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1. Introduction. In the present note we shall study
some properties of the Mathieu groups.

We shall give an invariant characterisation of the 2-Sylow
subgroups. The 2-Sylow subgroup of M24 is the holomorph of

the elementary abelian group of type (1,1,1,1), and for the
2-Sylow subgroups of the other Mathieu groups there are
similar characterisations.

As was already known to Frobenius [4], M12 is a sub-

group of M2 One can easily show that M11 ¢ M23. This

4
seems not to be in the literature; however it is a consequence
of known theorems as was pointed out by the referee.

Coxeter [2] has given a representation of M12 as a

matrix group of degree 6 over the Galois field of three elements.
This representation bases upon a certain configuration in the
five dimensional projective space over the Galois field GF(3).
We shall show that Coxeter's configuration also leads to a
representation of degree 10.

For the groups M11 and M12 an abstract definition is

due to Coxeter and Moser [3] and Moser [7]. For M12 we

shall give a slightly different system of defining relations.

Then we shall establish an abstract definition for MZZ. This

definition uses a set of defining relations for LF(3,4) which is

a subgroup of MZZ of index 22.
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This paper is partly an outgrowth of an examination paper
of one of the authors. The examination paper was written under
Professor H.J. Kanold.

2. 2-Sylow subgroups. Generators for the multiply
transitive groups we are concerned with have been given by
Mathieu [6] and quoted by Carmichael [1]. In the following,
we shall give a characterisation for the 2-Sylow subgroups
of the Mathieu groups.

The quintuply transitive group M of degree 12 and

12
order 8-9-10-141-12 =95040 is generated by the permutations

(12345678910 11),

H
n

(3711 8) (4105 6),
(112) (2 11) (3 6) (4 8) (5 9) (7 10)

and

[6, p-35;1, p.151]. S and T generate the subgroup M'11 of

order 8°9°10°11 =7920, which leaves fixed the symbol 12.
The two permutations

sTs’T? = (1510629 8 3)(47)

V =
-4_.3_22
and W =(S TS T ) =(18)(210)(36)(47)
generate a 2-Sylow subgroup S2 of Mii' S2 is defined by
8 2
vV =W =E, WVw = V3

This group is <-2, 4 | 2> in Coxeter's notation [3, pp. 9,74, 134].

8
The relation V =E is redundant. The 2-Sylow subgroup of
Mi'i is the group of order 16 which contains a cyclic subgroup

of index 2 and whose automorphism group induces the trivial

automorphism on its commutator factor group.

The 2-Sylow subgroup of M12 is given by the generators

2 4 -2.2 -3
V, Wand z =5°T 1™ %1%sUs TS 2 = (1 3109 2 6 8 5) (4 12 7 11)

and the defining relations
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wo = (WZ)2 = (VZ)2 = E,

4 4 3 2 2
v =2z, wWVw =V, vzv = 2Z.

The group contains an abelian normal subgroup of type (2, 2)
and the factor group of type (1,1) acts as a group of automor-
phisms upon the normal subgroup.

We now proceed to the quintuply transitive group M24

of degree 24 and order 48-20-24-22*23-24 =244823040
generated by the permutations

A=(123456789 1011 12 13 14 15 16 17 18 19 20 21 22 23),
B=(3171079) (4 13 14 19 5) (8 18 11 12 23) (15 20 22 21 16) ,

C = (1 24) (2 23) (3 12) (4 16) (5 18) (6 10) (7 20) (8 14) (9 21)
(11 17) (13 22) (15 19)

[6, p.41-42; 1, p.164]. A and B generate the quadruply
transitive subgroup M23 of index 24.

Finally,

X=(2582241418) (6 17 21 20 10 16 13) (7 9 12 11 15 23 19)
and

Y =(322 11 12 4) (5 18 20 15 8) (6 7 19 23 24) (9 13 16 10 14)

are generators for the Mathieu group M22 of order

48-20-21-22 =443520. X and Y yield just the subgroup of

{A, B} = M23 which leaves fixed the symbol 1. It is possible

to express X and Y by A and B, but we do not need these
expressions here.

The 2-Sylow subgroup of M is generated by the

22
permutations

1 -1

K=(X‘1Y)4YXY- X
=(212 20 9 13 7 17 10) (3 23 19 14 5 16 18 15) (4 22} (6 21 11 8),
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2
M =(YX3Y )

=(2 12) (3 17) (5 20) (7 13) (9 15) (10 14) (16 19) (18 23) ,

N =(YX_1Y)4
= (2 13) (6 21) (7 18) (8 11) (12 19) (14 20) (15 17) (16 23)

and the defining relations

8 2 2 4 4.2 -1 2
K =M =N = (MK) = (MK) = (MK MK) = E,

2 2 2
NMN = K MK , NKN = MKMK

It contains an abelian normal subgroup of type (41,1,1,1). The
factor group is dihedral. Take all automorphisms of (1,1,1,1)
which leave an element # E fixed. Consider the splitting
extension of (1,1,1,1) with this group of automorphisms.

The 2-Sylow subgroup of M22 is the 2~Sylow subgroup of

this extension.

Last we consider the 2-Sylow subgroup of MZ4'

2 _-3-2 -1 2 _-32
L = (XY X ) ACA (XY X )

and

3.2 -1

-1 -1 -
P - (v xvixlytca?

9 1 2 -1

- -1 3 -
CA C'Y XY X

lead us to

Q = LPL = (1 824 21) (2 19 23 12) (3 17 10 15) (4 11 22 6)
(520 9 14) (7 13 18 16) .

0
The 2-Sylow subgroup of order 2‘1 =1024 is defined by
8 2 2 4 4 4 2 2
K =M =N =Q = (MK) =(QK) = (Q N) = E,
2.2 2
NMN = K MK , NKN = MKMK , KQ2 =Q2K,
2

-1 -2 2 -1 2 2
=E, Q MQ =K MK, OMQ = K MK ,

D
~
)
@)
=
1
1

o)
Z,
~
1
0

E.
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The 2-Sylow subgroup again contains an abelian normal subgroup
of type (1,1,1,1). The factor group is the 2-Sylow subgroup of
LF(4,2) = 0{8. The 2-Sylow subgroup is the 2-Sylow subgroup

of the splitting extension of (1,1, 1, 1) with its group of automor-
phisms LF(4,2), i.e. the holomorph of (1,1,1,1).

3. Subgroup theorem. It is due to Frobenius [4], that

M12 is a subgroup of M24. In fact, one can divide the 24

letters of M24 into two sets, each containing 12 letters, such

that M12 consists of all those permutations of M24, which

leave unchanged the two sets (Cf.[9]). Since the order of M11

divides the order of M2 it could be possible that M11 is a

2!
subgroup of MZZ' The 2-Sylow subgroup of M“ is contained

in the 2-Sylow subgroup of M But in the following we shall

22°

M__.
show M11 ¢ 22

Assume that the representation of M1‘1 on 22 letters is

imprimitive. Then there must be two sets of imprimitivity,
each containing 11 letters. An element of order 8 in M, would

11
leave at least two letters fixed. But all elements of order 8 in
M22 leave no letter fixed. So the representation of M11 on

22 ]letters must be primitive. Hence the subgroup of Mii'

which leaves one letter fixed, must be maximal. It is of order

23. 32. 5 =360. But there is no maximal subgroup of this order

in M11. Hence M11¢ MZZ'

If M“C M23, then M“ must be transitive on 23 letters

which is impossible. So we have

THEOREM: M“ is not a subgroup of M23.

This completely settles the problem of how the Mathieu groups
are contained in each other (see fig. 1).
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Fig. 1
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Remark: As the referee kindly pointed out, the fact that
M11 q_ M23 is also an immediate consequence of two known

theorems:
a) Every multiply transitive group is a primitive group [1, p. 160].
b) Netto's Theorem. If a transitive group of degree n contains

a circular permutation of prime order q < 3 then the

group is either non-primitive or it contains the alternating
group A . (E. Netto, The Theory of Substitutions, tr
n

F.N. Cole, Ann Arbor, 1892.)

4. Matrix representations of Miz. Coxeter [2] has

of degree 6 over the

given a matrix representation of M12

Galois field of 3 elements. It consists of all collineations
which leave fixed a certain configuration of 12 points in
PG(5, 3), namely

1: (4, 0, 0, 0, 0, 0) 7: (0, 1, -1, -1, 1, 1)
2: (0, 1, 0, 0, 0, 0) 8: (1, 0, 1, -1, -1, 1)
3: (0, 0, 1, 0, 0, 0) 9: (-1, 1, 0, 1, -1, 1)
4: (0, 0, 0, 1, 0, 0) 10: (-1, -1, 1, 0, 1, 1)
5: (0, 0, 0, 0, 1, 0) 11: (1, -1, -1, 1, 0, 1)
12: (0, 0, 0, 0, 0, 1) 6: (-1, -1, -1, -1, -1, 0)

We would like to remark that Coxeter's configuration
also leads to a representation of degree 10 over GF(3).

Consider all quadrics which contain the twelve points
of Coxeter's configuration. A simple calculation yields that
there are precisely 10 such quadrics, namely

01: xixz-x3x5+x4x6 =0
: - - =0

Q, ¢ XXy - XX - XX,

Q3 : xix4 - x2x3 - X5x6 =0

Q @ xx ~-xx +xx, =20

4 15 2 4 36
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: - + =0
Q5 xixé x2x5 x3x4

Qg i XXy 3pxg + xyx, - x.x, =0
Q7 : xzx3 - xzx4 - X3X6 - x5x6 =0
Q8 : x2x3 + x2x6 - x4x5 - x5x6 =0
Q9 : x2x3 - x3x5 - x4x6 - x5X6 =0
Q X x +xXxx +x %X +xx_+xx, =0

10 X2%3 T F3Fy T 3T T X Ty T ¥y %

A collineation of PG(5, 3) leaving invariant Coxeter's
configuration also induces a collineation of the space EG(10, 3)
spanned by the quadrics.

The following involutions A, B, C generate M as

12’
can be seen by observing that { A, B, C} contains the Sylow

b f M _.
subgroups o 12

A = (17)(28)(39)(410) (5 11) (6 12) ,
B = (112)(29) (3 11) (4 8) (5 10) (6,7) ,
C = (18)(212)(34)(59)(67) (10 11) .

The corresponding matrices of Coxeter's representation are

0 1-1-1 1 1 [ 0-1 1 1-1-1
1 0 1-4-1 1 0 1-1 0-1 0
4014 0 1-1 1 0 0-1 1 1 0
A= 14141401 1] B-= 01 1-14 0 0}’
1-4-14 1 0 1 0-1 0-14 1 0
1141410 1141110
L J | J
_ .
1 00 0-14 0
000 0 41 1
c - 1 0014100
-1 0-1 0 1 0
-1 0 0 0-1 0
1-14 0 0 4 0
208
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These matrices induce the following collineations in the space

of quadrics:

01 1-1-14 0 0 0 0 O
1 0-1 1 1 0 0 0 0O

1-1 011 0 0 0 0 O
1 41 0-1 0 0 0 0 O
-1 1 1-14 0 0 0 0 0 O

-1

0 1-1 1-1-14 0 0 0 O

1 0-1 0 0 O

1 1 0 0 0-1
111 01 0 0 0-1 0
-1{-14-14-1 0 0 0 0 0-1

-1 0-1-1

-1 -1

0 0

1-14 0 0-1 1 0 0-1

1
-1 14 0 1 0 1

1 1
01 1-14 1 1

1 0 1-1

1 0-1 0 0 1-4

-1 1 414-14-1-1-14 0-1-1

0-1 1

1 0 0-1

1 0 1-1 0 1

1

1 0 0 1-1-1 0

11 01 0 1-1 1-4
0-1-1-1 0 1 0-14 1 1

1

-1 -1

1

0 01 0-14-4 0-1

1

~ e O OO
' 1

O~ O O ~ « ~ ~ = O

[ |
O O O
| [ [ !
e O O o
1 ] [ I R |
OO0 WM W ~ ~ = O~ O
[

o e O o
[ [
O OO O

| (|
N et O T O O
[ |
~ T O O et
[ B | [ | ] ]
O O O
[ I T B | '
)
]
&)
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5. Defining Relations for M11, M12 and M Abstract

definitions for M‘11 and M12 were given by Coxeter and

Moser [3] and Moser [7] respectively. We will now establish
another abstract definition for M and MiZ'

Using the generators from sec. 2, M is defined by

11
11 4 23 4 2 -5 22
st =1t = (st = (5 T°sT°T)” = E,
-4 13 4 -2 5 22 3 .4 -1
s Y - oslrsTir, s7T7%s%r = (o0 lsr) 7t

It is easy to verify this by the Todd-Coxeter enumeration
method, enumerating the cosets of LF(2, 11) in M

S and
2
R =T satisfy Miller's system of defining relations for
LF(2,11):
11 2 3 4__-5_.2
s" =R" = (SR)” = (SRS R) = E
[3, p-139].

For the Mathieu group M12 we give the following set of

defining relations:

11 4 2 2.3 4 2 -5
S =T =U =(8T) =(STS T)=E,
-1 3 3
(S 'uT)” = (Ssu) = E,
-4 _-13 -1_ -2 -5_2.2 3 -1 .-
(S T)y =s 'TS'T, S TST=(ST ST)i,

-1 2 2 -4 2 2 2
(S TS T) = UTU, (STUS ) =S T UT.

The proof is by enumeration of the cosets of M11 in MiZ'

-4 2 2 2
{We would like to remark, that our relation (STUS ) =S T UT

2
can replace the relation US T 1S4U S 1TZS3T S TS5

Moser's abstract definition for M12°)

in
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We now proceed to the Mathieu group M Generators

22°
for it have been given in sec. 2. As is well known (Cf.[9]),
LF(3,4) is the subgroup of M22 which leaves fixed one of

-1_2
the 22 letters. LF(3,4) is generatedby Y and D =(XY X)
and defined by

5 3 4 -1 -1 -1__.3
Y’ =D =(YD) = (Y DY D YD) =E,
2 -2 2 -1 _2 -1_-1
DY'D-Y “-(DY'D) -Y = YDY D

This is proven by enumeration of the cosets of {Y} in LF(3,4).
The enumeration of the 4032 cosets was carried out by an
electronic computer. +)

Using this abstract definition for LF(3,4), we finally
obtain a system of defining relations for M2

2!
7 .5 3 2 4 4 A -1.-1__3
X' =y =D =(xy)" =(DY) =(DX) =(Y DY D YD) = E,
12 2 -2 2_ -1 .2 -1 -1
D=(XY xX)°, pY DY -(DYD) -Y =YDY D ,
- 2 - 2 2 2.2 .3 .2 4.2 _2 A 2
x2yx=v*plypy?pv? X*vixvx*y Ix%=v*plypy o typyl.
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