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Suppose that H/N is a section of a finite group G, i.e., that H is a subgroup
of G and JV is a normal subgroup of H. We are interested in the existence of
normal subgroups M of G satisfying:

(0.1a) MnH = JV,

(0.1b) ME = G.

Such an M can be called a normal complement to the section H/N in G.
Of course, one must add further conditions in order to guarantee the exis-

tence of M. Since (0.1) implies that inclusion induces an isomorphism of H/N onto
G/M, one obviously necessary condition is:

(0.2) Any elements o,xeH which are conjugate in G have

images aN, xN which are conjugate in H/N.

Just as obviously, this condition is not sufficient (let G be a non-abelian nilpotent
group, H be its center, and JV be 1).

The question of what must be added to (0.2) has intrigued several authors
over the yeras, especially Brauer (1964). Recently Friesen (1974) showed that (0.2)
implied the existence of M whenever G was solvable and H was a rc-Hall subgroup
of G, for some set of primes n. Since the Hall subgroups of solvable groups have
all the nice properties one could wish, Friesen's result suggests the following
question: How far down the list En,Cn,Dn (see Hall (1956)) of increasingly
stringent conditions for a 7r-Hall sungroup H of an arbitrary finite group G must
one go before (0.2) implies the existence of M? Friesen's example (in section 1
of Friesen (1974)), in which G is the symmetric group Zp on a prime number
p ^ 5 of letters, H is its Hall p'-subgroup Zp_x, and JV is 1, shows that C% (the
conjugacy of all Hall rc-subgroups of G) does not suffice. However, we shall
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show that the next condition Dn is sufficient, i.e., that M exists whenever (0.2)
holds and H is a Hall n-subgroup of G containing at least one conjugate of
every n-subgroup E of G.

Our actual result has even weaker hypotheses. When you know that one of
the key tools in its proof is Brauer's characterization of group characters, it is not
surprising that the condition Dn can be weakened so as only to require that H con-
tain at least one conjugate of every Brauer elementary ?r-subgroup E of G, i.e., of
those re-subgroups E which are direct products of cyclic groups with p-groups (the
"elementary" subgroups of Brauer and Tate (1965) and Brauer (1964)). We can
also (following (AI) of Brauer (1964)) replace the condition that if be a re-Hall
subgroup of G by the weaker hypothesis that H/N be a re-group and that [G: H~\
be a re'-number (i.e., be divisible only by promes not in re). Since the Brauer
elementary 7r-subgroups E of G include the p-Sylow subgroups, for every prime
pen, this weaker hypothesis is a consequence of the above one (we owe this
remark to a friendly letter of M. Isaacs). So our theorem is:

THEOREM 1. Suppose that H/iV is a n-section of a finite group G satisfying
(0.2) and that:

(0.3) Any Brauer elementary n-subgroup E of G is

G-conjugate to a subgroup of H.

Then H/N has a unique normal complement M in G.
The special case N = 1 of this theorem was proved by Brauer as Theorem 3

of Brauer (1964). Brauer obtained this case as a consequence of a more complicated
result (Theorem 1 of Brauer (1964)). The methods we use to prove our Theorem 1
can also be used to improve Brauer's Theorem 1 by showing that his annoying
hypothesis (AIV) (see section 6 of Brauer (1964)) is actually a cobsequence of
his other hypotheses (AI-III). After another minor improvement in his hypothesis
(AIII), his theorem becomes:

THEOREM 2. (Brauer, improved). Suppose that H/N is a n-section of a finite
group G satisfying (0.2) and that:

(0.4a) [G : H] is a n'-number,

(0.4b) / / a is a n-element of H — N and if P is a p-Sylow sub-

group of the centralizer Ca(p) of a in G, for some

prime pen not dividing the order of a, then the sub-

group <<7> x P is G-conjugate to a subgroup of H.

Then H/N has a unique normal complement M in G.
Of course, (0.4) is weaker than (0.3). So Theorem 2 implies Theorem 1.
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Nevertheless, Theorem 1 is so easy to prove directly that it seems better to do so
in section 1, while in section 2 we content ourselves with indicating the modifi-
cations necessary in Brauer's proof to obtain Theorem 2.

It would be nice to be able to weaken the hypothesis (0.4a), but this seems to
be very difficult.

1. Proof of Theorem 1

As for a long line of theorems going back to Frobenius' construction of
normal complements in Frobenius groups, the proof of Theorem 1 is based on the
observation that one can construct the irreducible characters of the factor group
GjM (considered as characters of G) without knowing that M exists. Then M is
obtained as the intersection of the kernels of those characters.

To see how this can be done, suppose for a moment that M exists. Let
n: H -> H/N and n*: G -> H/N( ~ G/M) be the natural epimorphisms. Then the
conjugacy classes kt = {1}, k2,---,kn of HjN have inverse images Kt = n~1(ki),
Kf = (.n*)~1(ki) in H, G, respectively, for i = 1, •••,n. Evidently (0.1) implies:

(1.1) X?nfl = Ku for i = i,-,n.

Because G/M ~ HjN is a ?i-group, an element ae G lies in some K*if and
only if its n-part on (in the usual sense of the term as in Brauer (1964)) lies in
K*. By (0.3) the rc-element an of G is G-conjugate to an element %eH. Since
K* is closed under G-conjugation, it follows from (1.1) that aeKf if and only
if r e K*t n H = Kt. So Xf is given by:

(1.2) Kf = {ere G\CFK is G-conjugate to an element of K,},

for i = l,—,n.

This is a description of the set Kf which does not depend upon M. In particular,
it shows that M — K* is unique if it exists.

Let $! = 1,02> •">(/ln De the complex irreducible characters of H/N. If we
choose a representative pt in each class k, of H/N, then the corresponding
irreducible characters Q>j = <j>j o r\ and <S>* = <f>j otj*ofH and G, respectively, are
given by:

(1.3a) O,.(T) = 4>j{Pi), for all xeKt, i,j = l , - , « ,

(1.3b) O,*(a) = </>/&), for all aeKf, i,j = l , - , n .

In view of (1.2), this gives us the desired description of the irreducible characters
$*> "".^n °f G/M without reference to M.

Now we start from the hypotheses of Theorem 1 without supposing the
existence of M. Since we do have the epimorphism r\ :H -> H/N, we can define the
kit Kh 4>j and $,- as above. We now use (1.2) as the definition of the subset
K* of G, for i = 1, •••, n. Hypothesis (0.2) implies that any 7i-element of K* O H
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lies in Kt. Because H/N is a ir-group, an element xeH lies in Kt if and only if its
re-part xK lies in Kt. It follows that (1.1) holds in the present situation „

By (0.3) every Tt-element of G is conjugate to an element of H, and hence to an
element of some K{. This and (1.2) tell us that G is the union of the K*. Since
the Ki are pairwise disjoint, it follows from (1.1) and (1.2) that the Xf*are pair-
wise disjoint. Hence G is the disjoint union:

(1.4) G = K? 0 X2*O ••• 0 K*.

In view of (1.4) we can use (1.3b) to define the class functfions O/on G. From
(1.1), (1.2), and (1.3a) we conclude that:

(1.5a) O » = 0 ; ( 0 , for all oeG, j = l , - , n .

(1.5b) « ; | H = <bj, for all j = l , - , n .

Next we must show:

(1.6) Each <J>*, j = 1, ••-,/!, is a generalized character of

G (i.e., an integral linear combination of the complex

irreducible characters of G).

Since 4>* is a complex class function on G, it suffices by a well-known theorem of
Brauer (see Brauer and Tate (1965)) to show that the restriction 0* |E is a generalized
character of £ for any Brauer elementary subgroup E of G. The group £, being nil-
potent, is the direct product £=£ J t x£ l t ' of its Hall rc-and rc'-subgroups £„> and
£„< (respectively), both of which are also Brauer elementary. By (1.5a) the restriction
<&* | E is just the composition of the restrication O,*| Eir with the projection of £
onto £„. So we only need show that the latter restriction is a generalized character
of £„, i.e., we may assume that E = En is a Brauer elementary 7t-subgroup of G.
Now (0.3) tells us that £ is G-conjugate to a subgroup of H. Since $ / is a class
function on G, we may replace E by its conjugate and suppose that £ ^ H. But
then O* | E = Ojr | E by (1.5b), and <!>,• is a character of H by construction. Hence
<t>j* | £ is a character of £ and the proof of (1.6) is complete.

For each i = 1, •••, n, we form the class function:

(1.7) V, = S 0/pr1)**

on G. In view of (1.3b) and the orthogonality relations for the irreducible characters
<j>j of H/N, the values of *Pf are given by:

*i = |Cfl/H(ft)| on Kf,

= 0 on G - K*.
It follows that:
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_ 1 CH/N(P.) \-\Kf\
| | f f e G \G\

Evidently

1 ^ = IG:H]-\N\-IHIN:CH/S(p2] = [G:H]-\N\-\kt\.

So the above inner product can be written as:

IK-* I
d-8) W . 1 ) G = F77777K ' '" \G\H\ • \N\- | f c , |

From (1.6) and (1.7) it is clear that *F, is a linear combination of the irreduc-
ible complex characters of G with algebraic integers as coefficients. Hence the
coefficient Q¥,, 1)G of 1 is an algebraic integer. By (1.8) it is also a rational number.
Therefore it is an ordinary integer, and (1.8) says that [G : if] • | N | • j k\ divides
|K* |. Because Kf is nonempty (by (1.1)), this implies:

(1.9) [G://]- |JV|- |fej | ^ \K*\, for i = 1, -,n.

Adding the inequalities (1.9) we obtain:

(1.10) [ G : f l ] - | J V | - £ I fcJg £ \Kf\.
i = 1 i = 1

But ku • • -, kn are the conjugacy classes of H/N. so E "= 11 kt | = | H/N |, and the
left side of (1.10) is [G : H] • | N \ • | H/N \ = \ G |. The right side is also [ G | by
(1.4). Therefore (1.10) is equality, which implies that (1.9) is equality for all i:

(1.11) \K*\ = lG:H]-\N\-\k,\, for i = l , - , n .

We use this, (1.4), and (1.3b) to compute:

1 i n

= (4>J>4>J)H/N = 1-

Because Oj(l) = 0/1) > 0, this and (1.6) imply that <D* is an irreducible complex
character of G. Hence its kernel:

Ker($t) = ia e GI <t>J(a) = <

is a normal subgroup of G. By (1.3b) and the fact that O/= 1 Ker(^) = {1} = ku

the intersection n"=1Ker(O*) is precisely K*. Hence M = K* is a normal sub-
group of G satisfying (0.1a) by (1.1) (since N = ^"^ l ) = KJ. Furthermore,
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\M\ = \Kt\ = lG:H-]-\N\

by (1.11), so that:

= = = | G |
\HnM\ \N\ ' ' '

Therefore M also satisfies (0.1b), and the theorem is proved.

2. Proof of Theorem 2

We simply indicate the modifications necessary in the arguments of sections 4
and 5 of Brauer (1964) in order to change Brauer's proof of his Theorem 1 into a
proof of our Theorem 2. Lemmas 1-5 in section 4 of Brauer (1964) are con-
sequences of Brauer's axioms (AI-III) alone. His axioms (AI) and (All) are our
(0.4a) and (0.2), respectively. His axiom (AIII) is used only twice, in the proofs
of his Lemmas 2 and 4. In each case it can obviously be replaced by our (0.4b)
without changing his arguments. So all the results of section 4 of Brauer (1964)
hold in our situation. In particular, ifX* is defined by (1.2), for i > 1, while K*
is defined to be G - C\f=2K*, then our (1.1) and (1.4) hold in virtue of Lemma 1
of Brauer (1964).

As before, we define the class functions 0>* by (1.3b). Brauer's argument
showing that (1.6) holds, as given on pages 76 and 77 of Brauer (1964) depends only
on his axiom (AI)(which is our (0.4a)) and the results of his section 4. So it is still
valid. Now the rest of the proof of Theorem 2 can be completed by repeating the
argument of section 1 above, starting at (1.7).

Notice that the inequalities (1.9), which are obtained in the course of this last
argument, imply that Brauer's axiom (AIV) holds. Thus (AIV) is actually a con-
sequence of (AI-III), as remarked earlier.
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