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INVEXITY CRITERIA FOR A
CLASS OF VECTOR-VALUED FUNCTIONS

PHAM HUU SACH AND TA DUY PHUONG

This paper gives criteria, necessary or sufficient for a vector-valued function F =
( / i , / i , . . . ,/fc) to be invex. Here each fi is of the CiJ-class (that is, each fi is
a function whose gradient mapping is locally Lipschitz in a neighbourhood of xo )

o

and the invexity of F means that F(x) — F(xo) C F'(X) + Q for a fixed convex

cone Q of R and every x near xo (F' being the Jacobian matrix of F at xo).

1. INTRODUCTION

Let X = Rn,Y = Rk be Euclidean spaces of dimensions n and k, respectively.
Let F : X —> Y be a vector-valued function with Frechet differentiable components
/j() (i = 1,2, ...,fc). Given a convex cone Q C Y and a vector-valued function rj :
X —> X, we say that F is Q-invex at XQ in a neighbourhood of XQ , with respect to 77,
if there is a positive number 7 such that ||x — zo|| ^-7 implies

(1.1) F(X)-F{XO)EF'T,(X) + Q

o

where F' denotes the Frechet derivative of F at x0 and ||x|| stands for the norm
of x. The idea of invexity for a function was first introduced by Hanson [3] who
showed that the requirement of invexity is weaker than the requirement of convexity,
but it still assures the validity of the converse Kuhn-Tucker condition and the Wolfe
duality theory [11] for mathematical programming problems. The above Q-invexity
concept was given in [2] where a condition, necessary or sufficient , for invexity of
F is expressed in terms of its second derivative. This result was obtained assuming
that fi(-) are C2-functions . But the twice continuous differentiability hypothesis used
in [2] is too strong a requirement and, as was shown in [5], it is not satisfied for
many optimisation problems such as problems with C11-data (that is, problems with
functions whose gradient mappings are locally Lipschitz). The aim of this paper is to
give some necessary or sufficient criteria of invexity for C11-maps, one of which includes
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as a special case the above result of Craven [2]. The organisation of the paper is as
follows. Section 2 recalls the concept of C11 -functions and their properties [5]. Section
3 presents two invexity criteria, the first of which deals with the case where 77 is a
C1:l-map while in the second one this property of 77 is not assumed to be satisfied.
Section 4 gives some examples. Section 5 discusses other sufficient invexity conditions
and their relationship with those of Jeyakumar [6] and Hanson-Rueda [4]. The reader
who is interested in generalisations of invexity for nonsmooth maps and multifunctions,
and their applications to optimisation problems and duality theories is referred to [1,
7, 9, 10, 12].

2. PRELIMINARIES

In this paper, elements of finite-dimensional spaces are identified with column vec-
tors. The symbols (•, •) and ||-|| are used to denote the inner product and the norm in
these spaces. For xo £ X — Rn and 7 > 0, .B(S:OJ7) is the ball of radius 7 centered
at xo. The closure and the interior of a set A C X are denoted by A and int A,

respectively. The cone generated by A is the set

cone .4 = {ax : a > 0, x £ A}.

Instead of cone A we write cone A. The positive polar cone of the cone Q C Y = Rk

is the set

Q+={yeY:(y,y)>0 (Vy E Q)}.

The gradient vector and the Hessian matrix of a twice differentiable real-valued function

/ at x axe denoted by f'(x) and f"(x). The Hessian matrix is an element of the space

E of 7i x n matrices which is topologised by taking a matricial norm ||| • ||| on it. To

every element A of E we associate a bilinear form J4[.,.].

Let A = Ai x A2 x ... x Ak be an element of the direct product Ek of k spaces

E. For v £ X, we denote the vector in Y with components .A;[•",*>] by the symbol

A[v,v). For y = (3/1,y2, . . . ,yk)T € Y, we set

(2.1) yA =

that is, yA is a linear combination of the matrices Ai with coefficients j / , - . Hence the
inner product of y and A[v, v] is equal to yA[v, v]. If G is a k x n-matrix and A £ En,
then the symbol GA stands for the element of Ek with components gjA where T

denotes the transpose and gi are the row vectors of G:

GA = {gfA) x (gjA) x...x {fiA) G Ek
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Using (2.1) we can write

k

(2.2) y(GA) = £ V*bTA) = ipTv)A

t=i

for every y £ Y. Fix XQ £ X. Let C** be the class of all real-valued functions which
are differentiable in a neighbourhood of XQ and whose gradient mapping /'(•) is locally
Lipschitz on this neighbourhood . The generalised Hessian matrix of / at XQ , denoted
by d2f(xo), is defined in [5] as the convex hull of the matrices each of which can be
expressed as the limit of a sequence /"(x<) where / is twice differentiable at Xi and
Xi^XQ.

The following properties of the generalised Hessian matrix of / were established
in [5]:

1. d2f(xo) is a nonempty compact convex set of E.
2. The set-valued map x i—> d2 f(x) is locally bounded at xo , that is

where V is a neighbourhood of xo and ft > 0 is some constant.
3. The set-valued map x i—» d2f(x) is upper semicontinuous at xo in the

sense that

[xi -» x0, Ai -» Ao, Ai e d2f(xi)} => Ao £ d2f(x0).

4. (Second order Taylor expansion Theorem) If / is a C^J-function then
there is a neighbourhood V of XQ such that for any pair x\ £ V, xi G V
there are a 6 (0,1) and A £ d2f(xi + a(x2 - zi)) such that

/(x2) - f{xi) + /'(xi)(aj2 - xi) + 2~lA[x2 - xux2 - x{\.

If F — ( / i , / 2 , . . . ,fk)T is a C^-map (that is, a map with fc being C^-functions
in a neighbourhood of x0), then we set d2F{) = d2 ft{) x d2 f2{) x . . . x d2fk().
Hence, for any z in a neighbourhood of xo, each element of 92F(x) is a point of Ek

with components belonging to d2fi(x).

We conclude this section with the following technical lemma.

LEMMA 2 . 1 . Let P : X —* Ek be a multifunction such that P is upper semicon-
tinuous and locally bounded at xo € X. Let Q C Y be a convex cone with nonempty
interior. If

(2.3) (to e X0)(VA e P(x0)) A[v,v] 6 int Q
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then there is a positive number 7 such that

(2.4) (W £ Xo )(Vas £ B(x0,7))(VA £ P{x)) A[v, v] £ int Q.

Here and in the sequel Xo = X \ {0}.

PROOF: Assume to the contrary that the lemma fails to hold. Then there are
sequences fi [ 0, v, £ Xo, Ai £ P(ii), a:,- £ B(xo,ji) such that .AJ[V{,VJ] £ Y \ int Q
or, equivalently,

(2.5) jl,-[ii,->u,-]€r\intQ

where u; = v< ||ut||~ • Using subsequences if necessary, we may assume that tt,- and
Ai converge to elements u £ X (||tt|| = 1) and A £ P(xo), respectively. Letting
i —* 00 in (2.5) and noting that Y \ int Q is a closed set, we get -4.[u,ti] £ Y \ int Q, a
contradiction to (2.3). U

3. INVEXITY CRITERIA

Let Xo £ X = Rn and let Q C Y = Rk be a convex cone. Throughout this paper,

unless otherwise specified, we assume that F = (/i,/2>-••,/*) ' s a C^-map. For
o o

simplicity we shall write F',d2F instead of F'(x0) and d2F(x0). Similarly, for the

C^p-map 77 : X —> X , we shall use 77,77' and d2r] in place of 77(10),^'(^o) and d2rj{xo),

respectively. We set Qo = cone! Q + F'TJ 1 and we denote by / the identity map. We

write P in place of d2F - F'd2i). Observe that D £ P means that D = M - F'N

with suitable M £ d2F and N £d2r).

THEOREM 3 . 1 .

1. Assume that F is Q-invex in a neighbourhood of xo , with respect to a

77. Then

(3.1) (Vw £ X) F" (i - 77°') v e Qo

(3.2) {VveXo)[3DeP) D[v,v]eQQ.

2. Conversely, assume that there is a C**-map 77 such that the condition (3.1)

and, instead of (3.2), the condition

(3.3.) (Vw £ Xo)(vD £ p\ D[v,v] £ intQo
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are satisfied. Then there is a function A : X —> R such that F is Q-invex at xo in a

neighbourhood of xo , with respect to the map T/I(-) = »/(•) + A(-)T;.

PROOF:

1. Sufficiency. Consider the map P ( ) = d2F() - F'd2J](). Since P = P(x0) and
since condition (3.3) holds, by Lemma 2.1 there is 7 > 0 such that

(3.4) (Vv e X0){\/x £ B{xo,7)) (VA G P(z)) 4[«,«] G int Qo-

Let us fix v € 5(0,7). By the second order Taylor expansion theorem we have

(3.5) fi(x0 +v)- fi(x0) = f'{xo)v + 2-1M<ht,]

where M, is a suitable element of d2fi(x0 + Oiv) (0 < 0i < 1). Denoting by M the
element of Ek with components M* we can write

(3.6) F(x0 +v)- F(x0) = F'v + 2~1M[v,v).

This equality together with (3.1) yields

(3.7) F{x0 +v)- F{x0) = F'jv + 2~1M[v,v] + q

where q is some point of Qo •
On the other hand, applying the second order Taylor expansion theorem to rj(-)

gives

o

(3.8) TJ'V = 77(30 +v)- T/(a;o) - 2~1N[v,v]

where N is an element of En with suitable components Ni G d2rn(x0 + fcv) (0 < /3» < 1).
Therefore, (3.7) can be rewritten as

F{x0 +v)- F(x0) - F'(r,{x0 +v)~ 77(30)) = q + 2"1 (M - F'N\ [V,V]

(3.9) G

since

that

(3.4) implies that ( M - F'N j[v,v] e intQ0. Using (3.9) we can easily verify

F(x0 +v)- F(x0) - ^'^(xo + v) - 77(20)] G cone (Q + F'rjj,
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that is, for some A — A(v) > 0, we have

o ^ o

F(x0 +v)- F(x0) - F'[q[x0 +v)- T)(z0)} - AJF1'̂  G Q,

that is
o

F(x0 +v)- F(x0) e F'TJ^XO + v) + Q

with J7i(xo + v) = 7/(a;o + v) + XTJ where (A = A — 1). This shows that F is Q-invex at
xo in B(xo,f), with respect to rji.

2. Necessity. By assumption we have, for v sufficiently small,

(3.10) F(x0 +v)- F(x0) - F'T)(X0 +V)£Q.

Using (3.6) and (3.8) we derive from (3.10)

(3.11) F' (i - v ' \ + 2'1 (M - F'N\ [V,V] EQ + F'^C QO.

For fixed v £ Xo, taking a sequence aj | 0, applying (3.11) to v = ajiJ and dividing
by aj , we get

(3.12) F1 (i - v ' V + 2"1ai (lAj - F'N^j [v,v] E <xJlQ0 C Qo

where Mj is an element of Ek whose ith component is a n x n-matrix M{j G
d2fi(x0 + Ojidjv) (0 < Oji < 1), and similarly for Nj. Letting j —> oo in (3.12) and
noting the local boundedness property of generalised Hessian matrices (see Section 2),
we obtain (3.1) for v = v. The first property of Theorem 3.1 is thus proved.

Now we rewrite (3.12) as

(3.13) (MJ - F'N^j [v,v] G 2a;1 (Q0 + F' (i - i /V- io ) G 2«r1(C?o + Qo) C Qo,

using (3.1) with v — —v. Based on the second and third properties of generalised
Hessian matrices (see Section 2), we may assume (by taking subsequences if necessary)

that the sequences Mj and Nj converge to some elements M and N belonging to d2F
o o

and d2t], respectively. To complete the proof of (3.2) with v — v and D = M — F'N,
it remains to let j —» oo in (3.13) and to observe the closedness of Qo. U

REMARK 3.1. If r\ = 0 then the conclusion of the sufficiency part of Theorem 3.1
means that F is Q-invex at XQ in a neighbourhood of Xo with respect to the same t]
for which conditions (3.1) and (3.3) are satisfied. Example 4.3 of Section 4 shows that,
for the case rj ^ 0, this conclusion fails to hold (that is, F can be Q-invex with respect
to T7i(-) = t)(-) + A(-)TJ, but cannot be Q-invex with respect to 77).
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REMARK 3.2. Theorem 3.1 includes as a special case Theorem 2 in [2] where Craven

assumes that Q is a closed convex cone with Q (~\ (—Q) = {0}, F and 77 are twice

continuously differentiable, and 77(10) = 0, ^'(so) = I •

REMARK 3.3. The requirement of the existence of a C**-map 77 satisfying the assump-
tions of Theorem 3.1 is a difficult matter. On the other hand, in the definition of
Q-invexity of F, the map 77 is not required to be differentiable . In fact, we know
from [3] that even the continuity property of 77 is not used for proving the converse
Kuhn-Tucker condition and the Wolfe duality in mathematical programming . It is then
natural to ask whether we can find invexity conditions without assuming continuity or
differentiability properties of 77. Before giving such a condition, we set

(314) Qi = {y£Q+--h\\ = hF'Ty = o}.

Q:={y:y = F'x+q,xeX, q £ Q}.

THEOREM 3 . 2 .

1. If F is Q-invex at xo in a neighbourhood of XQ (with respect to some 77) then

(3.15) (Vt> £ Xo)(3M 6 d2F ) inf yM[v,v] ^ 0.

2. Conversely, if

(3.16) (Vw £ X0)fvM 6 82F) inf yM[v,v] > 0
\ / y€Qi

then F is Q-invex at xo in a neighbourhood of xo (with respect to some TJ).

PROOF:

1. Sufficiency. It follows from (3.16) that there exists 7 > 0 such that

(3.17) (V«eX0)(Vze5(z0,7))(VMed2.F(z)) M[v,v]eV.

Indeed, otherwise there are sequences 7; J. 0, Vi € Xo, X{ —» Xo, Mi G d2F(x{) such
that Mi[ui,i;i] ^ F. Since F is a cone we derive from this condition that M,[ui,u,-] ^ F
where Uj = V{ ||-u,|| . In view of the separation theorem we can find t/j G Y, ||j/i|| = 1,
such that

(3.18) ViMi[ui,ui) < 0 < (yi,y) Vy £ T.

The second inequality in (3.18) implies that y, 6 Qi. Taking subsequences if necessary,
we may assume that sequences Ui,M{ and i/j converge to some elements u £ XQ, M £
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o

d F and y € Qi, respectively. Hence, by letting i —» oo in the first inequality in (3.18)
we obtain j/M[v,w] ^ 0, a contradiction to (3.16).

We now claim that F is Q-invex at x0 in B(xQ,j). Indeed, for every v G 5 ( 0 , 7 ) ,
consider (3.6). Using (3.17) we derive from (3.6) that

F{x0 +v)- F(x0) e F'v + F'{X) + Q = F'(X) + Q,

showing the Q-invexity of F at xo .

2. Necessity. By invexity, for v sufficiently small, F(x0 + v) — F(x0) G F. This
condition together with (3.6) yields

M[v,v] G 2(r - F'v\ = 2[F'{X) + Q + F'(-v)]

(3.19) 6 2[F'{X - v) + Q] = F'(X) + Q = T.

For fixed v G X, take a sequence a; J. 0. Applying (3.19) to v = aiv and using an
argument similar to that given in the proof of Theorem 3.2, we can show that there is

M € d2F such that M[v,v] G F. Since y G Qi implies that y G F + we conclude that
yM[v,v] ^ 0 for all y G Q\. This completes the proof of the necesssity part of the
theorem. D

REMARK 3.4. Condition (3.16) may be satisfied while condition (3.3) of Theorem 3.1
fails to hold for any C^-map t] (see Example 4.4 of Section 4).

COROLLARY 3 . 1 . Assume that there are N G En and £ G X such that

(3.20) (Vv£Xo)(yMed2F) (M-F'N\[v,v]e

Then F is Q-invex at XQ in a neighbourhood of xo, with respect to some r\.

PROOF: Since cone(Q + F'n C F, (3.20) implies that (M - F'N J [v,v] G

i n t F . Hence, for any y G (F) with \\y\\ = 1, we have

(3.21) yM[v,v] - y(F'Nj[v,v] = V(M - F'Nj[v,v] > 0.

On the other hand, we verify easily that

{y€(T)+:\\y\\=l} = Qi.

So, using (3.21) and (2.2) we obtain (3.16), and the corollary follows now from Theorem
3.2. D
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REMARK 3.5. When comparing sufficiency conditions given by Theorem 3.1 and Corol-
lary 3.1 we see that, if we are not interested in the form of the map with respect to which
F is Q-invex, then the sufficiency part of Theorem 3.1 can be weakened, assuming that

(3N G tfv) (Vw G Xo) f VM € ^f) ( M - F ' N \ [v,v]e int Qo -

4. EXAMPLES

Some examples will be given to illustrate the results of the previous section. Ob-
serve from the first example that sufficient condition (3.3) of Theorem 3.1 (respectively,
sufficient condition (3.16) of Theorem 3.2) cannot be replaced by

(4.1) (\/v G X0)(3D G P) D[v,v)e intQo,

(4.2) (respectively (Vv £ Xo)( 3M G d2 F) inf yM[v,v] > 0).

The second example shows that necessary condition (3.2) of Theorem 3.1 (respectively,

necessary condition (3.15) of Theorem 3.2) cannot be replaced by

(4.3) (Vv e X0)(vD e p\ D[v,v]eQ0,

(4.4) (respectively ( V v G X o ) ( V M G 9 2 F ) inf yM[v,v] ^ 0).
\ / y€Qi

In examples 4.1-4.3 we shall assume that X = Y = R (the real line), Q = R+ (the
nonnegative half-line), xo = 0 and F = f is a real-valued function.

EXAMPLE 4.1. Let

J 2~1aa;2 if x > 0,
/ ( X ) = { 2'1/3x2 if x < 0

where a,/3 are real parameters such that /? ^ a. Obviously, / is a C^-function and
o

d2f — {7 : /3 ^ 7 ^ a } . We shall set TJ(X) — x. The /2+-invexity property of /
depends on the choice of (3 and a. Indeed,

• If /? > 0, then / is i?+-invex, using the sufficient condition of Theorem
3.1 or Theorem 3.2.

• If a < 0, then / is not iL|--invex since the necessary condition of Theorem
3.1 or Theorem 3.2 is violated.

• If /? < 0 and a > 0, then (4.1) and (4.2) are satisfied with M — 7 €
(0,a), but / is not i?-|.-invex.
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EXAMPLE 4.2. [5] Let

/ (x) = / " V{t)dt
Jo

where

f{t) =

It was shown in [5] that xo = 0 is a local minimum of / and d2 f = [—1,+1]. Hence
/ is R+-invex in a neighbourhood of xo with respect to T;(X) Z= 0, but (4.3) and (4.4)
cannot be satisfied.

EXAMPLE 4.3. Let f(x) = 2 - 1x2 + sins and T](x) = 4~1x2 + sinx + cosx. A simple

calculation yields / = 0, / ' = 1, d2f = /"(0) = {1}; ^ = 1, i/ = 1, d2?) = tj"(O) =
{—2~1}. Hence, 77 = 1 ^ 0, and conditions (3.1) and (3.3) of Theorem 3.1 are satisfied.
But F cannot be Q-invex at xo in a neighbourhood of xo, with respect to 77. Indeed,
otherwise we must have / (x) ŝ v(x)> that is cosx ^ 4~1x2 for all x near xo = 0.
Of course, this condition is impossible. Observe that by using 771(1) = 77(1) — cosx
instead of 77 we can verify that / is iZ+-invex at xo in a neighbourhood of xo with
respect to 771 (that is, the conclusion of the sufficiency part of Theorem 3.1 holds for
A(x) = — cos x).

EXAMPLE 4.4. Let X = R, Y = R2, Q = {y = (3/1,1/2) : 2/2 = 0,t/i ^ 0}, x0 = 0 and

F = ( / l j / j ) where / i(x) = x, /2(x) = x2 . Since int QQ — int Q is empty, assumption
(3.3) of Theorem 3.1 cannot be satisfied for any C^-map 77. But sufficient condition

(3.16) of Theorem 3.2 holds. Indeed, in our case d2F = F"(x0), Qi consists of the
unique element y = (0,1) G R2 and a simple calculation gives yF"(xo)[v,v] = 2v2

which is positive for all v ^ 0.

5. OTHER SUFFICIENT INVEXITY CRITERIA

This section gives some invexity criteria which are closely related to those of Jeyaku-
mar [6] and Hanson-Rueda [4]. We say that F is Q-invex at xo in a set V C X with
respect to 77, if (1.1) holds for any x 6 V. Obviously, Q-invexity in a neighbourhood
of xo corresponds to the case V — B(xo,y) for some 7 > 0.

For 6 = (0i,62,...,0k) £ Rh we set

d2F(x0 + 8v) = d2h(x0 + Oiv) x 92/2(x0 + 02v) x . . . x d2 fk{x0 + 0kv)

and we write 0 ^ 0 ^ 1 if 0 ^ 0; ^ 1 for all i.
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THEOREM 5 . 1 . Let V be a subset of X. Assume that either Qx - 0 or the
following two conditions are fulfilled:

o
1. r := F'(X) + Q is a closed cone.
2. There is a multifunction G : V - • Y = Rk such that

(5.1) {Vv e V){Vy £ G(v)) m{<y.y»0.
v£Qi

(5.2) (V«6F)(V0^fl<l)(VM6 52F(x0 + ̂ )) M[v,v) c G(v) + Q.

Then F is Q-invex at XQ in the set xo + V (with respect to some r)).

PROOF: If Qi — 0 then T = Y and the invexity property is obvious. Consider
now the second case. Using a separation theorem and noting the closedness of F we

o
can derive from (5.1) that G(v) C F'(X) + Q. Combining this inclusion with (3.6) and
(5.2) yields

F(x0 +v)- F(x0) £ F'v + 2 - 1 [G(v) + Q]

G F'v + F"X + Q = F'(X) + Q,

showing the Q-invexity of F, as desired. u

Theorem 5.1 can be extended to differentiable map F which may not be of the

C»-dass:

THEOREM 5 . 2 . Let V be a subset of X and F : X -> Y be an arbitrary
differentiable map. Assume that either Q\ = 0 or the following two conditions are
fulfilled:

1. F is a closed cone.

2. There is a multifunction G : V —> Y = Rk such that the condition (5.1)

and, instead of (5.2), the condition

(5.3) (V«eV) F{xo+v)-F(xo)eF'(X) + G{v) + Q

are satisfied.

Then F is Q-invex at x0 in the set x0 + V (with respect to some 7}).

The proof is similar to that of Theorem 5.1.

REMARK 5.1. Let us write Y = Rk = Rx -R*"1, let "pr" denote the projection of Y
on Rk~l and let

Q2 = {y = {yi,y2,...,ykf e Q + : |yi| = l , F'Ty = 0}.
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If

(5.4) prT = i?*-1

then it can be verified that

[y = (yuV2, • • -,yk)T ^ o , y e Q+, FlT
y = o] ^ yi ^ o.

From this we can deduce that

Q2 = 0,
inf (y,y) > 0 <t=> inf (y,y) > 0.
€Q »€Q

Hence, under assumption (5.4) the cone Qi appearing in the formulation of Theorems

5.1 and 5.2 can be replaced by Qi. (Similarly, under this assumption the cone Q\ in

(3.15) and (3.16) can be replaced by C^)-

Observe that (5.4) holds if

(5.5) /ifao)) /3(*o)j • • • > f'k(xo) are linearly independent.

Moreover, if Q = R\. and Q2 ̂  0 then (5.5) implies that Q2 is a singleton.

REMARK 5.2. In [6] a generalised version of invex functions, called />-invexity, was
introduced. In our notation, the map F is called p-invex at xo in a set xo + V (V C X)

if

(5.6) (Vv G V)(3a{v) G X) F(x0+v) - F(x0) £ F'{X) + p\\a{v)\\2 + Q

where Q — i?+ is the nonnegative orthant of Rk and p — (pi,p2,. • • ,Pk) is a given
vector of Y — Rk. We shall show that the />-invexity of F at xg in the set xo + V
implies the ii^-invexity of F provided that assumption (5.5) and the inequality

(5.7) (y,p)>o (yeQ2)

hold. Indeed, setting G(y) — p||a(u)|| and taking account of Remark 5.1, we find
that the second assumption of Theorem 5.2 is satisfied. The first one follows from
[8, Theorem 20.3]. The desired conclusion is now a direct consequence of Theorem
5.2. Observe that condition (5.7) must be assumed to be valid when Jeyakumar [6]
establishes the Wolfe duality theorem with p-invex data.
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REMARK 5.3. In [4] Hanson and Rueda give a sufficient condition for the R+ -invexity
of a C2-map F, assuming that (5.5) holds, (5.6) is satisfied with

(5.8) a(V) = ( l , 0 , . . . , 0 ) T € X ,

and

k

(5.9) Pi-X>/l(3o)£.^O

where pi is a lower bound of 2~1/"(x0 + fiv)[v,v] (£ 6 [0,1],v e V) and ^ £ I is a
point such that

(5.10) fiixo)£j = Sij (the Kronecker symbol).

As remarked above, if Q2 ^ 0 then Q2 is a singleton denoted by y = (j/i»J/2 > • - • »y*)
with 3 / 1 = 1 . From (5.10) and condition y (=. Q2 it can be seen that — f[{xo){£j) = Vj

for j = 2 , 3 , . . . , k. Hence, condition (5.9) introduced in [4] coincides with (5.7) and the
sufficient condition for .R+-invexity given in [4] is also a direct consequence of Theorem
5.2.

Observe that, unlike [4], Theorems 5.1 and 5.2 can be used without assuming the
linear independence of /,'(s5o) (* = 2 , 3 , . . . , k).

EXAMPLE 5.1. Let X = Y = R3, Q = R3
+, V = 5(0,1) and x0 = 0. For

x = (x i ,x 2 ,xs ) 6 R3 we define .F(s;) = {x\,x\+x\,x\+x\ +x\) . In our case,

condition (5.5) fails to hold and, therefore, the above result of Hanson-Rueda does not

apply. But the R3^-invexity of JP at xo — 0 in 5(0,1) can be deduced from Theorem

5.1 or 5.2 since all assumptions of these theorems are satisfied, with G(v) = (0,0,0) .
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