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1. Introduction. One of the unsolved problems of plane topology is the 
following: 

Question. What are the homogeneous bounded plane continua? 

A search for the answer has been punctuated by some erroneous results. For 
a history of the problem see (6). 

The following examples of bounded homogeneous plane continua are known : 
a point; a simple closed curve; a pseudo arc (2, 12); and a circle of pseudo 
arcs (6). Are there others? 

The only one of the above examples that contains an arc is a simple closed 
curve. In this paper we show that there are no other such examples. We list 
some previous results that point in this direction. Mazurkiewicz showed (11) 
that the simple closed curve is the only non-degenerate homogeneous bounded 
plane continuum that is locally connected. Cohen showed (8) that the simple 
closed curve is the only homogeneous bounded plane continuum that con­
tains a simple closed curve. Cohen showed (8) that the simple closed curve 
is the only non-degenerate homogeneous bounded plane continuum that is 
arcwise connected. 

In this paper we prove the following theorem: 

THEOREM 1. The simple closed curve is the only homogeneous bounded plane 
continuum that contains an arc. 

Theorem 1 is proved by listing certain properties possessed by any homo­
geneous bounded plane continuum that contains an arc but is not a simple 
closed curve (these properties with their consequences are listed in §§ 2, 3, 5, 
6, and 10) and then showing (Theorem 6) that no homogeneous bounded 
plane continuum could have one of these properties. The proof of Theorem 1 
is completed in § 10. 

In this paper, all sets are assumed to be metric. For the most part we will 
deal with planar sets but since some of the results apply to more general 
metric spaces, we do not suppose that sets discussed are planar unless this 
is stated. We recall some definitions, related results, and related questions. 

A set is homogeneous if for each pair of its points p, a there is a homeomor-
phism of the set onto itself that takes p to a. 

An e collection is a collection each of whose elements is of diameter no more 
than e. 
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An e chain is a finite ordered e collection of open sets du d2, . . . , dn such 
t h a t dt intersects dj if and only if i is adjacent to j . 

A compact cont inuum X is snake-like if for each positive number e, X can 
be covered by an e chain. I t is known (5) t h a t the only non-degenerate 
homogeneous snake-like cont inuum is a pseudo arc. 

I t is convenient to associate with any open covering G a 1-complex C(G), 
called the 1-nerve of G, such t h a t there is a 1 — 1 correspondence between 
the elements of G and the vertices of C(G) and two elements of G intersect 
if and only if the corresponding vertices of C(G) are joined by a 1-simplex 
in C(G). Note t h a t the 1-nerve of an e chain is topologically an arc. 

A compact cont inuum X is tree-like if for each positive number e there is 
an e collection G of open sets covering X such t h a t the 1-nerve of G conta ins 
no simple closed curve. Each 1-dimensional compact plane cont inuum t h a t 
does not separate the plane is tree-like (3). 

Question. Is there a homogeneous tree-like cont inuum t h a t contains an arc? 

Jones has shown (10) t ha t each homogeneous tree-like compact cont inuum 
is indecomposable. Perhaps each is hereditari ly indecomposable. 

A compact cont inuum X is circle-like if it is not snake-like bu t for each 
positive number e there is an e collection G of open sets irreducibly covering 
X such t h a t the 1-nerve of G is topologically a circle. A simple closed curve 
and a circle of pseudo arcs are examples of circle-like homogeneous planar 
continua. Example 2 of (4) is not known to be non-homogeneous. A solenoid 
is an example of a compact homogeneous cont inuum t h a t contains an arc . 
However, the simple closed curve is the only solenoid t h a t is planar. 

A solenoid may be defined as the intersection of a sequence of tori Tu T2l . . . , 
such t h a t Ti+i runs smoothly around inside TtUi t imes longitudinally wi thout 
folding back and Tt has cross diameter of less than l/i. T h e sequence n\, n%, . . . , 
determines the topology of the solenoid. If it is 1, 1, . . . , after some place, 
the solenoid is a circle. If it is 2, 2, . . . , the solenoid is the dyadic solenoid. 

There is no loss of generality in supposing t h a t each integer in the sequence 
nu fi2, . . . , used in defining a solenoid is prime, for if nt is not prime, it may 
be replaced in the sequence by its prime factors. T h e order of the elements 
of the sequence does not affect the topology of the solenoid—that is, if 
mu ÎIÎ2, • . • , is a reordering of nu ^2, . . . , the solenoids determined by the 
sequences are topologically equivalent . Also, the first few terms of the sequence 
does not affect the topology of the solenoid. Hence, solenoids determined by 
the sequences of primes ni1, riz1, . . . , and ni2, n*?, . . . , are topologically 
equivalent if it is possible to remove a finite number of elements from each 
so t h a t each prime greater than 1 occurs the same number of t imes in each 
of the remainders. Perhaps the converse of this is t rue. 

Another way of describing a solenoid is to consider a uni t circle C in the 
plane with centre a t the origin and a sequence of maps fi, / 2 , . . . , of C onto 
itself so t h a t in polar co-ordinates 
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This solenoid is the inverse limit of the circles and the / / s and consists of all 
points pi X p2 X p% X . . . of the Cartesian product C X C X C X . . . such 
that for each i, pt = /*(£*+1). 

We show in Theorem 9 that if a circle-like homogeneous continuum con­
tains an arc, it is a solenoid. Although a solenoid may not be planar, it is 
locally planar. Anderson has shown (1) that the only 1-dimensional locally 
connected continuum that is not locally planar at any point is the Menger 
universal curve. It is homogeneous (1). 

Question. Are solenoids and the Menger universal curve the only homo­
geneous 1-dimensional compact continua that contain arcs?* 

2. Some elementary properties of M. In §§ 2 and 3 we suppose that 
AT is a homogeneous, non-degenerate, bounded plane continuum that contains 
an arc but is not a simple closed curve. Our plan is to list enough of the 
properties of such an assumed M to show that it cannot exist. This section 
lists some elementary properties of M. 

Property 1. M is not locally connected. Mazurkiewicz (11) showed that the 
simple closed curve is the only non-degenerate homogeneous bounded locally 
connected plane continuum. 

Property 2. M is not connected ini kleinen at any point. A set X is connected 
im kleinen at a point x if for each neighbourhood U of x there is a neighbour­
hood N of x such that N-X lies in the component of U-X containing x. If M 
were connected im kleinen at one point, it would follow from the homogeneity 
of X that it is connected im kleinen at every point. Since a continuum is 
locally connected at each point if it is connected im kleinen at each point, 
Property 1 implies Property 2. 

Property 3. M contains an open set U with uncountably many components. 
Property 3 follows from Property 2 and the following theorem. 

THEOREM 2. If a complete metric space fails to be connected im kleinen at 
each point of a dense G§ set, it contains an open set U with uncountably many 
components. 

Proof. Suppose X is a complete metric space that fails to be connected 
im kleinen at each point of a dense G§ set Y and Y is the intersection of the 
open sets Ui, JJi • • • • 

*At the 1959 Summer Meeting of the American Mathematical Society J. H. Case presented 
an abstract announcing another such continuum. 
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Assume that X fails to contain an open set U with uncountably many 
components. Let V± be an open subset of U\ of diameter less than §. It follows 
from the Baire Category Theorem that V\ contains an open subset V2 such 
that 

V2C V1-U2l 

diameter V2 < 1/22, and 
V2 lies in a component of V±. 

Similarly, there is an open set F3 satisfying 

vdc v2>uZl 
diameter Vz < 1/23, 
V% lies in a component of V2. 

If one continues to get V±, F5, . . . , one finds that X is connected im 
kleinen at V\-V2 . . . . This contradicts the fact that Vi-V2 . . . is a point 
of Y. 

Grace (9) has given an example of a compact metric continuum that fails 
to be locally connected anywhere but which contains no open subset with 
uncountably many components. This shows that Theorem 2 cannot be 
weakened by replacing the property of not being connected im kleinen with 
the property of not being locally connected. 

Property 4. M contains no simple triod. A simple triod is the sum of three 
arcs such that the intersection of any two of them is the same point p. lî M 
contained a simple triod, it would follow from the homogeneity of M that 
each component of U of Property 3 would contain a simple triod. This would 
violate the fact that the plane does not contain uncountably many mutually 
exclusive simple triods. See Theorem 4. 

Property 5. M contains no simple closed curve. Cohen showed (8) that if a 
bounded homogeneous plane continuum contains a simple closed curve, it 
is one. 

3. Arc components of M. An arc component of a set X is a subset 
of X maximal with respect to the property that each pair of points of the 
subset belongs to an arc in X. In this section we show that the closure of 
each arc component of the assumed homogeneous bounded plane continuum 
M is homogeneous. In doing this we find it convenient to work with only 
certain parts of the arc components. These parts are called rays and are 
defined as follows. 

Suppose p and q are two points of the same arc component of M. The 
sum of all arcs in M that have p as end point and contain q is called a ray 
starting at p. One may note that this ray differs from an ordinary ray of 
the plane in that it is neither straight nor closed. However, it has a starting 
point and is the image of an ordinary ray under a 1 — 1 continuous trans­
formation. 
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Property 6. Each ray in M is the sum of a countable number of arcs. Let p 
be the s tar t ing point of a ray R and {pt} be a countable dense subset of 
R. Then R is the sum of the arcs ppi, pp2 . . . . If there were a point r of R 
not in any ppu we would consider the arc pr. I t follows from the homogeneity 
of M t h a t r is the interior point of an arc so pr may be extended to an arc 
ps so t h a t r is contained in the interior of ps. Since M contains no simple 
triod, each pt belongs to the arc pr. However, {pi} would not be dense in R 
since no pt is near s. 

Property 7. For each point p of an arc component A of M, A is the sum of two 
rays Ri, R2 starting at p such that Ri-R2 = p. I t follows from the homogeneity 
of M t h a t p is an interior point of an arc ab. I t follows from the fact t h a t 
M contains no simple triod (Property 4) t ha t A is the sum of two rays s tar t ing 
a t p and going through a, b respectively. Since M contains no simple closed 
curve (Property 5), these rays intersect only a t p. 

Property 8. M has uncountably many arc components. If M had only count-
ably many arc components , it would follow from Properties 6 and 7 t h a t M 
is the sum of a countable collection of arcs. I t would then follow from the 
Baire Category Theorem tha t one of these arcs contains an open subset of 
M. T h e homogeneity of M would then imply tha t M is a 1-manifold. However, 
the simple closed curve is the only compact connected 1-manifold. 

Property 9. If R is a ray of M and p is a point of R, one of the rays starting 
at p lies in R. If neither of the rays s tar t ing a t p lies in R, p belongs to an 
arc ab in M such t h a t neither a nor b is a point of R. I t follows from Proper ty 
8 and the homogeneity of M t h a t there is an uncountable family {ha} of 
homeomorphisms of (ab + R) into M such t ha t if a 9e fi, ha{ab), h$(ab) 
belong to different arc components of M. 

I t follows from Theorem 3 of § 4 t h a t there is an arc A0 of the collection 
[ha(ab)) with two sequences A\, Az, . . . , and A2, At, . . . , of arcs of [ha(ab)) 
converging homeomorphically to AQ from opposite sides. For convenience 
we suppose A0 = ab. Some two of the arcs A2i, A2i+i near Ao would separate 
some point of R from A0 in R and hence two points p, q of R from each other 
in R. Bu t then the arc pq in R would cross either A2i or A2i+i and violate 
Proper ty 4. 

Property 10. If Ri is the closure of a ray of M, it contains a continuum R 
that is irreducible with respect to being the closure of a ray. Let D\, D2, . . . , be 
a countable basis of open sets for the plane and J?i, R2, . . . , be a sequence 
of rays such t h a t 

1. Ri+i is a ray in Rt missing Dt if any ray in Rt misses DÛ Ri+± — Ri if 
each ray in Rt intersects Dt. 

If p is a point common to the elements of the decreasing sequence R\, R2, 
Rz, . . . , it follows from Proper ty 9 t ha t one of the rays R s tar t ing a t p lies 
in infinitely many of the JB/s. Hence it lies in Rx-RfRz, , , , If i? ' is a ray 
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in R, it follows from Condition 1 above that R' intersects each Dt that R 
intersects. Hence Rf = R. 

Property 11. If R is a ray in an arc component A of M} R = À. Assume p 
is a point in A — R. It follows from Property 10 and the homogeneity of M 
that p is the starting point of a ray Rf whose closure is irreducible with respect 
to being the closure of a ray. Then Rf does not contain R and there is a point 
q of R — R''. Let R" be a ray starting at q whose closure is irreducible with 
respect to being the closure of a ray. Since neither of the rays Rr, R" con­
tains the other and the starting point q of R" does not belong to R', the 
rays Rf, R" do not intersect. Either some point of pq belongs to both Rr 

and R" or some point of pq belongs to neither. We show that in either case, 
the assumption that R ^ Â has led to a contradiction. 

If some point r of the arc pq fails to belong to R' + R", there is no ray 
starting at r whose closure is irreducible with respect to being the closure 
of a ray. This violates Property 10 and the homogeneity of M. 

If some point r of pq belongs to both R' and R", there are two mutually 
exclusive rays in A each missing r and such that r belongs to the closure of 
each. This violates the homogeneity of M since there are not two mutually 
exclusive rays in A each missing q such that q belongs to the closure of 
each. 

Property 12. If the closures of two arc components of M intersect, the closures 
are equal. Suppose A\, Ai are two arc components whose closures contain 
the point p. Let Av be the arc component of M containing p. It follows from 
Property 9 that one of the rays starting at p lies in A\ and from Property 11 
that Av lies in A\. Similarly Av lies in A2. It follows from Property 10, Property 
11, and the homogeneity of M that the closure of each arc component of M 
is irreducible with respect to being the closure of an arc component. Hence, 
Av = Ix = A2. 

Property 13. The closure of each arc component A of M is homogeneous. We 
show that Â is homogeneous by showing that if p is a point of A and q is a 
point of A, there is a homeomorphism of A onto itself taking p to q. The 
homogeneity of M implies that there is a homeomorphism h of M onto itself 
taking p to q. Since such a homeomorphism takes arc components onto arc 
components, it follows from Property 12 that h(Â) = Â. 

If q and r are points of Â — A and one wishes a homeomorphism of À 
onto itself taking q onto r, one could use the preceding paragraph to show 
that there is a homeomorphism hi of A onto itself taking q to p and a homeo­
morphism h2 of A onto itself taking p to r. The required homeomorphism 
is h2h\. 

4. Collections of arcs in the plane. In this section we digress from 
our consideration of homogeneity to consider collections of arcs in the plane. 
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Theorem 3 is used in establishing Properties 9 and 15 bu t is of interest aside 
from these applications. 

We recall the following notions concerning the abut t ing of arcs in the 
plane E2 Suppose ab, cd, and ef are arcs in E2 such t h a t ab-cd = c and 
ab-ef = e are interior points of ab. Then cd and ef are said to abut on opposite 
sides of ab if there is a homeomorphism of E2 onto itself t h a t takes ab onto 
a horizontal segment and cd, ef onto vertical segments which lie except for 
their points of contact with ab on opposite sides of the line containing ab. 

A sequence of arcs Ai, A2, . . . , is said to converge homeomorphically to an 
arc Aœ if for each positive number e there is an integer n such t h a t if n < i, 
there is a homeomorphism of A t onto Aœ t h a t moves no point more than e. 

Suppose ab, cd, ef are arcs such t h a t cd and ef a b u t on ab from opposite 
sides. A sequence of arcs Ai, A2, . . . , converging homeomorphically to ab is 
said to converge homeomorphically from the cd side of ab if none of the arcs 
intersect ab and all bu t possibly a finite number of these arcs intersect cd. 
Two sequences or arcs converging homeomorphically to ab are said to converge 
homeomorphically from opposite sides if one of the sequences converges from 
the cd side of ab and the other from the ef side of ab. 

T H E O R E M 3. If W is an uncountable collection of mutually exclusive arcs in 
E2, then there is an element w of W and two sequences of elements of W con­
verging homeomorphically to w from opposite sides. 

This result follows as a corollary of the following result which has a more 
cumbersome s ta tement . 

T H E O R E M 3 ' . Each uncountable collection of mutually exclusive arcs in E2 has 
a countable subcollection W such that each element w0of W — W has the following 
property: 

For each pair of arcs cd, ef abutting on Wofrom opposite sides and each positive 
number e there are uncountable subcollections W\, W2 of W — W such that 

1. each element of W\ intersects cd, 
2. each element of Wi intersects ef, and 
3. for each element w of W± + W2 there is a homeomorphism of w onto Wo 

that moves no point by more than e. 

Proof of Theorem 3 ' . Let W'be the collection of all elements w of W with 
the property t h a t there is an arc cd abu t t ing on w from one side and a positive 
number e such t ha t no uncountable subcollection W\ satisfies Conditions 1 
and 3 of the s ta tement of Theorem 3 ' . Theorem 3 ' is established by showing 
t h a t the collection W does not have uncountably many elements. Assume 
W is uncountable. 

For each element wa of W let va be an arc abut t ing on wa from one side 
and ea be a positive number such t ha t 

4. va intersects only a countable number of elements w of W such t ha t 
there is a homeomorphism of wa onto w t h a t moves no point by more than ea. 
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Let e be a positive number so small t h a t for an uncountable subcollection 
W" of W', e will serve as the ea for each element wa of TV". 

Suppose r is a triod which is the sum of an arc ab and an arc cd abu t t ing 
on ab from one side. For each element wa of W" let ha be a homeomorphism 
of ab + cd = 2" onto wa + ^a t h a t takes ab onto wa. Let p denote the ordinary 
distance function for the plane. T h e homeomorphisms ha may be regarded 
as points of a function space metrized as follows: 

D(hai hfi) = max p(ha(t), hp(t)). 

Then {ha} is a separable metric space and some element ho of it is a limit 
point of an uncountable order (each neighbourhood of ho contains uncount-
ably many points of {ha}). 

Let H be the set of all elements of {ha} within \t of ho and W" be the 
set of all elements of W" t h a t are images of ab under an element of H. We 
note t h a t if W\, w2 are two elements of W" then there is a homeomorphism 
of W\ onto w2 t h a t moves no point by more t han e. 

For convenience we suppose t h a t ho(ab) = Wo is the horizontal d iameter 
of a uni t circle C with centre a t the origin and ho(cd) = Vo is a vertical radius 
of C which extends upward. Also, we suppose e < 1. 

Since each element of H is within \e of ho, each element of W" intersects 
the y-axis. Le t pa be the highest point where wa intersects this axis. Le t py 

be one of these pa s which has uncountably many other pa's above it. Bu t then 
vy intersects all of the wds such t h a t pa lies above py. This contradic ts the 
definition of vy given in Condit ion 4. T h e assumption t h a t W was uncountable 
led to this contradict ion. 

T H E O R E M 4. Suppose B, B\, B2, . . . , is a sequence of mutually exclusive arcs 
in E2 such that Bu Bz, . . . , and B2, B±, . . . , converge homeomorphically to B 
from opposite sides. If C is a continuum intersecting each Bt but neither end 
of B and h is a homeomorphism of C + B + Bi + B2 + . . . into E2, then 
h(Bi), h(Bz), . . . , and h(B2), h(B±), . . . , converges homeomorphically to h(B) 
from opposite sides. 

Proof. T h e proof is divided into two steps. 

Step 1. C contains two subcontinua Ci, C2 such that Ci intersects all but 
possibly a finite number of the odd J3 /s but no even Bt and C2 intersects all but 
possibly a finite number of the even J5 /s but no odd Bt. Wi th no loss of generality 
we suppose t h a t B is the horizontal interval ab, t h a t each odd Bt intersects 
the perpendicular bisector of ab a t a point above ab and each even Bt inter­
sects this perpendicular bisector a t a point below C. T h e two cont inua Ci, 
C2 t h a t we describe will lie except for their intersections with ab on opposite 
sides of the line containing ab. 

Let e be a positive number so small t h a t neither a nor b lies within e of C. 
Let Kx, K2 be circles with centres a t a, b respectively with radii equal to 
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\t. Since we can throw away a finite number of BfS, we suppose t h a t for 
each Bi there is a homeomorphism of Bt onto B t h a t moves no point by 
more than Je. 

Let Xi be an arc of Bt irreducible from Ki and K2 and Yt be the arc from 
a to b obtained by adding to J j a radius of Ki and a radius of K2. Each of 
Fi, F3, . . . , lies except for a, 6 above ab. We suppose t ha t the ordering is 
such t h a t Y2i+1 is above (except a t a, b) Y2i+z. 

Let D be the disc bounded by ab + 3/1. If each arc in D from a to è inter­
sects C, it follows from the unicoherence of D t h a t some component Ci of 
D-C separates a from b in IX This cont inuum C\ intersects each Y2i+1 and 
is the Ci promised in Step 1. If there is an arc in D from a to b t h a t misses 
C, there is such an arc Z which intersects ab only a t a, b. Let D' be the disc 
bounded by ab + Z and X2*+i be an arc on the interior of Dr. Any com­
ponent Ci of Dr • C t ha t intersects X 2 î + i intersects each X2j+i (j > f) and 
this Ci will serve as the C\ promised by Step 1. T h e cont inuum C2 is obtained 
in a similar fashion. 

Step 2. If cd and ef are arcs abutting on h(B) from opposite sides and infinitely 
many of the h(B2i+iYs intersect cd, all but a finite number of the h(B2iYs inter­
sect ef. We suppose with no loss of generality t h a t h(B) = ab is a horizontal 
segment, cd is a vertical segment pointing upward from ab, and ef is a vertical 
segment pointing downward from ab. 

Let e be a positive number so small t h a t neither a nor b is within e of 
cd + ef + h(Ci) + h(C2). Following Step 1, we let K\, K2 be circles with 
centres a t a, b respectively and radii equal to \e. Since we can disregard 
any finite collection of the h{B^s, we suppose with no loss of generality 
t h a t there is a homeomorphism of each h(Bi) onto h(B) t h a t moves no 
point by more than Je. 

We let X j be a subarc of h(Bi) irreducible from Ki to K2 and Yt be the 
arc from a to b obtained by adding to Xt radii of K\ and K2 respectively. Since 
infinitely many of the h(B2i+iYs intersect cd, infinitely many of the Y2i+iS 
lie above ab (except for a, b). 

Suppose Y1 lies above ab (except for a, b) and let D be the disc bounded 
by Fi + ab. Since each point of In t D is separated from ab by a Y2i+i and 
each Y2i+i misses C2, C2 does not intersect the interior of D. Since no X2i 

lies interior to D (each intersects C2), all bu t a finite number of these X2i's 
lie below ab. Hence, all bu t a finite number of the X 2 / s (and hence the 
h(B2iys) intersect ef. 

Since all bu t a finite number of the h{Bi)'s intersect cd + ef we suppose 
with no loss of generality t h a t infinitely many h(B2i+iYs intersect cd. I t 
follows from Step 2 tha t all bu t a finite number of the h(B2iYs intersect 
ef and by a repetition of Step 2 t h a t all bu t a finite number of the h(B2i+i),s 
intersect cd. 

I t is known tha t the plane does not contain uncountably many mutual ly 
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exclusive triods (3, Theorem 5, p. 254). In extending this result to higher 
dimensions it is convenient to th ink of a simple triod as having a topological 
1-simplex as base and having a feeler sticking out from an interior point of 
this base. The following theorem is a s t rengthening of this result concerning 
triods in the plane. 

T H E O R E M 5. Suppose W is an uncountable collection of simple triods in the 
plane such that each of these triods has a designated base and feeler. If no two 
of the bases of the elements of W intersect, some feeler intersects uncountably 
many bases. 

Proof. If the bases are mutual ly exclusive, it follows from Theorem 3 ' t ha t 
there is a base bo with uncountably many bases arbi trar i ly close on either 
side of bo- The feeler from bo would intersect uncountably many of these 
nearby bases. 

5. T h e reduced c o n t i n u u m M'. In this section we return to a s tudy 
of the assumed homogeneous bounded plane cont inuum M studied in §§ 2 and 
3 which contains an arc bu t is not a simple closed curve. I t follows from 
Propert ies 5 and 13 t h a t if there is such an M, there is a cont inuum M' t h a t 
is the closure of one of its arc components . We list some properties t h a t 
such an M' would need to possess in order to show tha t there is no such M' 
and hence no M. In §§ 5, 6, 10, we use M' to denote a homogeneous bounded 
plane cont inuum one of whose arc components is dense in M' bu t which is 
not a simple closed curve. 

Property 14. If C is a non-degenerate subcontinuum of M' that is not an arc, 
C intersects uncountably many arc components of M'. This is t rue by Proper ty 8 
if C = Mf so we suppose C is a proper subcontinuum. of M'. Le t p be a point 
of M' — C and A be the arc component of M' containing p. Since each ray 
is dense in M', there is a sequence of points pi, p^i, p2, p-i, . . . , of A — C 
such t h a t A is the sum of the arcs ptpi+i and no two of the ptpi+is intersect 
except possibly a t an end point of each. If one considers the intersections of 
these arcs pipi+i with C, one finds t ha t A • C is the sum of a countable collection 
of mutual ly exclusive closed sets. Since no cont inuum is the sum of a count­
able number more than one of mutual ly exclusive closed point sets, C inter­
sects uncountably many arc components of M'. 

Property 15. Each non-degenerate proper subcontinuum of M' is an arc. If M' 
contains a non-degenerate proper subcont inuum C t h a t is not an arc, it follows 
from Proper ty 14 and the fact t h a t each ray is dense in Mr t h a t Mf contains 
an uncountable collection of mutual ly exclusive arcs each of which intersects 
C b u t no one of which has an end on C. I t follows from Theorem 3 of § 4 
t h a t there is one of these arcs B t h a t has two sequences of arcs Bu B^, . . . , 
and Bi, J34, . . . , of the arcs converging homeomorphically to B from opposite 
sides. I t follows from Theorem 4 of § 4 t ha t under no homeomorphism h of 
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C + B + J5i + B2 • • • into the plane is the image of any interior point of 
B accessible from the complement of h(C + B + Bi + B2 + . . .)• This 
violates the homogeneity of M' since some points of it are accessible from 
the complement of M'. 

Property 16. M' is indecomposable. If M' were the sum of two proper sub­
continua, it would follow from Proper ty 15 t h a t these subcontinua were 
arcs. T h e only homogeneous cont inuum t h a t is the sum of two arcs is a simple 
closed curve. 

6. C o n t i n u a e a c h of w h o s e proper s u b c o n t i n u a is a n arc. A solen­
oid is a non-degenerate homogeneous compact cont inuum each of whose 
proper subcontinua is an arc. Other examples are not a t hand. We note t h a t 
Proper ty 15 shows t h a t M' has this property. The following question is 
related to the last two given in § 1. 

Question. Are solenoids the only non-degenerate homogeneous compact 
continua each of whose proper subcontinua is an arc? 

Theorems 7 and 9 answer this question in the affirmative for the cases of 
tree-like and circle-like continua. 

In developing the following property, we use merely the fact t h a t each 
proper subcont inuum of Mr is an arc (Property 15) ra ther than the facts 
t h a t M' is homogeneous and lies in the plane. 

Property 17. For each positive number e and each arc xy in M' there is an 
e-chain du d2j . . . , dn covering xy such that x, y belong to di, dn respectively 
and M' -Bd ^ ^ C ï + dn. Let eu e2, . . . , en be an e-chain covering xy such 
t h a t x, y belong to eu en respectively. There are open sets Ou 02 in eu e2 

respectively such t h a t xy is an arc component of M' — (Oi + 02). I t follows 
from Proper ty 15 t h a t xy is a component of Mf — (0\ + 0 2 ) . 

Since no component of M' — (0\ + 02) intersects both xy and M' — YLeu 
then M' — (Oi + 02) is contained in two mutual ly exclusive open sets 
A, B such t h a t xy C A, M' - J>< C B (see 13, Theorem 35, p . 21). The 
link dt of the chain du d2, . . . , dn is defined to be et- (A + 0\ + 02). 

Since 

M'- Zdi = M'-A + M'-{p + 0 i + 0 2 ) - S dtC T,dt+ (<3i + <32), 

one finds on subtract ing J^dt from the ends of the above inequality t h a t 

M'-Bd E dt CÔl + Ô2Cd1 + dn. 

Property 18. For each positive number e there is a positive number 5 such 
that if ab is an arc in Mr such that p(a, b) < 8, then either diameter ab < e 
or ab is e dense in M'. Assume t h a t there is no such 8. Then for each integer 
i there is an arc a fit in M' such t ha t 
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p{au bt) < l/i, 

diameter atbi > e, 

dibi is not e dense in M'. 

Some subsequence of dibi, a2b<i , . . . , converges to a non-degenerate proper 
subcontinuum. Hence it is an arc. Some subarc of this arc is the limit of a 
folded sequence of arcs in M' (each in an afit). The assumption that there 
is no 8 leads to the contradiction of Theorem 6 of the next section. 

Property 19. If a point p of M' is accessible from a component U of E2 — M\ 
each point of any arc in Mr containing p is accessible from the same side that 
p is. Let xy be an arc containing the two points p, a on its interior. With no 
loss of generality we suppose that xy is horizontal, q is between p and y, 
and rp is a vertical interval lying except for p below xy and in U. We show 
that q is accessible from U from below. 

Let 
c = min p(r, p), p(x, p), Jp(g, y), 

8 be the positive number promised by Property 18, with 8 < e, and D be a 
ô-chain covering xy and satisfying the conditions of Property 17. We use 
D* to denote the sum of the links of D. If g is not accessible from U from 
below, there is a point s in M' • D* which is beneath the point q. Let ab be 
an arc in M' -D* containing 5 such that ab lies below xy and each end of ab 
is in an end link of D. The arc rp prevents either a or b from being in the 
end link of D containing x so p(a, b) < 8. Also, ab is not e dense in M' since 
it is not near x. However, diameter ab > e since Jp(g, y) > e. The assumption 
that q was not accessible from U from below led to a contradiction of Prop­
erty 18. 

7. Folded sequences of arcs. A solenoid is an example of a homogeneous 
continuum each of whose proper subcontinua is an arc. The arcs in this 
continuum seem to run in a parallel fashion and not to "zig-zag" or "fold 
back." We find from Theorem 6 that such folding is impossible in a homo­
geneous continuum each of whose proper subcontinua is an arc. No use is 
made of the fact that the continuum lies in the plane. 

Suppose dibi, aj)i, . . . , is a sequence of arcs converging (not necessarily 
homeomorphically) to an arc xy. The sequence is called a folded sequence 
converging to xy if &i, bi, a2, 62, . . . , converges to x. 

THEOREM 6. Suppose X is a homogeneous compact continuum each of whose 
proper subcontinua is an arc. Then no folded sequence of arcs in X converges 
to an arc. 

Proof. Assume ai#i, a^bi, . . . , is a sequence of arcs converging to an arc 
xy such that ax, b\, a2, b2, . . . , converges to x. If e < |p(x, y), y has the 
following property: 
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Property (y, e). For each positive integer n there is a \/n chain E such 
t h a t X intersects each link of E, the distance between y and the first link 
of D is less than 1/n, the distance between the end links of E is more than 
e, and X-BdE* lies in the closure of the last link of E. 

We can obtain such an E as follows. 
1. Let D b e a 1/n chain covering xy such t h a t the first link of D contains 

y, the last link contains x, and for each other link d, d-X C D*- T h e existence 
of such a D is guaranteed by the proof given in Property 17 of the last 
section. 

2. Let dibi be an arc of the folded sequence converging to xy such t h a t 
each of au bt lies in the last link of Dy some point of a fit lies in the first link 
of D, and D covers ajbi. 

3. Let Df be a chain covering atbi such t ha t D' refines D, the first and 
last link of Df lie in the last link of D, some link of D' lies in the first link 
of D, and X-Bd D'* lies in the sum of the closures of the two end links of Df. 

Then E can be formed as follows. The j t h link of E is the sum of the 
elements of D' in the j t h link of D. 

Let X(e) be the set of all points y of X such t h a t y has Proper ty (y, e). 
Then X(e) is closed and it follows from the homogeneity of X t h a t each point 
of X belongs to some X(e) for some e. I t follows from the Baire Category 
Theorem t h a t there is an integer m and an open set U such t h a t U C X{l/m). 

We obtain a sequence of chains E i , £ 2 , . . . , such t ha t 
1. E i is a 1/i chain such t h a t the distance between its end links is more 

than 1/m, 
2. X-BdE* lies in the closure of the last link of Et, and 
3. the first link e\l of E\ lies in U, and the closure of the first link eii+l 

of each Ei+i lies in the first link of Et. 
T h e intersection of the e^'s is a point t ha t cannot be the interior point 

of any arc in X. This contradiction results from the false assumption t ha t 
there is a folded sequence of arcs in X converging to an arc. 

T h e following result gives an immediate application of Theorem 6. The 
result is not needed in the proof of Theorem 1 bu t it can be used in lieu of 
Proper ty 19 in finishing the proof of Theorem 1 for the case where M does 
not separate the plane, since each 1-dimensional bounded plane cont inuum 
t h a t does not separate the plane is tree-like (3). 

T H E O R E M 7. There exists no non-degenerate, homogeneous, tree-like continuum 
each of whose proper subcontinua is an arc. 

Proof. Assume X is a non-degenerate, homogeneous, tree-like cont inuum 
each of whose proper subcontinua is an arc. I t follows from (10) t h a t X is 
indecomposable. Let Dt be a 1/i tree-chain covering X and atbi be an arc 
in X such t h a t both ends of a fit lie in the same link of Dt and 

diameter X / 4 — 1/i < diameter atbi < diameter X/2. 
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Such an arc afii may be found by considering an arc of large diameter in X 
both of whose ends lie in the same link of Du reducing this arc by throwing 
away the part of it in this link and considering one of the larger components 
of the remainder, reducing the component in a similar fashion, . . . , and 
stopping this reduction when an arc of the required diameter is found. 

Some subsequence of a-J)\, a2b2, . . . , converges to a proper subcontinuum 
of X. It follows from the hypothesis that this subcontinuum is an arc ab. 
However, there is a folded sequence of arcs (each in one of the az£/s) con­
verging to a subarc of ab. This contradicts Theorem 6. 

8. A nearly homogeneous example. Consider the example Y shown 
in Figure 1. At a glance it might appear to be homogeneous. The example 
Y intersects the x axis in a Cantor set and is the sum of semicircles with 
ends on this Cantor set. Also, the example may be obtained by starting 
with a punctured disc with three holes and digging canals into the disc from 
the four complementary domains of the punctured disc. 

FIGURE 1 

The canal from the unbounded complementary domain may be defined in 
terms of its right bank as follows. Let po be the point furthest to the left of Y 
and consider the ray R starting at po, going along the upper semicircle of X, 
then along the lower right semicircle, and then down the right bank of the 
canal leading from the unbounded complementary domain of F. Let pi be 
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the first point on R which is between p0 and .1 on the x axis, p2 be the first 
point of R t h a t is between p0 and pi on the x axis, and in general, pi+i is 
the first point of R t h a t is between p0 and pt on the x axis. 

As viewed from C, popi circles C. However, it circles neither A nor B when 
viewed from A, B respectively. Fur thermore , pop2 circles B and C bu t not 
A, popz circles B, p§p± circles A and B, pops circles A, pope circles A and C, 
pop7 circles C . . . . The other canals from A, B, C run between the canals 
from the unbounded complementary domains and each canal is dense in F. 
Figure 1 does not show the banks of the canals from A, B, C bu t shows only 
an arc on the outer bank. This arc does not separate the plane. There are 
points of X not shown in the figure t ha t are nearer A, B, C than any point 
on the outer bank. These points keep the complementary domains con­
taining A, B, C from running into each other. 

We could write the equation of F by giving funct ions / , g such tha t (x,f(x)) 
are abscissas of the ends of semicircles of Y in the upper half-plane and 
(x, g(x)) are the abscissas of the ends of semicircles of Y in the lower half-
plane. However, we shall not do this since we are interested in F 's topological 
properties ra ther than its equation. 

Example Y is locally homogeneous—that is, for each pair of points p, q 
of Y there are arbitrari ly small homeomorphic open subsets Np, Nq con­
taining p, q respectively. In fact, the open subsets may be taken to be homeo­
morphic with the Cartesian product of a Cantor set with an open interval. 

Also, example Y is nearly homogeneous—if p and q are points of Y, then 
for each open subset U of Y containing q there is a homeomorphism of Y 
onto itself taking p into U. One may see t ha t this is t rue since each arc com­
ponent is dense in Y and each arc lies in an open subset homeomorphic with 
the Cartesian product of a Cantor set and an open interval. See (7) for a 
discussion of various types of homogeneity. 

However, M is not homogeneous. If it were, for each positive number e 
and each point p there would be a homeomorphism h of Y onto itself such 
t h a t h moves no point by more than e and p, h(p) belong to different com­
posants of Y. (See Theorem 8 of § 9.) Suppose t ha t e is taken to be less than 
the distance across the canal leading from the unbounded complementary 
domain a t a wide point and p is taken to be the highest point of F. There is 
a canal leading from the outside t ha t locally separates p from h(p) in the 
plane. As p is moved parallel to this canal and in the direction of its wide 
spot, the canal continues to separate the moving p from the corresponding 
h(p). However, as the canal widens, it is no longer possible for p to be within 
e of its image under h. 

This intui t ive reason of why F is not homogeneous is refined in § 10 to 
establish Proper ty 20 and finish the proof of Theorem F 

9. H o m e o m o r p h i s m s near t h e i d e n t i t y . In indicating why the nearly 
homogeneous Example F of § 8 is not homogeneous, we made use of the 
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fact that if Y were homogeneous there would be a homeomorphism of Y 
onto itself that does not move any point far but which takes one arc component 
of Y onto another. We formalize this in the following theorem. 

THEOREM 8. If p is a point of a homogeneous, compact, indecomposable^ 
non-degenerate continuum X, then there is a sequence of homeomorphisms hi, 
h2, . . . , converging to the identity such that no two hrl(pYs belong to the same 
composant of X. 

Proof. Let {xa} be an uncountable collection of points all belonging to 
different composants of X and ha be a homeomorphism of X onto itself that 
takes xa to p. 

If the collection of homeomorphisms [ha) is metrized by the distance 
function 

D(hai hp) = max p(ha(x), h$(x)), 
xeX 

the collection {ha} becomes an uncountable subset of a separable metric 
function space and some sequence h\ , h2 , . . . , of elements of {ha} converges 
to an element ho of {ha\. Then 

hi — h'iho~ . 

Since xi, x2, . . . , belong to different composants of X, ho (#1), ho (x2), . . . , 
also belong to different composants. These are the hi~

1{py^>. 

10. M' contains a folded sequence of arcs. In this section we com­
plete the proof of Theorem 1. We showed in §§ 2 and 3 that if there is a 
homogeneous bounded plane continuum M that contains an arc, there is one 
such Mf each of whose proper subcontinua is an arc. Theorem 6 showed that 
no such M' contains a folded sequence of arcs converging to an arc. Finally, 
we show that there is no such M' except a circle, for if there were, it would 
have the following property. 

Property 20. M' contains a folded sequence of arcs converging to an arc. Let 
ao#6 be an arc in M' which is accessible from a component of E2 — M'. With 
no loss of generality we suppose that a0a6 is horizontal and a\, a2, . . . , #5 are 
points of ao#6 such that 

abscissa at = i (i = 0, 1, . . . , 6). 

We suppose furthermore that a0a6 is accessible from E2 — M from below. It 
follows from the methods used in establishing Property 19 that there is a 
positive number ei such that 

no point of M' below a0a$ is within ei of a\a$. 

Assume M' contains no folded sequence of arcs converging to an arc. Then 
there is a positive number e2 such that if D is an e2-chain covering a^a^ with 
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ai in one end link of D and a5 in the other, then each arc of Mr being covered 
by D and having both ends in the same link of D is of diameter less than \. 
Note t h a t €2 < h Let D be such an e2 chain covering a\a$ satisfying conditions 
of Proper ty 17. 

Le t rs be an arc such t h a t rs lies above a\a*>; rs misses M'; rs is irreducible 
from the vertical line containing a,\ to the vertical line containing a5; the 
vertical segments ra\, sa$ lie in end links of D, and each point between rs 
and a ia 5 lies in a link of D. We find t h a t there is such an rs as follows. Cover 
a0a6 by a chain of small mesh satisfying the conditions of Proper ty 17, con­
sider an accessible point of M' above a% and in one link of this chain, and 
note from Proper ty 17 and Theorem 6 t h a t this point lies in an accessible 
arc in M' slightly above a0a& and with ends near the ends of a^a%. I t follows 
from Proper ty 19 t h a t there is an arc in the complement of M' slightly to 
one side of this first arc. I t is this second arc t h a t contains rs. 

Let K be the topological disc bounded by aids, air, rs, and #55. W e note 
t h a t if p is a point of M' -K t h a t is above a^a^, then the closure of the com­
ponent of M'-IntK containing p is an arc irreducible from air to #5$. If it 
were not, an arc being covered by D and having diameter more than J would 
have ends in the same link of D. 

Let 
e3 = min (ei, p(rs, Mf)). 

I t follows from Proper ty 18 t h a t there is a positive number €4 such t h a t if 
ab is an arc in M' with p(a, b) < €4, then either 

diameter ab < e3, or 
ab is e3 dense in M'. 

Let A be the arc component of M' containing a%. I t follows from Theorem 8 
t h a t there is a homeomorphism h of Mf onto itself t h a t moves no point by 
more than e4 and which takes a3 into a point of M' — A. Then h (a 3) is a 
point of K and lies above a2a4. Also, h(a,z) lies on an arc in M' -K t h a t is 
irreducible from a\f to a$s. 

Since A is dense in Mf, there is an arc xy in A -K such t h a t xy is irreducible 
from air to a$s and xy separates h(az) from a\a$ in K. By considering points 
slightly above a3 we find t ha t xy has the following property. 

Special Separating Property. The arc xy separates two points of K • (Mf — A) 
from each other in K such t h a t the first of the points is above a3 and the 
other is the image of the first under h. 

Let X1X2X3 . . . X2n be the arc in A such t h a t XiX% = xy, Xin-\Xin — a\a%, and 
XiX2, X3X4, X5X6, . . . , x<in-\Xin are the closures of the components of XiX2x3. . . x<in • 
I n t K t h a t are irreducible from a^r to a$s. Then XiX2 has the special separat ing 
proper ty bu t x<in-\X<in does not. 

We now show t h a t if X2i-\X2i has the special separating property, then so 
does #2*+1X21+2. The resulting contradiction arises as a result of consequences 
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of our false assumption t h a t there is an M' t h a t contains no folded sequence 
of arcs converging to an arc. 

Suppose p, h(p) are points of K-(Mf — A) such t h a t p is above a3 and 
X2i-iX2t separates p from h(p) in K. For convenience we suppose t h a t X2i+ iX2z+2 
is below X2i-iX2i and ^(/>) is above x21-1X2*. (Other cases are handled with 
similar a rguments to t h a t given in this case.) Then #21+1X21+2 separates p 
from h{p) in K unless p is above x2*+1^21+2, so we suppose p is between #21-1X2* 
and X2i+iX2z+2. Our proof now breaks down into two cases. 

Case 1. If x2z, #2i+i belong to the same one of axr, a*>s, (see Figure 2). Let tu 
be the closure of the component of Af ' - In t K containing p. I t is an arc irre­
ducible from air to a$s. We suppose u belongs to the vertical line through 
a\ containing %2t and X2Ï+1. 

FIGURE 2 

Suppose a point moves in an arc in M' through p, pas t u, and (vw) is the 
next component of M'Ant K it meets whose closure vw is an arc irreducible 
from air to a5s. Let g be a point of vw directly above a3. I t follows from the 
Jo rdan curve theorem t h a t q lies between X2i-ix2i and x2i+iX2i+2. Also, g is 
below tu and p(g, X 2 Î - I X 2 Î ) > e4 or else the arc tuvw contains an arc ab such 
t ha t 

p(a, b) < e4, 
d iameter ab > e3, and 
p(a£, a4) > e3. 
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If g were above tu, we would take p = a and let b be a point of vw between 
p and %2i-iX2i. If g were below tu and p(g, x2i_ix2i) < €4, we would take g to 
be 6 and a to be a point of tu between q and #2i-i#2*. Since the existence of 
such an arc ab violates the definition of e4, we suppose t ha t 

p(q, X2i-iX2i) > € 4 . 

We now show t h a t x21+1X21+2 separates q from h(q) in K. Note t h a t g is 
above x2i+iX2H.2. 

Consider the simple closed curve / t h a t is the sum of a vertical interval 
in K above a4 and an arc in x2*_iX2i+2 t h a t contains Xu%u+\- Note t h a t no 
point of the arc pq in M is within e4 of this vertical pa r t of J above a4. As a 
point moves from p to g, the image of the point under h does not intersect 
J. Hence, h(q) is either above x2i-iX2i or below x2*+1X21+2. I t is not above 
X2i-ix2i because p(q, x2i-ix2z) > e4 and p(g, h(q)) < e4. Hence #2*+1*2*+2 has 
the special separation property. 

Case 2. J / x 2 i # ? ^ x 2 i + i belong to different vertical lines, see Figure 3. We 
suppose X2i, u, X21+2 belong to a$s and define vw and q as in Case 1. 

I I * « 1 1 

â 0 &2 83 8.4 8.5 â 6 

FIGURE 3 

If v is below x2j+iX2H-2, g is below x2i+iX2z+2 and A(g) is above. 
If v is above X2i+iX 2 i + 2 it is between the points x2* and x2z+2, g is between 

X2i-iX2i and x 2 i + 1X2̂ +2, and h(q) is above x2z-ix2i. Since each of p, q is within 
€4 of x2z-ix2î, it follows as in Case 1 t h a t tuvw contains an arc ab such t h a t 
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p(a, b) < e4, 

d iameter ab > e3, 

p(ab,a2) > €3. 

These conditions violate the definition of e4. 
We note t h a t in establishing Proper ty 20 we used properties of the plane 

or 2-sphere and not jus t properties of an a rb i t ra ry 2-manifold alone. If this 
could be by-passed, one might get an affirmative answer to the following 
question. 

Question. Suppose X is a 1-dimensional homogeneous compact cont inuum 
t h a t contains an arc and lies on a compact 2-manifold. Is X necessarily a 
simple closed curve? 

11. Circle- l ike c o n t i n u a a n d tree - l ike c o n t i n u a . Solenoids and a 
circle of pseudo-arcs are the known examples of homogeneous circle-like 
continua. Since each proper subcont inuum of a circle-like cont inuum is 
snake-like and each homogeneous non-degenerate snake-like cont inuum is a 
pseudo-arc, one might suspect t h a t the answer to the following is in the 
affirmative. 

Question. Does each homogeneous circle-like cont inuum other than a 
solenoid contain a pseudo-arc? We do not provide an answer. 

T H E O R E M 9. Each homogeneous circle-like continuum that contains an arc is 
a solenoid. 

Indication of proof. This theorem is much easier to establish than Theorem 
1 bu t the same method of a t t a ck may be used. 

By using rays as in § 3, it may be shown t h a t the homogeneous circle-like 
cont inuum X contains a non-degenerate subcont inuum X1 such t h a t each 
proper subcont inuum of X is an arc. In proving the counte rpar t of Proper ty 
9, we cannot use Theorem 3 (which is a theorem abou t the plane) to show 
t h a t ab + R cannot lie in X, b u t instead we use the fact t h a t each proper 
subcont inuum of X is snake-like to prove this. 

We may as well suppose t h a t X' = X, for if it is not , it is snake-like, it is 
a pseudo-arc (5), and it contains no arc. 

We finish the indication of proof of Theorem 9 by showing t h a t there is a 
sequence of circular chains (open coverings whose 1-nerves are simple closed 
curves) D\, D2, . . . , covering X such t h a t 

1. Di+i is a refinement of Diy 

2. Di+1 circles around Dint t imes wi thout any folding back, and 
3. the mesh of Di+i is less than 1/2* t imes the distance between any two 

non-adjacent elements of Dt. 
I t is then only a ma t t e r of get t ing an open covering of a similar kind of 

the solenoid which is the intersection of the tori 7 \ ,T2, . . . , where Ti+i 
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winds about Tt nt t imes and use the two coverings to get a homeomorphism 
of X onto the solenoid. (Di+i is said to fold back in Dt if Dt contains two 
adjacent links dx, dy, and Di+i contains a subchain E such t h a t each link 
of E lies in either dx or dy, each end link of E intersects dx — dy bu t not each 
link of E lies in dx.) 

Suppose t h a t Dt has already been obtained and it is such t ha t there is a 
positive number e such t h a t if D' is any circular chain of mesh less than e 
covering X, then D' refines Dt and circles about Dt wi thout any folding 
back. We show how to get Dt+i, Wi th no loss of generality we suppose t h a t 
e < 1/2* times the distance between any two non-adjacent elements of Di% 

We apply Theorem 6 to show t h a t no folded sequence of arcs in X converges 
to an arc. Hence, there is a 8 such t ha t if ab is an arc of diameter greater 
than e/14, no 8 chain D" covers ab in such a way tha t both a, b lie in the 
same link of D". We suppose 8 < e/14. 

Let D be a 8 circular chain covering X with its links ordered d\, d2, . . . ,dn. 
Let dni = d±; dn2 is the first link of D whose distance from dni is more than 
e/14; dm is the next link of D after dn2 whose distance from dm is more than 
e/14 . . . . Let dntr_x or dn2r be the last such link obtained. 

T h e first link of Di+i is the sum of the links between dm and dm inclusive; 
the next link of Di+i is the sum of the links of D between dm and dn% inclusive; 
. . . ; and the last link of Di+i is the sum of the links between dn2r_1 and dn2 

inclusive (this link contains dn and di). Each link of Di+1 other than the last 
is of diameter less than 4e/14 + 78 and the last is of diameter less t han 
5e/14 + 98. In either case, D is of mesh less than e. If Df is a refinement of 
Di+i of mesh less than 8, Df circles abou t Di+i wi thout any folding back. 

A triodic cont inuum is the sum of three continua A, B, C such t h a t 
A-B = A-C = B-C is a proper subcontinuum of each of A, B} C. Theorem 
7 did not provide an answer as to whether or not each homogeneous tree-like 
cont inuum fails to contain an arc. Our methods do not give this because 
we fail to prove the counterpar t of Properties 4 and 9. 

T H E O R E M 10. A homogeneous tree-like continuum contains no arc if it contains 
no triodic continuum. 

T o establish Theorem 10 we use the hypothesis t h a t the cont inuum contains 
no triodic cont inuum to establish the counterpar t of Proper ty 9. Proper ty 15 
then follows and reduces Theorem 10 to Theorem 7, 
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