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1. Introduction. In the present note we shall study 
some propert ies of the Mathieu groups. 

We shall give an invariant character isat ion of the 2-Sylow 
subgroups. The 2-Sylow subgroup of M is the holomorph of 

the elementary abelian group of type ( 1 , 1 , 1 , 1 ) , and for the 
2-Sylow subgroups of the other Mathieu groups there a re 
s imi lar charac ter i sa t ions . 

As was already known to Frobenius [4], M is a sub­

group of M . One can easily show that M (JL M . This 

seems not to be in the l i te ra ture ; however it is a consequence 
of known theorems as was pointed out by the referee . 

Coxeter [2] has given a representat ion of M as a 

ma t r ix group of degree 6 over the Galois field of three e lements . 
This representat ion bases upon a certain configuration in the 
five dimensional projective space over the Galois field GF(3). 
We shall show that Coxeter r s configuration also leads to a 
representat ion of degree 10. 

For the groups M, and M._ an abs t rac t definition is 
11 12 

due to Coxeter and Moser [31 and Moser f7l. For M we 

shall give a slightly different system of defining rela t ions . 
Then we shall establish an abst ract definition for M^ . This 

22 
definition uses a set of defining relat ions for LF(3,4) which is 
a subgroup of M of index 22. 
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This paper is partly an outgrowth of an examination paper 
of one of the authors . The examination paper was writ ten under 
Professor H. J . Kanold. 

2. 2-Sylow subgroups. Generators for the multiply 
t ransi t ive groups we are concerned with have been given by 
Mathieu [6] and quoted by Carmichael [1]. In the following, 
we shall give a character isa t ion for the 2-Sylow subgroups 
of the Mathieu groups. 

The quintuply t ransi t ive group M of degree 12 and 

order 8- 9' 10* 11- 12 = 95040 is generated by the permutat ions 

S = (1 2 3 4 5 6 7 8 9 10 11) , 

T = (3 7 11 8) (4 10 5 6) , 

and U = (1 12) (2 11) (3 6) (4 8) (5 9) (7 10) 

[6, p. 35; 1, p. 151]. S and T generate the subgroup M of 

order 8* 9" 10* 11 = 7920, which leaves fixed the symbol 12. 
The two permutat ions 

V = STS 2 T 2 = (1 5 10 6 2 9 8 3) (4 7) 

and W = (S" 4 TS 3 T 2 ) 2 = (1 8) (2 10) (3 6) (4 7) 

generate a 2-Sylow subgroup S of M . S is defined by 
2 11 2 

8 2 3 
V = W = E , WVW = V . 

This group is <-2 , 4 | 2> in Coxeter ' s notation [3, pp. 9, 74, 134]. 
8 

The relation V = E is redundant. The 2-Sylow subgroup of 
M is the group of order 16 which contains a cyclic subgroup 
of index 2 and whose automorphism group induces the t r iv ia l 
automorphism on its commutator factor group. 

The 2-Sylow subgroup of M is given by the genera tors 

V, W and Z = S T~ S" T SUS~ TS~2 = (1 3 10 9 2 6 8 5) (4 12 7 11) 
and the defining relat ions 

202 

https://doi.org/10.4153/CMB-1964-018-3 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1964-018-3


W2 = (WZ)2 = (VZ)2 = E , 

4 4 3 2 2 
V = Z , WVW = V , V ZV = Z . 

The group contains an abelian normal subgroup of type (2,2) 
and the factor group of type (1,1) acts as a group of automor­
phisms upon the normal subgroup. 

We now proceed to the quintuply transit ive group M 

of degree 24 and order 48-20 '21-22-23-24 = 244823040 
generated by the permutations 

A = (1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23) , 

B = (3 17 10 7 9) (4 13 14 19 5) (8 18 11 12 23) (15 20 22 21 16) , 

C = (1 24) (2 23) (3 12) (4 16) (5 18) (6 10) (7 20) (8 14) (9 21) 
(11 17)(13 22)(15 19) 

[6, p. 41-42; 1, p. 164]. A and B generate the quadruply 
t ransi t ive subgroup M of index 24. 

Finally, 

X = (2 5 8 22 4 14 18) (6 17 21 20 10 16 13) (7 9 12 11 15 23 19) 

and 

Y = (3 22 11 12 4) (5 18 20 15 8) (6 7 19 23 21) (9 13 16 10 14) 

a re generators for the Mathieu group M of order 

48- 20- 21- 22 = 443520. X and Y yield just the subgroup of 
{A, B} = M which leaves fixed the symbol 1 . It is possible 

to express X and Y by A and B, but we do not need these 
expressions here . 

The 2-Sylow subgroup of M is generated by the 

permutations 

-1 4 «1 - 1 
K = (X Y) YXY X 
= (2 12 20 9 13 7 17 10) (3 23 19 14 5 16 18 15) (4 22) (6 21 11 8), 
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3 2 3 
M = (YX Y ) 

= (2 12) (3 17) (5 20) (7 13) (9 15) (10 14) (16 19) (18 23) , 

- 1 4 
N = (YX Y) 

= (2 13) (6 21) (7 18) (8 11) (12 19) (14 20) (15 17) (16 23) 

and the defining r e l a t i o n s 

8 2 2 4 4 2 - 1 2 
K = M = N = (MK) = (MK ) = (MK MK) = E , 

2 2 2 
NMN = K MK , NKN = MKMK . 

It c o n t a i n s an a b e l i a n n o r m a l s u b g r o u p of type ( 1 , 1 , 1 , 1 ) . The 
f a c t o r g roup is d i h e d r a l . Take a l l a u t o m o r p h i s m s of ( 1 , 1 , 1 , 1 ) 
wh ich l e ave an e l e m e n t 4 E f ixed. C o n s i d e r the sp l i t t ing 
e x t e n s i o n of ( 1 , 1 , 1 , 1 ) wi th th i s g r o u p of a u t o m o r p h i s m s . 
The 2-Sylow s u b g r o u p of M is the 2-Sylow s u b g r o u p of 

t h i s e x t e n s i o n . 

L a s t we c o n s i d e r the 2-Sylow s u b g r o u p of M 
24 

and 

2 - 3 - 2 - 1 2 - 3 2 
L = (XY X ) ACA (XY X ) 

p = ( Y " V Y 2 X " 1 ) " 1 - C A " 9 C A " 9 C - Y " 1 X 3 Y 2 X " 1 

l ead us to 

Q = L P L = (1 8 24 21) (2 19 23 12) (3 17 10 15) (4 11 22 6) 
(5 20 9 14) (7 13 18 16) . 

10 
The 2-Sylow s u b g r o u p of o r d e r 2 = 1024 i s def ined by 

, , 8 2 2 4 4 4 2 2 
K = M = N = Q = (MK) = (QK) = (Q N) = E , 

2 2 2 2 2 
NMN = K MK , NKN = MKMK , KQ = Q K, 

DK QK~ = E , Q " 4 M Q = K ~ 2 M K 2 , Q M Q " 1 = K ^ R 2 , 

(QNK" 1 ) = E . 
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The 2-Sylow subgroup again contains an abelian normal subgroup 
of type (1, 1, 1, 1). The factor group is the 2-Sylow subgroup of 
LF(4,2) ~ 0\ . The 2-Sylow subgroup is the 2-Sylow subgroup 

8 
of the splitting extension of (1 , 1, 1, 1) with its group of automor­
phisms LF(4,2) , i . e . the holomorph of (1 , 1, 1, 1). 

3. Subgroup theorem. It is due to Frobenius [4], that 
M is a subgroup of M . In fact, one can divide the 24 

le t te rs of M into two se ts , each containing 12 l e t t e r s , such 

that M consists of all those permutations of M , which 
12 24 

leave unchanged the two sets (Cf. [9]). Since the order of Mlâ 

11 
divides the order of M . it could be possible that M is a 

22 r 11 

subgroup of M . The 2-Sylow subgroup of M is contained 

in the 2-Sylow subgroup of M . But in the following we shall show Mii (£ M2 2 . 

Assume that the representat ion of M . on 22 le t te rs is 
11 

imprimit ive. Then there must be two sets of imprimitivity, 
each containing 11 l e t t e r s . An element of order 8 in M would 

11 
leave at least two le t ters fixed. But all elements of order 8 in 
1V[ leave no let ter fixed. So the representat ion of MÉ I on 

22 r 11 
22 le t te rs must be primit ive. Hence the subgroup of MJ ., 

11 which leaves one let ter fixed, must be maximal . It is of order 
3 2 

2 . 3 . 5 = 360. But there ii 
in M , , . Hence M, , (T Mn 11 1 1 ^ 2 

3 2 
2 . 3 . 5 = 360. But there is no maximal subgroup of this order 

22 

If M, . C M_ . , then M, J must be transi t ive on 23 le t te rs 
11 23 11 

which is impossible. So we have 

THEOREM: M is not a subgroup of M . 

This completely sett les the problem of how the Mathieu groups 
a re contained in each other (see fig. IK 
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M 
24 

à M 23 

à M 
22 

M 12 

ô M 11 

Fig. 1 
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Remark: As the referee kindly pointed out, the fact that 
M (f M * s also an immediate consequence of two known 

theorems: 

a) Every multiply transitive group is a primitive group [1, p. 160]. 

b) Netto' s Theorem. If a transitive group of degree n contains 
a circular permutation of prime order q < -— n, then the 

group is either non-primitive or it contains the alternating 
group A . (E. Netto, The Theory of Substitutions, tr 

n 
F.N. Cole, Ann Arbor, 1892.) 

4. Matrix representations of M . Coxeter \2] has 
~ 12 L J 

given a matrix representation of M of degree 6 over the 
12 

Galois field of 3 elements. It consists of all collineations 
which leave fixed a certain configuration of 12 points in 
PG(5,3), namely 

1 
2 
3 
4 
5 

12 

(1, 0, 0, 0, 0, 0) 
(0, 1, 0, 0, 0, 0) 
(0, 0, 1, 0, 0, 0) 
(0, 0, 0, 1, 0, 0) 
(0, 0, 0, 0, 1, 0) 
(0, 0, 0, 0, 0, 1) 

7 
8 
9 

10 
11 

6 

( 0, 1, - 1 , - 1 , 1, 1) 
( 1, 0, 1, - 1 , - 1 , 1) 
(-1, 1, 0, 1, - 1 , 1) 
(-1, - 1 , 1, 0, 1, 1) 
( 1, - 1 , - 1 , 1, 0, 1) 
(-1, - 1 , - 1 , - 1 , - 1 , 0) 

We would like to remark that Coxeterf s configuration 
also leads to a representation of degree 10 over GF(3). 

Consider all qua dries which contain the twelve points 
of Coxeterr s configuration. A simple calculation yields that 
there are precisely 10 such quadrics, namely 

Q l : X 1 X 2 " X 3 X 5 + X 4 X 6 = ° 

Q2 : X 1 X 3 " X 2 X 6 • X 4 X 5 = ° 

Q 3 = X1X4 " X2X3 " X5X6 = ° 

4 1 5 2 4 3 6 
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Q : x x , - x x + x x = 0 
5 1 6 2 5 3 4 

Q, : x x + x x -f x x - x x , = 0 
6 2 3 2 5 3 4 5 6 

CL : x xo - x x - x x . - x x = 0 
7 2 3 2 4 3 6 5 6 

Ç) : x x o + x x . - x x , . - x x , = 0 
8 2 3 2 6 4 5 5 6 

Q 9 : X2X3 " X3X5 " X4X6 " V ô = ° 

Q10 : X2X3 + X3X4 + X3X6 + X4X5 + X
4

X 6 

A co l l i nea t i on of PG(5 , 3) l eav ing i n v a r i a n t Coxeter* s 
conf igu ra t ion a l s o i nduces a co l l i nea t ion of the s p a c e E G ( 1 0 , 3 ) 
spanned by the q u a d r i c s . 

The following invo lu t ions A, B , C g e n e r a t e M__, a s 
12 

can be s e e n by o b s e r v i n g tha t { A , B , C} c o n t a i n s the Sylow 
s u b g r o u p s of M . 

A = ( 1 7 ) (2 8) (3 9) (4 10) (5 11) (6 12) , 

B = (1 12) (2 9) (3 11) (4 8) (5 10) (6,7) , 

C = (1 8) (2 12) (3 4) (5 9) (6 7) (10 11) . 

The c o r r e s p o n d i n g m a t r i c e s of Coxete r T s r e p r e s e n t a t i o n a r e 

A = 

0 1 - 1 
1 0 1 
1 1 0 
1 - 1 1 
1 - 1 - 1 
1 1 1 

c 

- 1 
- 1 

1 
0 
1 
1 

= 

1 
- 1 
- 1 

1 
0 
1 

i~ 
1 
1 
1 
1 
0 

1 
0 
1 

- 1 
- 1 

1 

s 

0 
0 
0 
0 
0 

- 1 

B = 

0 0 - 1 0 
0 0 1 1 
0 1 0 0 

- 1 0 1 0 
0 0 - 1 0 
0 0 1 0 

0 - 1 1 1 - 1 - 1 
0 1 - 1 0 - 1 0 
0 0 - 1 1 1 0 
0 1 1 - 1 0 0 
0 - 1 0 - 1 1 0 
1 1 1 1 1 0 
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These mat r ices induce the following collineations in the space 
of quadrics: 

A = 

0 
1 
1 
1 
1 
0 
1 
1 
1 

1 
0 

- 1 
1 
1 
1 
0 

- 1 
1 

1 
- 1 

0 
1 
1 

- 1 
- 1 

1 
1 

- 1 
1 
1 
0 

- 1 
1 

- 1 
1 
0 

- 1 
1 
1 

- 1 
0 

- 1 
1 
0 
1 

0 
0 
0 
0 
0 

- 1 
0 
0 
0 

0 
0 
0 
0 
0 
0 

- 1 
0 
0 

0 
0 
0 
0 
0 
0 
0 

- 1 
0 

0 
0 
0 
0 
0 
0 
0 
0 

- 1 

0 
0 
0 
0 
0 
0 
0 
0 
0 

• 1 - 1 - 1 - 1 0 0 0 0 0 - 1 

B = 

1 1 - 1 0 0 
1 
1 
0 
1 
1 
1 
1 
0 
1 

1 
0 

- 1 
1 
0 
1 

- 1 
- 1 

0 

0 
1 
1 
1 
1 
0 
1 

- 1 
0 

1 
- 1 

1 
- 1 
- 1 

1 
1 

- 1 
1 

0 
0 
0 

- 1 
0 
0 
0 
0 
0 

1 
1 

- 1 
- 1 

1 
1 
0 
1 

- 1 

1 
1 
0 

- 1 
1 

- 1 
1 
0 

- 1 

1 
- 1 

0 
0 
0 
1 

- 1 
- 1 

0 

1 
1 
1 

- 1 
0 

- 1 
- 1 

1 
- 1 

1 
1 

- 1 
- 1 
- 1 

1 
0 
1 
1 

c = 

1 - 1 1 - 1 1 0 1 - 1 0 - 1 
0 - 1 1 1 - 1 0 - 1 0 1 1 

- 1 - 1 0 0 - 1 1 0 - 1 0 0 
- 1 0 1 - 1 1 1 - 1 0 0 1 
- 1 - 1 - 1 - 1 1 - 1 1 - 1 1 - 1 
- 1 - 1 - 1 0 0 - 1 0 - 1 1 0 

0 0 - 1 0 - 1 1 - 1 0 - 1 0 
- 1 - 1 0 1 - 1 0 - 1 1 - 1 1 
1 1 1 1 1 1 - 1 1 1 1 

0 - 1 0 0 1 0 1 - 1 0 1 
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5. Defining Re l a t i ons for M , M and M . A b s t r a c t 

def in i t ions for M and M w e r e given by C o x e t e r and 
11 12 

M o s e r [3] and M o s e r [7] r e s p e c t i v e l y . We wi l l now e s t a b l i s h 
a n o t h e r a b s t r a c t def ini t ion for M J A and M . 

11 12 

Us ing the g e n e r a t o r s f r o m s e c . 2, M is defined by 

11 4 2 3 4 2 - 5 2 2 
S = T = (ST ) = (S T S T ) = E , 

- 4 - 1 3 -i - 2 - 5 2 2 3 - 1 -4 
(S T ) = S TS T , S T S T = (S T ST) . 

It i s e a s y to ve r i fy th i s by the T o d d - C o x e t e r e n u m e r a t i o n 
m e t h o d , e n u m e r a t i n g the c o s e t s of L.F(2, 11) in M S and 

2 . n 

R = T sa t i s fy M i l l e r 1 s s y s t e m of defining r e l a t i o n s for 
LF(2 f 11): 

11 2 3 4 - 5 2 
S = R = (SR) = ( S R S R) = E 

[3 , p . 139] . 

F o r the Ma th i eu g r o u p M we give the fol lowing se t of 

def ining r e l a t i o n s ; 

11 4 2 2 3 4 2 - 5 2 2 
S = T = U = (ST ) M S T S T ) = E , 

( S " d U T ) 3 = (SU) 3 = E , 

- 4 - 1 3 - 1 - 2 - 5 2 2 3 - 1 - A 
(S T ) = S TS T , S T S T = (S T ST) , 

- 1 2 2 - 4 2 2 2 
(S TS T) = UTU , (STUS ) = S T UT . 

The proof is by e n u m e r a t i o n of the c o s e t s of M in M 
' 11 12 

- 4 2 2 2 
(We would l ike to r e m a r k , tha t our r e l a t i o n (STUS ) = S T UT 

2 - 1 4 - 1 2 3 2 4 5 
can r e p l a c e the r e l a t i o n US T S U =S T S T S TS in 
M o s e r ' s a b s t r a c t def ini t ion for M J ^ . ) 

12 
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We now proceed to the Mathieu group M . Generators 

for it have been given in sec. 2. As is well known (Cf. [9]), 
LF(3,4) is the subgroup of M which leaves fixed one of 

-1 2 
the 22 l e t t e r s . L,F(3,4) is generated by Y and D = (XY X) 
and defined by 

5 3 4 - 1 - 1 - 1 3 
Y = D = (YD) = (Y DY D YD) = E , 

2 -2 2 - 1 2 - 1 - 1 
DY D-Y -(DY D) -Y = YDY D . 

This is proven by enumeration of the cosets of { Y} in L«F(3,4). 
The enumeration of the 4032 cosets was car r ied out by an 
electronic computer."1"' 

Using this abst ract definition for LF(3, 4), we finally 
obtain a system of defining relations for M : 

7 5 3 2 4 4 1 - 1 - 1 3 
X =Y =D =(XY) =(DY) =(DX) = (Y DY D YD) = E , 

- 1 2 2 -2 2 - 1 2 - 1 - 1 
D = (XY X) , DY D'Y • (DY D) -Y = YDY D 

-2 3 2 - 1 - 2 2 2 2 - 3 2 - 1 2 2 - 1 - 1 - 1 2 
X YX =Y D YDY DY , X Y X YX Y X =Y D YDY D YDY . 
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