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INVEXITY CRITERIA FOR A
CLASS OF VECTOR-VALUED FUNCTIONS

PuaMm Huvu SAcH AND Ta Duy PHUONG

This paper gives criteria, necessary or sufficient for a vector-valued function F =
(fi,fa,.--, fr) to be invex. Here each f; is of the C;}-class (that is, each f; is
a function whose gradient mapping is locally Lipschitz in a neighbourhood of o)

and the invexity of F' means that F(z) — F(zo) C ;"(X) + Q for a fixed convex

cone Q of R* and every z near 2o (F' being the Jacobian matrix of F at o).

1. INTRODUCTION

Let X = R*,Y = R* be Euclidean spaces of dimensions n and k, respectively.
Let F: X — Y be a vector-valued function with Fréchet differentiable components
fi() :=1,2,...,k). Given a convex cone @ C Y and a vector-valued function 7 :
X — X, we say that F is @-invex at z¢ in a neighbourhood of zo, with respect to 7,
if there is a positive number v such that ||z — z¢|| < v implies

(1.1) F(z) - F(zo) € F'n(z) + Q

where Ig ' denotes the Fréchet derivative of F' at zo and ||z| stands for the norm
of z. The idea of invexity for a function was first introduced by Hanson [3] who
showed that the requirement of invexity is weaker than the requirement of convexity,
but it still assures the validity of the converse Kuhn-Tucker condition and the Wolfe
duality theory [11] for mathematical programming problems. The above Q-invexity
concept was given in [2] where a condition, necessary or sufficient , for invexity of
F is expressed in terms of its second derivative. This result was obtained assuming
that f;(-) are C?-functions . But the twice continuous differentiability hypothesis used
in [2] is too strong a requirement and, as was shown in [5], it is not satisfied for
many optimisation problems such as problems with C'!-data (that is, problems with
functions whose gradient mappings are locally Lipschitz). The aim of this paper is to
give some necessary or sufficient criteria of invexity for C'!-maps, one of which includes
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as a special case the above result of Craven [2]. The organisation of the paper is as
follows. Section 2 recalls the concept of C*!:functions and their properties [5]. Section
3 presents two invexity criteria, the first of which deals with the case where 7 is a
C''.map while in the second one this property of 7 is not assumed to be satisfied.
Section 4 gives some examples. Section 5 discusses other sufficient invexity conditions
and their relationship with those of Jeyakumar [6] and Hanson-Rueda [4]. The reader
who is interested in generalisations of invexity for nonsmooth maps and multifunctions,
and their applications to optimisation problems and duality theories is referred to [1,
7,9, 10, 12].

2. PRELIMINARIES

In this paper, elements of finite-dimensional spaces are identified with column vec-
tors. The symbols (-,-) and ||-|| are used to denote the inner product and the norm in
these spaces. For zyp € X = R™ and v > 0, B(2z¢,7) is the ball of radius 4 centered
at zo. The closure and the interior of a set A C X are denoted by A and int 4,
respectively. The cone generated by A is the set

coned ={az:a >0, z € A}.

Instead of cone A we write cone A. The positive polar cone of the cone Q C Y = R*
is the set

Qt={yeY: (920 (VicQ)}

The gradient vector and the Hessian matrix of a twice differentiable real-valued function
f at = are denoted by f'(z) and f''(z). The Hessian matrix is an element of the space
E of n x n matrices which is topologised by taking a matricial norm ||| - ||| on it. To
every element 4 of E we associate a bilinear form A[.,.].

Let A = A; x A3 X ... X A be an element of the direct product E* of k spaces
E. For v € X, we denote the vector in Y with components 4;[v,v] by the symbol
Alv,v]. For y = (y1,¥2,--- ,yk)T €Y, we set

k
(2.1) yA =) wid;,
i=1

that is, yA is a linear combination of the matrices A; with coeflicients y;. Hence the
inner product of y and A[v,v] is equal to yA[v,v]. If G is a k x n-matrixand 4 € E™,
then the symbol GA stands for the element of E¥ with components g7 A where T

denotes the transpose and g; are the row vectors of G:

GA = (gTA) x (g7 4) x ... x (¢f A) € E-.
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Using (2.1) we can write
k
(2.2) Y(GA) =Y w(ol 4) = (GTy)4
=1

for every y € Y. Fix zo € X. Let Cl) be the class of all real-valued functions which
are differentiable in a neighbourhood of zy and whose gradient mapping f'(-) is locally
Lipschitz on this neighbourhood . The generalised Hessian matrix of f at z¢, denoted
by 8?f(zo), is defined in [5] as the convex hull of the matrices each of which can be
expressed as the limit of a sequence f"(z;) where f is twice differentiable at z; and
z; > zop.

The following properties of the generalised Hessian matrix of f were established
in [5]:

1. 8%f(zo) is a nonempty compact convex set of E.
The set-valued map z — 8% f(z) is locally bounded at zg, that is

sup{|||4ll|: A € & f(z), z € V} < B

where V is a neighbourhood of z¢ and # > 0 is some constant.
3. The set-valued map z +— 8%f(z) is upper semicontinuous at zo in the

sense that
[z: = 2o, A; — Ag, A; € 6’f(z,-)] = Ag € azf(:co).

4. (Second order Taylor expansion Theorem) If f is a C;l-function then
there is a neighbourhood V' of zy such that for any pair z; € V, 2z, € V
there are a € (0,1) and A4 € 8*f(z1 + a(z2 — z1)) such that

f(z2) = f(z1) + f'(=z1)(z2 — 1) + 27 A2z — 21,22 — 21].

If F=(fi,fz,-..,fe) isa C;i-map (that is, a map with f; being C}l-functions
in a neighbourhood of zg), then we set 8*F(-) = 8%f1(:) x 8 fa(*) x ... x 8% fi ().
Hence, for any z in a neighbourhood of zg, each element of 8*F(z) is a point of E*
with components belonging to 82 fi(z).

We conclude this section with the following technical lemma.

LEMMA 2.1. Let P: X — E* be a multifunction such that P is upper semicon-
tinuous and locally bounded at zo € X. Let @ C Y be a convex cone with nonempty
interior. If

(2.3) (Vv € Xo)(VA € P(z0))  Alv,v] € int Q
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then there is a positive number 4 such that
(2.4) (Vv € Xo)(Vz € B(zo,7))(VA € P(z)) Afv,v] €int Q.

Here and in the sequel X, = X \ {0}.

PRrROOF: Assume to the contrary that the lemma fails to hold. Then there are
sequences v; | 0, v; € Xo, A; € P(z;), z; € B(zo,7:) such that A;[v;,v;] €Y \int Q@
or, equivalently,

(2.5) A.-[u,', u,'] €Y \ int Q

where u; = v; ||v;||”}. Using subsequences if necessary, we may assume that u; and
A; converge to elements u € X (||u]l=1) and A € P(zy), respectively. Letting
1 — oo in (2.5) and noting that Y \ int @ is a closed set, we get Au,u] €Y \int@, a
contradiction to (2.3).

3. INVEXITY CRITERIA

Let 2o € X = R™ and let Q C Y = R* be a convex cone. Throughout this paper,
unless otherwise specified, we assume that F = (fy, f2,.. .,fk)T is a Ci;—map. For

simplicity we shall write F ’,82;' instead of F'(z¢) and 8*F(z,). Similarly, for the
C:i-map 7 : X — X, we shall use 7,m' and 8?7 in place of 7(zo),7' (o) and 8%n(zo),

o .
respectively. We set (o = cone (Q + F';]) and we denote by I the identity map. We

write I?’ in place of 621‘5’ — F'8%7. Observe that D € P means that D = M — F'N
with suitable M € 8°F and N € 9%%.
THEOREM 3.1,

1. Assume that F is Q-invex in a neighbourhood of zo , with respect to a C;;-map

7. Then
(3.1) (VweX) F (1 - 1;')1) €Qo
(3.2) (Vv € Xo)(EID € f)) Dlv,v] € Qo.

2. Conversely, assume that there is a C}-map 7 such that the condition (3.1)
and, instead of (3.2), the condition

(3.3.) (Vv € Xo)(VD € 1°>) Dlv,v] € intQo
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are satisfied. Then there is a function A : X — R such that F is Q-invex at zq in a

neighbourhood of zq , with respect to the map 7:(-) = n(-) + A(-)7.
PROOF:

1. Sufficiency. Consider the map P(-) = 8*F(-) — 13'6217(~). Since P= P(zy) and
since condition (3.3) holds, by Lemma 2.1 there is 4 > 0 such that

(3.4) (Vv € Xo)(Vz € B(zo,7)) (VA€ P(z)) Alv,v] € int Qo.
Let us fix v € B(0,v). By the second order Taylor expansion theorem we have
(3.5) fizo +v) = fi(=0) = f'(zo)v + 27 Milv, ]

where M; is a suitable element of 82 fi(zo + 6;v) (0 < 6; <1). Denoting by M the
element of E* with components M; we can write

(3.6) F(o + ) — F(zo) = F'v + 2~ M[v, ).

This equality together with (3.1) yields

(3.7 F(zg +v) — F(zo) = F'n'v+ 2" M[v,v] + ¢

where ¢ is some point of Q.
On the other hand, applying the second order Taylor expansion theorem to 75(-)
gives

(3.8) n's = (20 + ) —n(z0) — 2 Nv,7]

where N is an element of E™ with suitable components N; € 8%7:(zo + Biv) (0 < B; < 1).
Therefore, (3.7) can be rewritten as

F(zo +v) — F(zo) — I":'(n(:co +v) —n(20)) = ¢+ 271 (M - I;'N) [v,v]

(3.9) € ¢+int Qo C Qo +int Qo C int Qo,

since (3.4) implies that (M - F’N) [v,v] € intQy. Using (3.9) we can easily verify
that
Flzo +5) = Flzo) = Flzo +3) = n(eo)] € cone (@ +F5),

https://doi.org/10.1017/50004972700014088 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700014088

254 P.H. Sach and T.D. Phuong (6]

that is, for some A = A(v) > 0, we have

F(zo +2) ~ F(zo) ~ F'la(zo +v) ~n(z0)] ~ 7 € Q,
that is
F(zo +v) — F(xo) € 13'1;1(30 +v)+Q
with 71 (o + v) = (2o + v) + A where () = X— 1). This shows that F is @Q-invex at
zg in B(zg,7), with respect to 7.

2. Necessity. By assumption we have, for v sufficiently small,

(3.10) F(zo +v) — F(zo) — F'n(zo + v) € Q.
Using (3.6) and (3.8) we derive from (3.10)

(3.11) F'(I—n')v+2_1 (M—F'N)[v,v] €Q+ F'nC Q.

For fixed v € X,, taking a sequence a; | 0, applying (3.11) to v = ;v and dividing
by a;, we get

[ o — o
(3.12) F (I - 17’)5 + 2'1a,~ (Mj — F’Nj) [7,7] € aj_lQo C GQo
where ]Tf, is an element of E* whose i** component is a n X n-matrix ]Tl',J €
& fi(zo + 0jiajv) (0 < 6;; < 1), and similarly for N;. Letting j — oo in (3.12) and
noting the local boundedness property of generalised Hessian matrices (see Section 2),

we obtain (3.1) for v = . The first property of Theorem 3.1 is thus proved.

Now we rewrite (3.12) as
(3.13) (]Ti, - 5'1\7,-) [3,9] € 2a;! (Qo + F (I - &)(—v)) € 2a;(Qo + Qo) C Qo,

using (3.1) with v = —v. Based on the second and third properties of generalised
Hessian matrices (see Section 2), we may assume (by taking subsequences if necessary)

— —~— o
that the sequences M; and N; converge to some elements M and N belonging to §*F

and 827, respectively. To complete the proof of (32)with v=v and D=M - F'N,
it remains to let j — oo in (3.13) and to observe the closedness of Q. 1]

REMARK 3.1. If 7 = O then the conclusion of the sufficiency part of Theorem 3.1
means that F is @-invex at z¢ in a neighbourhood of z, with respect to the same 75
for which conditions (3.1) and (3.3) are satisfied. Example 4.3 of Section 4 shows that,
for the case 107 # 0, this conclusion fails to hold (that is, F can be Q-invex with respect
to m(-) = n(-) + A(*)n, but cannot be Q-invex with respect to 7).
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REMARK 3.2. Theorem 3.1 includes as a special case Theorem 2 in [2] where Craven
assumes that @Q is a closed convex cone with Q@ N (—Q) = {0}, F and 7 are twice
continuously differentiable, and n(z¢) =0, #'(zo) = 1.

REMARK 3.3. The requirement of the existence of a C}-map 7 satisfying the assump-
tions of Theorem 3.1 is a difficult matter. On the other hand, in the definition of
Q-invexity of F', the map 7 is not required to be differentiable . In fact, we know
from [3] that even the continuity property of 7 is not used for proving the converse
Kuhn-Tucker condition and the Wolfe duality in mathematical programming . It is then
natural to ask whether we can find invexity conditions without assuming continuity or
differentiability properties of 7. Before giving such a condition, we set

Q={yeQ* [yl =1, F'Ty=0}.

(3.14) : ’
I=F(X)+Q:={y:y=Fz+q¢ scX, g Q).

THEOREM 3.2.

1. If F is Q-invex at zo in a neighbourhood of zo (with respect to some 7)) then
(3.15) (Vv € Xo) (EM € aZE*) inf yM[v,v] > 0.

2. Conversely, if
(3.16) (Vv € Xo)(VM € a’i*) inf yM(v,v] >0

then F is Q-invex at zo in a neighbourhood of ¢ (with respect to some 7).

PROOF:
1. Sufficiency. It follows from (3.16) that there exists 4 > 0 such that

(3.17) (Vv € Xo)(Vz € B(z0,7))(VM € 8*F(z)) Mlv,v] €T.

Indeed, otherwise there are sequences v; | 0, v; € Xo, z; — zo, M; € 8°F(z;) such
that M;[vi,v;] ¢ T'. Since I is a cone we derive from this condition that M;[u;,u;] ¢ T

where u; = v; ||vi]|". In view of the separation theorem we can find y; € Y, lvill =1,
such that
(3.18) y;M,-[u,-,u,-] £0< (yg,y) Vy eT.

The second inequality in (3.18) implies that y; € @;. Taking subsequences if necessary,
we may assume that sequences u;, M; and y; converge to some elements u € Xg, M €
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62;' and y € @1, respectively. Hence, by letting i — oo in the first inequality in (3.18)
we obtain yM|[v,v] < 0, a contradiction to (3.16).

We now claim that F is Q-invex at zq in B(zg,v). Indeed, for every v € B(0,7v)
consider (3.6). Using (3.17) we derive from (3.6) that

)

F(zo +v) — F(z0) € F'o+ F'(X) +Q = F'(X) + Q,

showing the Q-invexify of F at z.
2. Necessity. By invexity, for v sufficiently small, F(zy +v) — F(z¢) € I'. This
condition together with (3.6) yields

Miv,v] € 2(r - i"v) = 2[F'(X) + Q + F'(—v)]

(3.19) € 2AF(X —v)+ Q] = F'(X)+Q=T.

For fixed v € X, take a sequence a; | 0. Applying (3.19) to v = ;v and using an
argument similar to that given in the proof of Theorem 3.2, we can show that there is

Me 82F such that M[E, 7] € T. Since y € @, implies that y € 't we conclude that
y]Ti [v,v] 2 0 for all y € @,. This completes the proof of the necesssity part of the
theorem. 0

REMARK 3.4. Condition (3.16) may be satisfied while condition (3.3) of Theorem 3.1
fails to hold for any C} -map 7 (see Example 4.4 of Section 4).

COROLLARY 3.1. Assume that there are N € E™ and ¢ € X such that
(3.20) (Wwe Xo)(VM € 32107> (M - I;'N) [v,v] € intm(Q + I?"ﬁ)
Then F is Q-invex at z¢ in a neighbourhood of z,, with respect to some 7.
PRrOOF: Since co—né(Q + 1?"{) c T, (3.20) implies that (M - I?"N) [v,v] €
intT'. Hence, for any y € (f)+ with ||y|| = 1, we have
(3.21) yMlv,v] — y(f"N) [v,v] = y(M - I?"N) [v,v] > 0.
On the other hand, we verify easily that

ye@" vl =1} =@

So, using (3.21) and (2.2) we obtain (3.16), and the corollary follows now from Theorem
3.2. 0
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REMARK 3.5. When comparing sufficiency conditions given by Theorem 3.1 and Corol-
lary 3.1 we see that, if we are not interested in the form of the map with respect to which
F is Q-invex, then the sufficiency part of Theorem 3.1 can be weakened, assuming that

(3N € 3213) (Vv e Xo)(VM € 32107') (M - I?"N> [v,v] € int Qe.

4. EXAMPLES
Some examples will be given to illustrate the results of the previous section. Ob-
serve from the first example that sufficient condition (3.3) of Theorem 3.1 (respectively,
sufficient condition (3.16) of Theorem 3.2) cannot be replaced by

(4.1) (Vv e Xo)(ElD € 103) Dlv,v) € int Q,
(4.2) (respectively (Vv € Xp) <3M € 62;‘) iené yMv,v] > 0).
VEQ1

The second example shows that necessary condition (3.2) of Theorem 3.1 (respectively,
necessary condition (3.15) of Theorem 3.2) cannot be replaced by

(4.3) (Vv € Xo)<VD c 1'5) Dlv,v] € Qo,

(4.4) (respectively (Vv € X,) (VM € 62107‘) 1€an yM[v,v] > 0).
1

Yy

In examples 4.1-4.3 we shall assume that X =Y = R (the real line), Q = R4 (the
nonnegative half-line), zo =0 and F = f is a real-valued function.

2-1gz? if z>0,
f(z) =

EXAMPLE 4.1. Let

271322 if z<0
where «,f3 are real parameters such that § < a. Obviously, f is a C},;-function and
o
&f = {v: B < v < a}. Weshall set n(z) = z. The R, -invexity property of f
depends on the choice of § and a. Indeed,

e If 8> 0, then f is Ri-invex, using the sufficient condition of Theorem
3.1 or Theorem 3.2.

o If a <0,then f isnot R;-invex since the necessary condition of Theorem
3.1 or Theorem 3.2 is violated.

e If 8 <0 and a > 0, then (4.1) and (4.2) are satisfied with M = vy €
(0,a), but f is not Ry -invex.
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EXAMPLE 4.2. [5] Let
l2]
1) = [ ptat

where

® 2t2 + t2sint™?! if t>0
LA i t=0.

It was shown in [5] that zo = 0 is a local minimum of f and 32} = [-1,+1]. Hence

f is Ry-invex in a neighbourhood of zo with respect to n(z) = 0, but (4.3) and (4.4)

cannot be satisfied.

EXAMPLE 4.3. Let f(z) = 27 'z? + sinz and 7(z) = 47 2% +sinz + cosz. A simple
calculation yields ; =0, ;’ =1, 82} =f"0)={1}; =1, 1;’ =1, 8n= 17"(0) =
{-271}. Hence, 7 =1 # 0, and conditions (3.1) and (3.3) of Theorem 3.1 are satisfied.
But F' cannot be @-invex at zp in a neighbourhood of z4, with respect to 7. Indeed,
otherwise we must have f(z) > n(z), that is cosz < 47 'z? for all z near zp = 0.
Of course, this condition is impossible. Observe that by using n:(z) = n(z) — cosz
instead of n we can verify that f is R;-invex at zo in a neighbourhood of z¢ with
respect to 7; (that is, the conclusion of the sufficiency part of Theorem 3.1 holds for
Mz) = —cosz).

EXAMPLE 4.4. Let X =R, Y = R?, Q= {y = (¥y1,¥2) : 2 = 0,31 > 0}, o = 0 and
F = (fl,fz)T where fi(z) =z, fa(z) = z?. Sinceint @y = int @ is empty, assumption
(3.3) of Theorem 3.1 cannot be satisfied for any C;l!-map 5. But sufficient condition
(3.16) of Theorem 3.2 holds. Indeed, in our case &BF = F"(x0), @1 consists of the
unique element y = (0,1)T € R? and a simple calculation gives yF"(zo)[v,v] = 2v?
which is positive for all » # 0.

5. OTHER SUFFICIENT INVEXITY CRITERIA

This section gives some invexity criteria which are closely related to those of Jeyaku-
mar [6] and Hanson-Rueda [4]. We say that F is Q-invex at zo in a set V C X with
respect to 7, if (1.1) holds for any = € V. Obviously, Q-invexity in a neighbourhood
of zo corresponds to the case V = B(zg,7v) for some v > 0.

For § = (61,62,...,0;) € R* we set

azF(:Eo + 0‘0) = azfl(’.':o + 01’0) X azfz(zo + 02’0) X ... X asz(:!:o + Bk'v)

and we write 0< 8 <1if 0<6; <1 forall 2.
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THEOREM 5.1. Let V be a subset of X. Assume that either @, = O or the
following two conditions are fulfilled:

1. T:= }?"(X) + @ is a closed cone.
2. There is a multifunction G : V — Y = RF such that
(5.1) (Vv € V)(Vy € G(v)) iené <y,y>=0.
YEQ

(5.2) (Vv € V)(VO < 0 < 1)(VM € 8*F(zo + 0v)) M[v,v) C G(v) + Q.

Then F is Q-invex at zo in the set zo + V (with respect to some 7).

PROOF: If @; = @ then I' = Y and the invexity property is obvious. Consider
now the second case. Using a separation theorem and noting the closedness of I' we

can derive from (5.1) that G(v) C F'(X)+ Q. Combining this inclusion with (3.6) and

(5.2) yields
F(zo +v) — F(zo) € F'v + 271 [G(v) + Q]
EFv+FX+Q=F(X)+Q,
showing the Q-invexity of F, as desired. 0

Theorem 5.1 can be extended to differentiable map F' which may not be of the

11 .
Czo-cla.ss.

THEOREM 5.2. Let V be a subset of X and F : X — Y be an arbitrary
differentiable map. Assume that either Q@ = @ or the following two conditions are

fulfilled:
1. T is a closed cone.
2. There is a multifunction G : V —» Y = R* such that the condition (5.1)
and, instead of (5.2), the condition
(5.3) (VweV)  F(zg+v)— F(zo) € F'(X)+G(v) +Q

are satisfied.
Then F is Q-invex at zo in the set zo + V (with respect to some 7).

The proof is similar to that of Theorem 5.1.

REMARK 5.1. Let us write Y = R* = R x R¥~1 let “pr” denote the projection of Y
on R¥! and let

Q:={y= vz m) €QF : lm| =1, FTy=0}.
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H
(5-4) prl' = R*!

then it can be verified that

V= ¥1,¥2,--,9k) #0,y€Q", F'Ty=0]=y #0.

From this we can deduce that

Q1=@4=>Q2=0,
inf (y,5) >0« inf (y,7) > 0.
ylEan (y 17) ylean (y 17)

Hence, under assumption (5.4) the cone @, appearing in the formulation of Theorems
5.1 and 5.2 can be replaced by Q.. (Similarly, under this assumption the cone @; in
(3.15) and (3.16) can be replaced by Q.).

Observe that (5.4) holds if

(5.5) fa(2o), f3(z0),---, fi(z0) are linearly independent.

Moreover, if @ = Rﬁ_ and Q; # 0 then (5.5) implies that @, is a singleton.

REMARK 5.2. In [6] a generalised version of invex functions, called p-invexity, was
introduced. In our notation, the map F is called p-invex at zo inaset zo+V (V C X)
if

(5.6) (Vve V)(3av) € X)  Floo +v) - F(za) € F'(X) + plla)]* + @

where Q = R% is the nonnegative orthant of R* and p = (p1,p2,... ,pk)T is a given
vector of Y = R*. We shall show that the p-invexity of F at zo in the set z¢ + V
implies the R -invexity of F provided that assumption (5.5) and the inequality

(5.7) (,p) 20  (y€@2)

hold. Indeed, setting G(v) = p|le(v)||* and taking account of Remark 5.1, we find
that the second assumption of Theorem 5.2 is satisfied. The first one follows from
[8, Theorem 20.3]. The desired conclusion is now a direct consequence of Theorem
5.2. Observe that condition (5.7) must be assumed to be valid when Jeyakumar [6]
establishes the Wolfe duality theorem with p-invex data.
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REMARK 5.3. In [4] Hanson and Rueda give a sufficient condition for the RX -invexity
of a C?-map F, assuming that (5.5) holds, (5.6) is satisfied with

(5.8) a(v) = (1,0,...,0)T € X,
and
k
(5.9) p1 = _pifi(zo)i >0
=2

where p; is a lower bound of 27! f}'(z¢ + Bv)[v,v] (B€[0,1],v€V)and (€ X isa
point such that

5.10 Fi(zo)é; = 6i; the Kronecker symbol).
j j

As remarked above, if Q2 # 0 then Q. is a singleton denoted by y = (y1,y2,..-,¥&)
with y; = 1. From (5.10) and condition y € Q2 it can be seen that — f{(z0)(¢;) = y;
for j =2,3,...,k. Hence, condition (5.9) introduced in [4] coincides with (5.7) and the
sufficient condition for Rf,_-invexity given in 4] is also a direct consequence of Theorem
5.2.

Observe that, unlike [4], Theorems 5.1 and 5.2 can be used without assuming the
linear independence of fi(zo) (i =2,3,...,k).

EXAMPLE 5.1. Let X =Y = R}, Q = R}, V = B(0,1) and zo = 0. For
z = (zl,zz,zs)T € R® we define F(z) = (z1,23 + 23,23 + 23 + zg)T. In our case,
condition (5.5) fails to hold and, therefore, the above result of Hanson-Rueda does not
apply. But the R3 -invexity of F at zg = 0 in B(0,1) can be deduced from Theorem
5.1 or 5.2 since all assumptions of these theorems are satisfied, with G(v) = (0,0,0)7.
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