
4 
Maxwell theory 

In this chapter we will study the quantization of the free Maxwell theory. 
Admittedly, this is a simple problem that certainly could be tackled with 
more economical techniques, and this was historically the case. However, 
it will prove to be a very convenient testing ground to gain intuitive 
feelings for results in the language of loops. It will also highlight the 
fact that the loop techniques actually produce the usual results of more 
familiar quantization techniques and guide us in the interpretation of the 
loop results. 

We will perform the loop quantization in terms of real and Bargmann 
[70] coordinates. The reason for considering the complex Bargmann co­
ordinatization is that it shares many features with the Ashtekar one for 
general relativity. It also provides a concrete realization of the introduc­
tion of an inner product purely as a consequence of reality conditions, a 
feature that is expected to be useful in the gravitational case. 

The Maxwell field was first formulated in the language of loops by 
Gambini and Trias [62]. The vacuum and other properties are discussed 
in reference [63] and multiphoton states are discussed in referece [64]. The 
loop representation in terms of Bargmann coordinates was first discussed 
by Ashtekar and Rovelli [65]. 

The organization ofthis chapter is as follows: in section 4.1 we will first 
detail some convenient results of Abelian loop theory, which will simplify 
the discussion of Maxwell theory and will highlight the role that Abelian 
theories play in the language of loops. In section 4.2 we will discuss the 
classical theory. We will discuss the Fock representation in section 4.3. 
We will then discuss in section 4.4 the quantization of the Maxwell theory 
in terms of real loop variables. We will recover the usual Fock space 
and the photon states in terms of loops, and study the interpretation 
of loop observables in terms of familiar notions of field theory. We will 
introduce an inner product and an interpretation of the wavefunctions in 
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4.1 The Abelian group of loops 89 

terms of loops. In section 4.5 we will summarize the loop quantization 
of Maxwell theory in terms of the Bargmann representation and see how 
this quantization leads, perhaps more naturally, to the same results as the 
previous section. This will also serve as the motivation and background 
for the discussion of the gravitational case. Finally, we will discuss in 
section 4.6 the quantization in the extended loop representation in terms 
of loop coordinates. We will show how one can reconstruct a classical 
canonical theory in terms of loops, the quantization of which leads to the 
loop representation. We will see that the loop representation is directly 
related to the canonical quantization in the electric field representation. 

4.1 The Abelian group of loops 

Although one could formulate Maxwell theory in terms of the full group 
of loops, it turns out that a subgroup of it is all that is needed due to the 
Abelian nature of the theory. We find it convenient to discuss in some 
detail the properties of this subgroup since they will help us to simplify 
the treatment of Maxwell theory. 

Let us start by considering the elements of the group of loops of the 
following nature: 

K. = "10.,., 0 "1-1 0.,.,-1. (4.1) 

Generically, "I and.,., could be composed of an arbitrary number of loops 
"I = "11 0 ..• 0 "In, .,., = ""1 0 •.. 0 ""n. These kinds of loops are usually called 
commutators. It is easy to check that the set of all such loops and their 
products form a subgroup of the group of loops. We will denote it by 
Ccomm • One can immediately see that it forms a normal subgroup, i.e., 
given any element K. of Ccomm , 

-1 I" "1 0 K. 0 "I E .t....comm (4.2) 

Whenever one has a normal subgroup, one can define the quotient 
group. In order to do this we introduce an equivalence relation, 

-1 I" "I "'.,., {:=> "1 0 .,., = K. E .t....comm· (4.3) 

The reader can check that the relation is reflexive, symmetric and tran­
sitive. We denote the quotient group CAbel = Cj Ccomm . Its elements are 
the equivalence classes determined by the relation (4.3). Again it can be 
readily checked that the product of equivalence classes is independent of 
the representative element of the class chosen to perform the calculation. 

The intuitive interpretation of the equivalence relation defined is that 
we have identified the commutators in the group of loops with the identity. 
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90 .4 Maxwell theory 

Therefore, if,1 and ,2 belong to LAbel, 

,1 0,2 = ,2 0,1, {4.4} 

and LAbel is an Abelian group. 
As we saw in chapter 1, gauge theories are simply representations of the 

group of loops. Let us consider representations of the Abelian subgroup 
that we constructed. We therefore need matrices H (,), such that 

for any pair of loops ,I, ,2. If one wishes to consider unitary repre­
sentations of the group of loops, equation (4.5) can only hold if H is a 
unimodular complex number, i.e., an element of U(l}. 

As we saw in section 1.4, any representation (sufficiently regular) ofthe 
group of loops can be written locally as 

HA(r} = exp (i £ dyaAa(Y}) , (4.6) 

where Aa(Y} i_~ just a real number for the Abelian case we are considering 
and therefore 

{4.7} 

WA(r} depends on the loop, only through the circulation of Aa. This 
can be written using only the simplest of the loop coordinates introduced 
in chapter 2, the coordinate of order one, 

(4.8) 

An interesting point is that the representation depends only on the 
information of the loop contained in the first order loop coordinate. This 
implies some strong differences with the general case. For instance, W(7r~O 
,y 07r; 0 'f/x} = W(ry 0 'f/x}, where, is any loop basepointed at y and 7r~ 
is an arbitrary path and 'f/x is a loop basepointed at x. This implies that 
for an infinitesimal deformation 

W{7r; 0 8u8v8ft8v 0 7r~ o,} = W{8u8v8u8v o,}. {4.9} 

Therefore loop derivatives are no longer path dependent but just point 
dependent, 

{4.1O} 

As a consequence, loop derivatives in the Abelian case commute, 

{4.11} 
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4.2 Classical theory 91 

and the Bianchi identities can be expressed in terms of ordinary deriva­
tives, 

(4.12) 

We will now study the classical Maxwell theory and the relation of the 
classical theory to quantities in terms of loops. 

4.2 Classical theory 

The classical canonical Maxwell theory can be expressed in terms of the 
canonical pair Ea(x), Ab(y), 

{Ab(Y), Ea(x)} = ogo(x - y). 

The only constraint of the theory is the Abelian Gauss law, 

oaEa = O. 

(4.13) 

(4.14) 

The Hamiltonian of the theory is the sum of the squares of the electric 
and magnetic fields, integrated over space, 

H = / d3X~"lab(Ea Eb + iJa iJb), (4.15) 

where iJa = iJabc Fbc' Here "lab is a flat Euclidean three-dimensional metric 
and from now on we will assume all indices are raised and lowered with 
it. The commutator of the electric field and the connection with the 
Hamiltonian gives the time evolution of the fields. These plus the Gauss 
law are equivalent to the usual four-dimensional Maxwell equations. 

The Gauss law can be solved by considering only transverse electric 
fields, ET(X). The canonical theory can be reformulated entirely in terms 
of transverse fields (the transverse connection Ar (x) is defined in terms 
of the fixed flat background metric), the canonical pair is then given in 
terms of Dirac brackets by 

{Ar(y),E!j.(x)} = OTb(x - y), (4.16) 

where the "transverse Dirac delta" is defined by 

OTg(X - y) = ogo(x - y) - ~ -1 oaOb03(x - y), (4.17) 

where ~ -1 is the inverse of the Laplacian of the background metric on 
the three-manifold. 

A usual simplification is to consider momentum space variables, 

T 1/ 3 - -1- -2-Aa (x) = (27r)3/2 d kexp(ik· x)[q1(k)ea(k) + q2(k)ea(k)], (4.18) 

ET(X) = (27r~3/2 / d3kexp(-ik. x)[p1(k)ei(k) + p2 (k)e2 (k)], (4.19) 
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92 4. Maxwell theory 

where e~ (k), e:(k) are transverse vectors and their dual one-forms in 
momentum space are normalized such that kae: = 0, e~ (k)e: (k) = o~, 
e:(k) = (e:(k))* = e:(-k)j also q(-k) = q*(k) and p(-k) = p*(k). 
These relations can be inverted to yield 

.... 1 / 3 .... .... T 
qA(k) = (2'11-)3/2 d xexp(-ik·x)e~(k)Aa(x,) (4.20) 

A .... 1/ 3 · ........ A .... a 
p (k) = (2'11-)3/2 d xexp(~k· x)ea (k)ET(x), (4.21) 

with A = 1,2. 
The qA(k),pA(k) capture the two degrees of freedom of the electro­

magnetic field and describe the radiative modes corresponding to the two 
possible helicities of the photon. One can reformulate the theory in terms 
of these variables. The Poisson brackets are 

(4.22) 

The Hamiltonian, written in terms of these basic variables, adopts the 
form of an infinite collection of harmonic oscillators, one for each k, 

Let us now introduce the two quantities, 

with Poisson brackets 

{aA(k), a'B(k')} = -iOABO(k - k'), 

in terms of which the classical Hamiltonian reads 

H = / d3klklac(k)ac (k). 

4.3 Fock quantization 

(4.23) 

(4.24) 

( 4.25) 

(4.26) 

(4.27) 

The Fock quantization arises by considering the number representation 
for each harmonic oscillator of the Hamiltonian (4.23). Since there is a 
continuous infinite number of oscillators, one for each k, it is convenient 
to consider quantization in a finite region of space ("a box") in order to 
have a countable infinity of modes ki. Then, the canonical commutation 
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relations become 

{aA{ki),a:B{kj)} = -iliij.liAB 

The Hamiltonian becomes 

93 

(4.28) 

(4.29) 

One can introduce the Fock representation directly by considering the 
quantum representation of the algebra (4.28) in a space of functions of 
infinite pairs of integer variables <I> ( ... , ni,e, ... ). Each variable represents 
the state of each harmonic oscillator for a given ki and a given polariza­
tion. The representation of the algebra is as follows: 

a*c(kj)<I>{ ... , ni,D, ... ) =..;n;:c <I>{ ... , nj,D -liCD, .. . ), (4.30) 

ac(kj)<I>( ... , ni,C, ... ) = Vnj,C + 1 <I>{ ... , nj,D + liCD, .. . ), (4.31) 

where the wavefunctions vanish if . any of their arguments are negative 
numbers. 

The commutation relations can be immediately derived: 

(4.32) 

The next step in the quantization program is to introduce an inner 
product. This can be readily done: 

< <I>lw >= 
00 00 00 00 

L L L L'" <I>{nl,!, nl,2,···, nj,!' nj,2,·· .)* x 
nl,l=l nl,2=l nj,l=l nj,2=l 

xw(nl,I, nl,2,···, nj,l, nj,2, .. . ). (4.33) 

In terms ofthis inner product the operators ac(kj) and a*c(kj) satisfy 
the relations 

ah{kj) = a*c(kj), (4.34) 

where t means adjoint in the operatorial sense. One can now define the 
Hermitian operator N{kj, C) by 

N(kj, C) = ah{k)ac(k) (4.35) 

with no summation over C. 
The explicit action of the operator N(kj, A) is given by 

N{kj,A)w{nl,!,nl,2,'" ,nl,l,nl,2,"') = 

nj,Aw(nl,!, nl,2,"" nl,!' nl,2," .). (4.36) 
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94 4 Maxwell theory 

The reader can immediately notice the resemblance with the usual har­
monic oscillator: a and at are annihilation and creation operators and N 
is the number operator, and we have one of each per momentum kj and 
polarization C. The usual commutation relations follow: 

[N(ki' C), ab(kj)] = 8ij8cDab(kj), 

[N(ki' C), aD(kj )] = -8ij8cDaD(kj). 

( 4.37) 

(4.38) 

Let us now introduce the quantum Hamiltonian. Rewriting (4.23} in 
terms of creation and annihilation operators, one gets 

(4.39) 

and it should be realized that this corresponds to a different factor order­
ing than the natural one that we would have inferred from the classical 
expression (4.27). This expression is divergent even for the case we are 
considering (a finite box) since we are summing the zero point energy 
for each of the infinite excited modes. In order to make this expression 
finite, it is usual to subtract the zero modes through the procedure called 
"normal ordering" (denoted by enclosing expressions in colons) consisting 
in ordering the at to the left, 

00 

: if := ~ L Ikjl(ah(kj)ac (kj)). (4.40) 
j=l 

Since if commutes with N(ki' C), Vi, C, both operators could be di­
agonalized simultaneously. In the representation we are considering, this 
can be accomplished straightforwardly by determining the vacuum state. 
This is the state with minimal energy and it can be checked that such a 
state q,o satisfies 

(4.41) 

Once this state is given, the whole space of "excited" states can be 
spanned by applying the "creation" operator at. One can interpret this 
construction in terms of particles: the application of the operator ah(ki ) 
creates a photon with polarization C and three-momentum ki. This can 
be verified by computing the normal-ordered momentum operator Pb =: 

J d3xij/ Fab : in this state. It can be checked that: if2 - PbPb := 0 and 
therefore the photon is massless. 

To diagonalize the Hamiltonian and number operators we introduce a 

https://doi.org/10.1017/9781009290203.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290203.006
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basis of states labeled Inl,l, nl,2, ... ,nj,l, nj,2," . >, defined by 

00 2 1 .... 
In l,1,nl,2, ... ,nj,!,nj,2, ... >= II II vn:i.Cf(ah(kj))nj'CIO, ... ,O >, 

j=lC=l J,C' 

where 10, ... ,0 > is the vacuum. Therefore 

if Inl,l, nl;2,'" ,nj,l, nj,2,··· >= 
00 2 

(4.42) 

L L nj,C Ikillnl,l, nl,2,"" nj,!' nj,2,'" >, (4.43) 
j=lC=l 

N(kj, C) Inl,!, nl,2, ... , nj,l, nj,2,'" >= 

and this is what is usually called the Fock basis. 
It is useful to introduce a dual Fock basis through the relation, 

< nl,l, nl,2,'" ,nj,l, nj,2," ·Iml,!, ml,2,'" ,mj,l, mj,2," . >= 
00 2 

(4.44) 

II II Omj,c;nj,c (4.45) 
j=l C=l 

and this relation leads naturally to the inner product (4.33). 
The Fock basis describes naturally states with a definite number of 

incoherent photons of definite energy and momentum. These states have 
vanishing expectation values for the field operators BC and .tic. They 
therefore present a description of electromagnetism that is not naturally 
associated with the classical one. To be able to make contact with the 
classical limit more easily it is convenient to introduce a basis of states 
in terms of which the expectation values of both BC and .tic are non­
vanishing. The elements of this basis are called the coherent states. 

The coherent states form a basis labeled by arbitrary complex numbers 
Oi,c, associated with each mode. Their definition is 

ac(kj)lol,l, 01,2,"" OJ,!, 0j,2,'" >= OJ,clol,!, 01,2,"" 0j,l, 0j,2,··· > 

and can be written in terms of the vacuum as 

10 1,1, 01,2,'" ,OJ,l, 0j,2,··· >= 
00 2 

(4.46) 

II II exp( -!lo i,cI2) exp(!oi,cah(ki)) 10, ... , 0> . (4.47) 
i=l C=l 

It should be noticed that the states introduced do not strictly belong 
to the Fock space but to its closure, due to the infinite summation. It can 
be checked that these states minimize the uncertainty in both the electric 
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96 4. Maxwell theory 

field and the connection and are therefore the closest to a "classical" 
configuration one can get. 

Since we did not impose any restrictions on the eigenvalues of annihi­
lation and creation operators while defining the coherent basis, it follows 
that the basis is overcomplete. A given state can be expanded in terms of 
this basis in infinitely many different ways. We will see later a connection 
between this overcompleteness and that of Wilson loops. 

4.4 Loop representation 

In order to introduce the loop representation let us first remind the reader 
of some aspects of the usual connection representation of the Maxwell the­
ory. We can particularize the steps we presented in the previous chapter 
for the canonical quantization of Yang-Mills theories to the Maxwell case. 

The connection representation is the most natural quantization since it 
is based on the straightforward quantization of the canonical algebra of 
connections and electric fields, taking a polarization based on wavefunc­
tionals of the configuration variables. 

Let us therefore start by picking a polarization in which wavefunctions 
are functionals of the connection w[A] and promote the connection and 
electric field to quantum operators, 

~a 0 
E w[A] = -i oAa w[A], 

ria w[A] = Aa w[A]. 

(4.48) 

(4.49) 

Notice that we are considering functionals of the full (non-transverse) 
connection, so we will have to enforce the Gauss law as a quantum con­
straint, 

A 0 
Qw[A] = oa oAa w[A] = 0, (4.50) 

which tells us that w[A] has to be a gauge invariant function of A. We 
are imposing gauge invariance at a quantum level. This is different from 
what we did in the previous section where we solved the constraints at 
a classical level (reduced phase space quantization). Therefore there is 
potential for these two procedures to be inequivalent. 

We can now formally write the quantum Hamiltonian, 

(4.51) 

though it is clear that a detailed discussion of the first term requires a 
regularization. 
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One can solve the eigenvalue problem for this Hamiltonian (in terms of 
gauge invariant functions in order to satisfy the Gauss law) and determine 
the ground and excited states of the theory [63]. We will return to these 
issues in terms of other representations. 

Let us now proceed to construct the loop representation. As described 
in the previous chapter one can introduce a loop representation either in 
terms of a non-canonical algebra of classical quantities or via a transform. 

In the Abelian case one can immediately find a non-canonical algebra 
of gauge invariant operators in terms of which one can write all physical 
quantities by simply considering the Wilson loop and the electric field. In 
order to keep the construction as close as possible to that which we will 
later perform for the non-Abelian cases, let us introduce the operators 

T(7]) = W(7]), 

T a(7];) = Ea(x)W(7]), 

which satisfy the non-canonical algebra 

{T(7]), T(-y)} = 0, 

{Ta(-y;), T(7])} =-iXax (7])W(7] 0 ,), 

{Ta(-y;), Tb(7]~)} =-iXax (7])Tb(-y 0 7]) + iXbY (-y)Ta(7] 0 ,). 

(4.52) 

(4.53) 

(4.54) 

(4.55) 

(4.56) 

A quantum realization of this algebra in a space of loop-dependent 
functions is 

f(7])1J!(-y) = 1J!(7]-1 0,), 

f a(7];)1J!(-y) = xax(-y)1J!(7]-l 0,), 
(4.57) 

(4.58) 

and the reader can check that this realizes correctly the Poisson algebra 
in terms of quantum commutators. A choice of factor ordering with the 
functional derivatives to the right has been made. 

The loop transform is given by 

(4.59) 

and due to the Abelian nature of the connection the integral can be rig­
orously defined [65]. 

If one considers operators f ( ,), fa ( ,;) in the connection representation 
defined by 

(4.60) 

(4.61) 

one can check that applying the transform (4.59) one obtains the operators 
introduced in (4.57),(4.58). 
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In terms of the non-canonical algebra one can express the electric field 
and the field tensor in the following way: 

Fab{X) = -i~ab{X)T{'Y)h=£, 
~a 

E (x) = Ta(')';)h=£, 

(4.62) 

(4.63) 

where /, is the identity loop. This allows a loop representation to be found 
naturally through equations (4.57),{4.58), 

Fab{X)W(')') = -i~ab{X)W(')'), 

.E';a{x)W(')') = xax(')')w(')'). 

(4.64) 

(4.65) 

Therefore there is a natural interpretation of loops as lines of electric flux 
in this representation. 

One could arrive at these expressions by using the loop transform (4.59), 
integrating by parts and considering the action of the fields on Wilson 
loops in the connection representation, 

Fab{X)W(')') = Fab{X)W(')') = -i~ab{X)W(')'), 
Ea{x)W(')') = xax(')')w(')') = i dya6{x - y)W(')'). 

(4.66) 

(4.67) 

The last expression ensures that the Gauss law is automatically satisfied 
in the loop representation (due to the transverse nature of the first order 
multitangent xax(')')). This is a natural consequence of the fact that 
the loop representation is based on the quantization of an algebra of 
gauge invariant objects. Only gauge invariant quantities can be realized 
naturally in the loop representation. Gauge dependent objects could be 
introduced by means of the connection derivative defined in chapter 1. 
The gauge dependence is introduced through the path prescription used 
in the definition of the connection derivative. 

The commutation relation of E and F, 

(4.68) 

finds its natural counterpart in the expression of the action of the loop 
derivative on the loop coordinate that we introduced in chapter 2, 

(4.69) 

One can now realize the Hamiltonian in terms of loops. The magnetic 
field portion of it is given simply in terms of loop derivatives, 

(4.70) 

The electric field portion is given in terms of two loop integrals, which 
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can be reexpressed as 
~ a ~ b 

'TJabE (x)E (x)wb) = 'TJabxaxb)Xbxb)wb). (4.71) 

The Hamiltonian eigenvalue equation then reads 

Hwb)== / d3x (_hac'TJbd~ab(X)~cd(X) + ~'TJabxaxb)xbXb)) wb) 

= Ewb). (4.72) 

The second term can be suggestively rewritten as 

/ d3xXaxb)Xbxb)wb) = i dya i dy,b8(y - y'habWb), (4.73) 

which is proportional (through a divergent factor that needs to be reg­
ularized) to the length of the loop. Therefore the eigenvalue equation 
can be qualitatively interpreted as a "Laplacian" in terms of the double 
loop derivative and a "quadratic potential" given by the length of the 
loop. Notice that the other term, involving the loop derivatives, is also 
potentially ill defined. If one considers wavefunctions such that their loop 
derivative is distributional a regularization may be needed. We will not 
discuss the details here since for the particular case of Maxwell theory 
the extended representation discussed in section 4.6 furnishes a natural 
setting to regularize the theory. 

Let us now study the vacuum and excited states of this system. One 
possible avenue is to take this analogy with the Hamiltonian of a harmonic 
oscillator seriously and propose a "Gaussian" state of the form 

wob) = exp ( -~ i dya i dy,b Kab(y - y,)) 

== exp (_~xaxb)xbYb)KaXbY) 

(4.74) 

(4.75) 

and insert this expression in the eigenvalue equation for the Hamiltonian 
to determine Kab. This course has actually been pursued in reference 
[63]. Here, however, we will find the vacuum by introducing the cre­
ation and annihilation operators in the loop representation and finding 
the state annihilated by the annihilation operator. It will turn out that 
this construction yields the same vacuum as that of reference [63]. 

Both the creation and annihilation operators can be readily realized in 
loop space. To introduce them we need to realize the q and p operators, 
and therefore the AI operator. To do so we use the relation in the classical 
theory 

(4.76) 

where ~ is the three-dimensional Laplacian, and realize this expression 
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in terms of the loop derivative. Then, 

(4.77) 

In terms of this expression, the operator (jACk) is, 

A .... 1 J 3 .... A .... k b 
(j (k)'l1(,) = (27r)3/2 d xexp( -ik· x)ea (k) IkI2~ba(X)'l1(,). (4.78) 

The operator fi (k) can be realized immediately, 

pA(k)'l1(,) = (27r~3/2 J d3xe-ik'Xe: (k)Xax (,)'l1(,). (4.79) 

Therefore the creation and annihilation operators in the loop represen­
tation have the forms 

a~(k) = (27r~3/2 J d3x (eXP(-ik. x)e~4(k) Ik~:/2~ba(X) 
-i~/ exp(-ik. X)eaA(k)Xax (,)) , (4.80) 

Ikll 2 

aA(k) = ( ~3/2 J d3x (exp ( -ik· x)e~4(k) .... kb ~ba(X) 
27r Ik13/2 

+i~exp(-ik.x)eaA(k)xax(,)). (4.81) 
Ikl l/2 

We now apply (4.81) to (4.74). The application of the first term in a 
yields, 

- (27r;3/2 J d3xexp(-ik. x)eA(k) JIkIXbY(,)Kax by'l10(,)' (4.82) 

We must now determine Kax by so that this terms cancels the second 
one. It can be straightforwardly checked that if one takes, 

K 1 J d3q ( ..... (.... ;1\) axby = (27r)3/2 IQf exp -1,q' X - y, (4.83) 

the two terms actually cancel. The expression for K is that of the homo­
geneous symmetric propagator of Maxwell theory. 

It is now immediate to find the excited states, simply by operating with 
a t on the vacuum. The first excited state is given by 

'l1lA,k)(,) = ( ~3/2 J d3x~ exp( -ik . x)eaA (k)Xax (,)'l1o (,). (4.84) 
27r Ikl l/2 
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This expression can be more compactly written in k space. Introducing 
the Fourier transform of the multitangent, 

Xak(-y) = (27r~3/2 J d3xexp{-ik. i)Xax (-y), (4.85) 

the first excited state is 
(A k) 1 -+ k 

WI ' (-y) = Ikl i / 2 eaA{k)Xa Wo(-y). (4.86) 

This state corresponds to a photon of momentum k and polarization 
A. The objects Xak(-y) are usually called "form factors" of the loop. The 
form factors are transverse, 

(4.87) 

and therefore their only relevant components are the projections on the 
polarization vectors. 

The n-photon state is given by, 

Wn(Al,k1, ... ,An,kn){'Y) = (_1_ e (k )Xak1 
Ik~II/2 aAl I 

1 -+ k ) 
••• -+ / eaAn (kn)Xa n wO{'Y). (4.88) 

Ikn lI2 

An appealing fact is the form of the coherent states in this representa­
tion. They are given by 

w(a){'Y) = W(-y, A)wo(-y), (4.89) 

where W(-y, A) is the Wilson loop along the loop 'Y of a given connection 
A. It can be readily checked that these states are eigenvectors of the 
annihilation operator. When one operates with (4.81) on the state the 
first term (involving the loop derivative) acts both on the Wilson loop 
and on wo(-y). The action on wo(-y) cancels the contribution from the 
second term of (4.81) as we observed when deriving the vacuum. The 
action of the loop derivative on the Wilson loop gives the field tensor Fab 

of the given connection, as we showed in chapter 1. The eigenvalue O! is 
therefore given in terms of the connection as 

(4.90) 

The field tensor so introduced actually has a physical meaning. It 
corresponds to the expectation value of the spatial part of the Maxwell 
field tensor in the coherent state in question. 

Up to now we have operated with the Hamiltonian in a formal fashion, 
ignoring the issues of regularization. As a result, the eigenfunctions we 
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find are really ill defined. This can be readily seen from the expression 
of the vacuum (4.74) since the propagator diverges quadratically when 
x ---+ y. 

A suitable regularization for the second term of the Hamiltonian is to 
replace the delta function by a function !f(Y - Y') such that 

lim !f(Y - Y') = I)(y - y'). (4.91) 
f->O 

Explicitly, 

!f(Y - Y') = (27r~3/2 J d3qr(lqIE) exp(iq· (y - ii)), 

where the function r is defined such that 

1000 r(x)dx = 0 

and explicit examples of such a function are 

r(x) = (l-x)exp(-x), 

r(x) = (1 - !x)8(1 - x). 

(4.92) 

(4.93) 

(4.94) 

(4.95) 

If one now repeats the procedure that led to the vacuum taking into 
account the regularization, one finds that the vacuum of the regularized 
Hamiltonian is also given by a Gaussian, 

'liM')') = exp ( -! £ dya £ dy,b K!b(X - y)) , 

where the regularized propagator is given by 

Kf ( ) - I) 1 Jd3 r(Elql) ( .... (... ')) ab X - Y - ab (27r)3/2 q -Iq-I- exp -zq· y - y , 

(4.96) 

(4.97) 

where r(x) is the function that we introduced while regularizing the 
Hamiltonian. Other regularizations for this same problem have been con­
sidered in reference [64]. 

Finally, we can introduce an inner product. We define a normalized 
form factor as 

Ca(k) - _l_xak ( ) - Ik1 1/ 2 ')' , 
(4.98) 

in terms of which we introduce an inner product, 

< <Pl(')')1<p2(')') >= J DCDC* <Pi(C, C*)<P2(C, C*). (4.99) 

The integrals on C and its complex conjugate are functional integrals. 
Note that the functional integrals defined above can only be computed in 
practice if one assumes that the normalized multi tangents are arbitrary 
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transverse fields, not necessarily associated with a loop. Therefore one 
is really going to an extension of the representation in order to perform 
it. We will return to these issues when we discuss the extended loop 
representation in section 4.6. The vacuum (4.74) is normalized with this 
inner product, 

J dCdC* \lto (C) *\lto (C) = J DCDC* exp ( - J d3kc*a{k)Cb(k)c5ab ) = 1. 

(4.100) 
Because in this representation excited states are proportional to the 

vacuum, the factor exp (- J d3kc*a(k)Cb(k)c5ab ) acts as a Gaussian mea­
sure in the inner product and the vacuum is simply represented as a 
constant and the excited states by the projections of form factors on the 
polarization vectors. We will see that a similar feature arises naturally in 
the Bargmann representation. 

4.5 Bargmann representation 

In 1962 Bargmann introduced a complex coordinatization for the har­
monic oscillator. It is based on using as canonical coordinates z == q + ip 
and z*, its complex conjugate. The resulting formulation is very elegant, 
wavefunctions are holomorphic, and the inner product is determined, fix­
ing the reality of the relevant operators. This formulation has several anal­
ogous elements to Ashtekar's formulation of general relativity in which one 
of the canonical coordinates is complex and the other real. The hope is 
that similar analytic properties will help determine the inner product of 
quantum gravity. In this section we will present a Bargmann-like formu­
lation of Maxwell theory in terms of both traditional variables and loops. 
This formulation naturally fixes the inner product to be the complex mea­
sure introduced a bit arbitrarily in the previous section. This treatment 
follows closely that of Ashtekar and Rovelli [65]. 

4.5.1 The harmonic oscillator 

The canonical formulation of the harmonic oscillator is given in terms of 
coordinates q,p and the Hamiltonian is H = p2 + w2q2. Quantization is 
achieved through wavefunctions \It(q) and the eigenvalue equation for the 
Hamiltonian is (_\{j2 j8q2 + w2q2)\lt(q) = E\lt(q). The eigenstates of the 
system are given by a Gaussian in q times the Hermite polynomials. 

Normally, as mentioned above, the Bargmann representation involves 
both real and complex coordinates. Discussion of the harmonic oscilla­
tor in those coordinates can be seen in reference [2] and in Bargmann's 
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original paper [70]. Here, however, we will explore a fully complex rep­
resentation which is better geared for comparison with what was done 
in reference [65] for the Maxwell case. One could also treat the Maxwell 
case in a mixed polarization and then it would more resemble Bargmann's 
original treatment. 

Assume now that a complex coordinatization given by the variables 
and z = ~(wq - ip) and z* = ~(wq + ip) is introduced. The Poisson 
bracket is {z, z*} = iw. The variables satisfy reality conditions that say 
that they are complex conjugates of each other. One can then construct 
a representation of the canonical algebra on holomorphic functions w(z), 

zW(z) = zW(z), 
A dW(z) 

z*W(z) = w--. 
dz 

(4.101) 

(4.102) 

An inner product is introduced that translates the reality conditions 
into operatorial relations: 

zt = z*, 
z,*t = z. 

(4.103) 

(4.104) 

We will now use these relations to determine the inner product. Let us 
start with a generic inner product, 

< cplw >= f dz f dZj1(z, z)~(z)w(z), (4.105) 

and if one now requires that the operatorial relations be satisfied this fixes 
the measure uniquely to be 

j1(z, z) = exp( -zz). (4.106) 

In terms of these variables the quantum Hamiltonian of the harmonic 
oscillator is 

(4.107) 

where we have chosen a symmetric factor ordering in z and z*. This 
ordering corresponds in the traditional variables to it = fP + w2{p. The 
vacuum is simply Wo(z) = 1 and the excited states are polynomials in z. 
With the given measure, polynomial states are normalizable. 

This is attractive because just by requiring the reality of the classical 
operators the inner product is uniquely fixed. Since Maxwell theory is 
just a collection of harmonic oscillators, it is immediate to construct a 
Bargmann representation. Since the reality conditions are a structure 
that is present in other theories (e.g. gravity) where other structures 
that one could use to build an inner product (e.g. Lorentz invariance) 
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are absent, this gives some hope that a similar construction could yield 
the inner product for those theories. It is certainly reassuring that this 
construction at least yields the correct result for Maxwell theory as we 
will discuss in the next section. 

4.5.2 Maxwell-Bargmann quantization in terms of loops 

For the kind of calculation that we will perform in this section, it IS 

convenient to introduce circular polarization. We express the fields as 

T 1 J 3 ......... ( (c) .... .... (c).... * .... ) Aa (x)= (27r)3/2 d kexp(zk· x) ql (k)ma(k) + q2 (k)ma(k) , (4.108) 

EfT (x) = (2~)~/2 J d3k exp(ik . x) (p~c) (k)ma(k) + p~c) (k)m*a(k)) , (4.109) 

where the complex polarization vectors satisfy* 

kama(k) = 0, ma(k)ma(k) = 0, 

ma( -k) = -m*U(k), ma(k)m~(k) = 1. 

(4.110) 

(4.111) 

Given a conjugate pair Ar and EfT of Maxwell theory, one could de­
compose it into positive and negative frequency (for instance, by evolv­
ing it and decomposing the resulting spacetime solution). Examining 
the canonical commutation relations one finds that the positive frequency 
connection and the negative frequency electric field form a conjugate pair, 
given by, 

At(x) = ~(Ar(x) +ib.-1/ 2 (ET )b"'ab) 

J d3k .... .... .... .... .... 
= (27r)3/2Ikl exp(ik,x)((l(k)ma(k) + (2(k)m~(k)), (4.112) 

Eb-(x) = ~(Ef;,(x) + ib.1/ 2 Ar ",ab) 

J d3k .... ........ .... .... 
= (27r)3/2 exp(ik·x)((;(-k)ma(k) + G(-k)m~(k))(4.113) 

where ((k)i = ~(Iklq~c)(k) -ip~c)(k)). The definition of the (s embodies 

exactly the same construction that we performed for the harmonic oscil­
lator. The true degrees of freedom of the Maxwell field are now embodied 
in the two complex ( fields. They provide a complex coordinatization on 

* If one translates back to the language we used in section 4.2 by considering that the vector 
ffia(k) = ~(e~ (k)+ie~ (k)) one finds that e~ (k) = -e~( -k) as before but e~ (k) = e~ (-k). 
These conventions are also used by Bjorken and Drell [71]. 
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the phase space of Maxwell theory. The canonical commutation relations 
for the (s are 

(4.114) 

and we see the close relation between the (variables and the a, a* variables 
that were introduced for the Fock representation. 

Let us now quantize the theory by promoting the variables to quantum 
operators: 

(4.115) 

(4.116) 

where the wavefunctions to be holomorphic functionals of the arguments. 
One would like the fact that ( and (* are conjugate to each other 

translate itself into an operatorial relation of the kind 

(4.117) 

where by t we mean the operatorial adjoint under a suitable inner product. 
This relation implies that explicitly in terms of the inner product 

(4.118) 

To find an inner product that satisfies this condition, one can simply 
propose an explicit expression 

(4.119) 

where J.l((' (*) is the measure to be determined. It is easy to check that 
the condition (4.118) uniquely implies [70], 

(4.120) 

So we again get a Gaussian measure. Since the wavefunctions we are 
considering are holomorphic, we immediately conclude that this repre­
sentation is essentially the same at the level of inner product and wave­
functions as the real connection representation that we introduced before. 
Again, we should notice that we found the Gaussian measure without any 
reference to Lorentz invariance. This therefore makes the method attrac­
tive for tackling cases in which such invariances are not present, such as 
in gravity. 
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In this representation, the normal ordered Hamiltonian is 

2 

it = J d3klkl L (B(k) 8 .... , 
B=l 8(B(k) 

107 

(4.121) 

The ground state, w(() = 1 is equivalent to the Fock vacuum. A one­
photon state with given polarization and momentum ka is given by a linear 
function W = ((ka). A generic one-photon state with given polarization 
is given by a superposition in momenta, 

Jd3k .... .... 
Wl(() = W !(k)(l(k) (4.122) 

with obvious generalizations for the n-photon states. 
We now proceed to construct the loop representation. As usual we 

could proceed by quantizing an algebra of non-canonical loop-based gauge 
invariant quantities or via a loop transform. Since we have given examples 
of the first kind of construction before and in this particular case it leads 
to the same results, we will simply proceed with the transform. This will 
also allow us t~ show how the transform is explicitly defined for an Abelian 
theory. As we'said before, for the Maxwell case the loop transform is well 
defined. In terms of the Bargmann coordinates, it reads 

'lib) = J I} D(BD(B exp ( - J ~~~ I(B(k)1 2) exp (f dya Ad) * W((B). 

(4.123) 
Notice that in the definition of the loop transform introduced in chapter 

3 the complex conjugate of the Wilson loop appears. For the real case 
which we considered before this amounts to a change of sign due to the 
i that appears in the definition of the holonomy. Here it implies the 
complex conjugate of the connection, 

where 

Also, as we said in chapter 3, the introduction of a loop transform 
requires the introduction of an inner product in terms of connections. 
Since we have the Gaussian inner product given by the reality conditions, 
we use it in the definition of the transform. 
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Therefore the expression for the loop transform for this particular case 
is given by 

\I!(-y) = 1 IJ D(B D(B exp (-1 ~~~ I(B{k)1 2 ) 

x exp (1 d~k t (B{k)X~(-y)) \I!{(). 
Ikl B=l 

(4.126) 

Let us now evaluate this explicitly for some states. Generically the 
n-photon states are going to be polynomials in (. It is easy to transform 
such states. Simply expand the exponential exp{(BXB) and note that 
the (n /.Vnf are an orthonormal basis with the Gaussian measure. Then 
the loop transform of any state \I!(() = I:n cn(()n is simply given by 
\I!(-y) = I:n cn(x)n with immediate generalizations for states depending 
on several (BS. The vacuum, in particular, is \I!(-y) = 1 and the one-photon 
state with helicity B and momentum k given by 

\I!d,) = X~(-y). (4.127) 

With this we end the discussion of this representation. Let us now 
compare the results obtained with the loop representation constructed 
from real variables. The first thing to notice is that the use of the reality 
conditions in the Bargmann case fixes a non-trivial inner product in terms 
of connections and therefore a non-trivial measure in the loop transform. 
Historically, this was not done with the real loop representation since 
the intention was to recover the Fock space structure (which, in turn, is 
determined by Poincare invariance). However, it is very easy to check that 
if one constructs a connection representation for the real case in terms of 
q and p and requires the quantum operators Ii and p to be real, the inner 
product given by the trivial measure in q,p appears as a result. This, in 
turn, implies the trivial measure in tlte As which is the one we used in 
section 4.4 to compute the loop transform. 

The appearance in the Bargmann case of a non-trivial measure in the 
inner product and the loop transform implies certain important differ­
ences in the two representations. To start with, the vacuum is just a 
constant. The Gaussian factor that appeared in the real representation is 
"absorbed in the non-trivial measure". Although one may consider this 
point irrelevant from a practical point of view, it has implications in the 
rigorous definition of the space of states. In fact, while in the real case 
we needed the introduction of a regularization to have a well defined vac­
uum and space of states, in the Bargmann case the states are well defined 
without the introduction of a regularization. 

Have we gained something from nothing? That is, can we forget the 
regularization issues altogether by considering a non-trivial measure in 
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the loop transform? The answer is negative. If one wishes to complete 
the quantization in the loop representation, one would like to introduce an 
inner product in terms of loops, as was done in section {4.4}. If one does 
so in the Bargmann case, one notices that now a non-trivial Gaussian 
measure in the Fs appears in the loop representation. This measure 
coincides exactly with the expression of the vacuum in the real case. If 
one wants to define an inner product only in terms of loops, the expression 
of the measure is illdefined. If one wants to proceed as in section 4.4 and 
"extend" the inner product to all X s then the difficulties disappear at the 
price of extending the notion of loops. 

Let us now study the extended representation. 

4.6 Extended loop representation 

We will now explore the consequences of introducing an "extended loop 
representation", a representation based on the loop coordinates intro­
duced in chapter 2. We will immediately see that such a representation 
presents computational economy, technical cleanliness and also allows us 
to view in a conceptually different way the problem of loop quantization. 
We will see that regularization difficulties are better dealt with in terms of 
loop coordinates. We will also see that we are also able to determine the 
classical canonical theory that underlies the loop representation. In the 
particular case of Maxwell theory we will see that the extended loop rep­
resentation coincides with the electric field representation. This, however, 
does not generalize to non-Abelian fields and in those cases the extended 
loop representation is a new representation that contains the loop repre­
sentation as a limiting case. As a bonus we will find a way of writing the 
action for electromagnetism purely in terms of loops. This version of the 
action is amenable to lattice Monte Carlo techniques and has the poten­
tial to offer new insights into non-perturbative QED problems. The fact 
that so much is gained in the Maxwell case by going to an extended loop 
representation clearly suggests that a similar avenue should be pursued 
in the non-Abelian cases and especially gravity. 

Let us start by replacing in our formalism the usual loop holonomy by 
its extended counterpart in terms of the loop coordinates, 

{4.128} 

Because of the Abelian nature of the theory we only need the first 
order multitensor, which can be simply viewed as a divergence-free vector 
density on the three-manifold, 

{4.129} 
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One can now introduce a loop coordinate representation by means of 
the transform 

W(X) = J DAw[A] exp ( -ig J d3xAa(x)Xax ) . (4.130) 

In this representation, wavefunctions are functionals of the smooth vec­
tor density X. In terms of this representation we can realize the operators 

A ~ax A 

Fab, E and the Wilson loop WA(X) through 

WA(XO) w(X) = w(X - Xo), 

Eax w(X) = Xaxw(X), 
A 6 

Fab(X) W(X) = i ala 6Xb]x w(X). 

As a consequence, the quantum Hamiltonian reads 

where 
A 6 

Pbx = i 6Xbx ' 

From these equations, one realizes, making the identifications 

Pbx ----. Abx , 
Xax ----. jj:ax , 

(4.131) 

(4.132) 

(4.133) 

(4.134) 

(4.135) 

(4.136) 

(4.137) 

that the representation we have just introduced is nothing but the electric 
field representation of electromagnetism, and the vector density x a is just 
the electric field. This is in agreement with the picture that we introduced 
before in which the loops played the role of lines of electric flux. 

A remarkable fact is that one can go back to the loop representation 
through the substitution X ax -+ X ax ('Y). For instance, if one finds a phys­
ical state in the extended representation one can find a physical state in 
the loop representation by evaluating it on multitangents (since it is a 
function of multitensors, it has a definite value for multitangents). Care 
should be exercised in general since multitangents are distributional and 
limits could be ill defined. For the particular case of Maxwell theory it can 
easily be checked that the converse property also holds: if one replaces 
multitangents by multitensors in the physical states of the loop represen­
tation, one obtains the physical states for the extended representation. 
This does not, in general, hold for non-Abelian fields. 

Using this correspondence we can immediately write the expression for 
the vacuum in the extended loop representation, 

w(X) = exp ( -~ J d3x J d3yXax X ay Dl(X - y)) . (4.138) 
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Here we observe a crucial feature of the extended representation. While 
the vacuum in terms of loops is, as we pointed out, a singular divergent 
quantity that only makes sense after a regularization procedure has been 
introduced, the vacuum in the extended representation is automatically 
well defined. It is an analogous situation to the one that appears in clas­
sical electrostatics: if one tries to formulate the theory in terms of point 
charges one needs to regularize it, whereas the theory is automatically 
well defined if one considers smooth charge distributions. It is natural to 
expect that a similar behavior will appear in non-Abelian theories and 
quantum gravity. This is one of the main features that make the ex­
tended representation attractive. The loop representation only appears 
as a singular limit, in the same spirit as the electrostatics of point charges 
appears through a limiting procedure from the electrostatics of smooth 
charge distributions. 

The existence of the extended loop representation is an illustration of a 
property pointed out by Ashtekar and Isham [73]: that there exist possibly 
non-equivalent representations of quantum theories. One can introduce 
an inner product in the loop representation in terms of extended loop 
coordinates that allows a Fock interpretation as we did in section 4.4. 
This is the natural inner product in the extended representation and 
corresponds exactly to the inner product one introduces in the connection 
representation to implement the reality conditions of the theory. One can 
also introduce a representation in terms of usual loops and a discrete 
inner product which seems to describe naturally the states of a Type II 
superconductor [73]. 

Since we have a theory written in terms of usual smooth tensorial 
quantities with a well defined Hamiltonian it is immediate (in this sim­
ple Abelian case) to introduce a classical action in terms of which one 
can formulate the theory. This)s by no means trivial. Whereas usually 
the loop representation has been viewed as a "mysterious" construction 
that either arises indirectly via a transform or through an unusual non­
canonical quantization, the extended representation teaches us that one 
can actually find a canonical classical theory in terms of which a straight­
forward quantization leads to the loop representation. This construction 
can actually be generalized to the non-Abelian cases, although it presents 
more subtleties than the Abelian case we are examining here. 

Let us therefore write the classical action which yields the quantum 
theory corresponding to the extended loop representation, 

S = J dt { PaxXax - [~xax X ax + l (8[a Pbjx)2] + >'xX~x } . (4.139) 

We immediately recognize the action for classical electromagnetism if 
we identify the loop coordinate with the electric field and the momentum 
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with the connection as we did before. 
This action could be rewritten in terms of loops, 

S = J dt {ht dya ..4a(y) + ! J d3xFab(X)Fab(X) 

+ 1 dya 1 dy,a IE(y - y') } , 
'Yt 'Yt 

(4.140) 

where IE is a regularization of the delta function and the loops It be­
long to the surface t = constant. This action could also be presented in 
second order form (modulo regularization difficulties). It could also be 
regularized by considering the theory on a lattice. This has been pur­
sued in detail in reference [72] and it has been found to lead to the usual 
Kogut-Susskind formulation [74]. 

4.7 Conclusions 

The example discussed in this chapter, due to its simplicity, allows us 
to illustrate in an explicit fashion several properties that are important 
for the program of quantization of the gravitational field and cannot be 
proved for that case. 

We have shown that the language of loops is adequate to describe the 
free quantum Maxwell field. We have shown that the use of loops is 
inherently associated with regularization difficulties which can be cured 
by considering the extended loop representation. The loop representation 
is totally equivalent in this case to the traditional Fock quantization. The 
Wilson loop functional appears as naturally related to coherent states. 
The loop transform in this case is rigorously defined through the inner 
product in the connection representation. This inner product can be 
determined through the reality conditions of the theory, as we proved for 
the Bargmann case. We also showed that the loop representation can also 
be constructed for a complex coordinatization of phase space similar to 
the one that the Ashtekar variables introduce for gravity. 

In the next chapter we will discuss the quantization in terms of loops 
of non-Abelian fields. 
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