
version of the manuscript.

Appendix 1

Assume n discrete environments, ¢; the relative
frequency of a particular environment i, and reaction
norms that are fully described by m+ 1 parameters.
Furthermore, say

z=(2,2,...2,)

is a column vector of breeding values for environment
1...n (t denoting matrix transposition),

g= (gogl "'gm)t

is a column vector of m + 1 coefficients of the reaction

norm function, and
X=X X - X0 )

is a row vector of m+1 values: a leading 1, and m
values that characterize a particular environment .
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The breeding value in environment i can thus be
written as

Z; =80t X181+ -+ X n&m = X8

The entries of x; characterize the different environ-
ments. They may consist of values for different
environmental factors (e.g. temperature, light, hu-
midity, etc.) and/or their polynomial expansion. The
vector of breeding values in » environments, with a
function of m+1 coefficients becomes:

z=Xg (Al.la)

with X the transformation matrix from g to z, and
each row / equal to the vector x;. Vice versa,

g =(X'X)"'Xbz = Uz (A1.1b)

Note that U is used and not X, since X need not be
a square matrix. For instance, linear reaction norms
are described with only two parameters: intercept and
slope; the number of distinct environments may be
much higher. If the number of distinct environments
is smaller than the number of parameters of the
reaction norm function, the matrix (X*X) is singular so
that U does not exist.

(1) Genetic covariances

Since (1.1) involves a linear transformation of scale
only, it follows that

G, = XG,X*
G, = UG, U!

with G, and G, the additive genetic covariance matrices
for z and g, respectively (De Jong, 199454). Thus,
additive genetic variation in character states z can be
rewritten in terms of variation in the parameters g of
the reaction norm. The opposite is true provided that
U exists. For polynomial models this is the case if the
x;’s are different and the number of environments is at
least equal to the degree of the polynomial (again, if
there are fewer environments, higher order terms
cannot be estimated because X'X is singular).

(Al.2a)
(A1.2b)

(i1} Selection gradients

The strength of directional selection is measured by
the selection gradient, i.e. the partial derivative of the
logarithm of mean fitness on the mean of a trait. If
relative fitnesses are constant in time, selection within
environments is quantified as the slope of the mean
fitness function at the mean character value,
B.. = 0In W,/8z, (Lande, 1979; Via & Lande, 1985).
Given the linear transformation between z and g (1.1)
we can apply the chain rule:

Sn W, _ o dlnW oz,
agj k 3‘:5‘ a—gj

to get the selection gradient for reaction norm
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parameters g,,j = 0...m, from selection on character
states z;,i = 1...n. If selection only acts on expressed
phenotypes, 6W,/8z, = 0 for all k + i, so that

SIn W, Sln W oz,
g 6z, og;

j

Note that if there are costs to plasticity (Van
Tienderen, 1991), this assumption of selection acting
only at expressed characters may not be valid. Since
Z = Xg, the partial derivative 6z,/4g; is simply the
matrix element of X at row j+1, column .

The mean fitness W over all environments depends
on the mode of selection and the frequencies of the
environments. If ¥ is the geometric mean fitness over
environments, W = I, W (soft selection, see Via &
Lande, 1985; Van Tienderen, 1991), it follows that

(BW)8z,...0W/oz,) = V,In W = V,In [ W*
i

=V, 2elnW, =3¢V, InW,

= QB,

with Q a diagonal matrix of environmental frequencies,
Q =diag(c,...c,),and B, = (6W,/éz,...8W,/5Z,) the
vector of selective forces within environments. If
fitness is the arithmetic mean over environments (hard
selection), W = X, ¢, W, it follows that

V.nW=WV,W=W"'V,Sc,W
i

3

=2¢ w V.ln I/T/t = QB,
i
with a matrix Q = diag(c, W, W™ ...c, W, W™).
Soft and hard selection only differ in the elements of
Q. In both cases the elements of Q can be interpreted
as the relative contribution of each environment to the
next generation. Applying the chain rule, we get the
relationship between the selection gradient for reaction
norm parameters, B, =V,InW =(W/dg,...6W/
0g,)

B, = X'V, In W = X'QB,. (A1.3)

The selection gradient for the parameters of the
reaction norm function can be found from the selective
forces on characters within environments by this
simple equation, that involves the reaction norm
function chosen and the contributions of the different
environments.

(iii) Selection response
From (1.1) it follows that
AZ

i
N

w+n — Zg

»4

g((ﬂ) - Xg(t)
X{E(H»l) - g(()}
X Ag.

(A1.4)
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This equality describes how the per generation change
in the mean breeding value for the character is related
to change in the mean breeding value of the function
parameter.

So far, eqn 1.1-1.4 are independent of genetic
details, and followed from transformation from g to z.
For a multivariate Gaussian model, Via & Lande
(1985) derived the equation for the selection response
due to one generation of selection:

Az = G,QB, (A1.5)

Using (1.2a), (1.3) and (1.4) it follows that selection
on the reaction norm parameters becomes
Ag = G,B,. (A1.6)
Thus, the standard multivariate Gaussian model of
selection (Lande, 1979; Gavrilets & Scheiner, 1993 b)
resurfaces, because multivariate normality in z implies
multivariate normality in g.

The equations 1.5 and 1.6 are equivalent if both B,
and P, are measured at the level of breeding values.
Selection gradients at the phenotypic level are not
necessarily equal to gradients at the genetic level
(Rausher, 1992); they may differ due to strong
selection and non-linear fitnesses (De Jong, 1994 4a).
Also, the phenotypic gradient may be a poor predictor
of selection at the genetic level, if the genetic or
environmental component of the phenotype is
correlated with fitness rather than the phenotype
itself’; this can be checked by comparing selection at
the phenotypic and genetic level (Rausher, 1992; Van
Tienderen & De Jong, 1994). This derivation slightly
differs from Gavrilets & Scheiner’s model (19935),
since they did not use the frequencies of environments
explicitly (and have adopted the hard selection
scheme).

Appendix 2. Model selection and variance
components

(i) Genetic covariance matrices

Equation 1.1 concerned the transformation from
character values to function parameters at the level of
breeding values. Phenotypic values also include
variation due to non-additive genetic effects, and error
variation unrelated to the (macro)environmental
factors studied. To interpret our data we need to fit a
particular function to the actual observations, e.g.
linear reaction norms, and test how well such a model
fits the data. The phenotype of the jth individual of a
particular sibgroup in environment i is denoted as:

— %
2y =2y T €y

(A2.1)

with z}* the sibgroup effect, and e,; the deviation from
the sibgroup effect (due to mixed genetic/environ-
mental causes). The asterisk is used to denote that z*
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pertains to a sibgroup, and is not a breeding value as
in Appendix 1. The next step is to estimate variances
and covariances among sibgroups by equating ex-
pected and observed mean squares and crossproducts
or by maximum-likelihood methods (Shaw, 1987,
Fry, 1992). From these estimates and the relatedness
of sibgroup members (e.g. full-sibs, half-sibs, clones)
the genetic covariance matrix of breeding values G,
can be constructed (Falconer, 1989).

The relationship between character and function
parameters in breeding values is written as

z=c+Xg+e. (A2.2)

Now z is a vector of breeding values, X is the
transition matrix as in Appendix 1, and g is a vector
of function parameters. The vector ¢ is optional, and
contains fixed effects that are the same for all
sibgroups; consequently ¢ does not contribute to the
(co)variance among sibgroups (cf. Gavrilets &
Scheiner, 199354). For instance, ¢ may contain the
mean performance in each environment, or in a model
of parallel reaction norms, ¢ contains the mean trend
over environments. The error component of the model
for the sibgroup is denoted as & Equation 2.2 is
similar to finding a vector of unknown parameters g
from a set of breeding values z or z—c given a design
matrix X. The g values that minimize the squared
error component € follow from

g = (XX)'X'(z—c¢)

= U(z—c). (A2.3)

Since ¢ is a constant, the variance covariance matrix
of g for the population of sibgroups becomes:

G, = UG, U\ (A2.4)
In general U cannot be inverted, so that the original
G, cannot be recovered from the model matrix G,.
Initial (co)variances among characters cannot be
recovered from the (co)variance of function para-
meters, because they contain an error component not
included in U. However, from (2.2) we can evaluate
the matrix of (co)variances of expected values
Z = ¢ +Xg, estimated as
G; = XG, X' (A2.5)
(see also Gomulkiewicz & Kirkpatrick, 1992 ; Gavrilets
& Scheiner, 1993 b). This matrix could be compared to
the initial observed, ‘raw’ matrix G, to check whether
the reduced reaction norm model gives a similar
pattern of covariances across environments.

(1) Selection gradients

Selection gradients within environments can be esti-
mated from regression of relative fitness on the
expressed character state. From these data, selection
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on the parameters of the reaction norm function can
be calculated using equation (1.3). Alternatively, direct
estimates of phenotypic selection on the parameters of
reaction norms is much more complex, as each
individual usually experiences only one environment
concurrently.
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