NOTE ON THE STRUCTURE OF GRAPHS
G. A. Dirac

(received October 10, 1961)

1. Introduction. This paper is concerned with
undirected graphs which may be infinite and may contain
multiple edges. The Axiom of Choice is assumsd. The terms
path, infinite path and circuit are used in the same sense as
Weg, unendlicher Weg and Kreis, respectively, are used in
D. Kénig's book [1]. The valency of a vertex is the number
of edges incident with it. The length of a path is the number
of edges in it.

The following theorem is a generalization of the well
known fact that if a vertex of a graph is not a cut-vertex
(Artikulation [2]) and has valency > 2, then the graph contains
at least one circuit to which the vertex belongs.

THEOREM A. If the vertex a of a graph is not a
cut-vertex and has valency > 2¢ , where € 1is an integer,
then the graph contains € circuits each of which passes
through a, notwo of which have an edge in common, and
any two of which have at most one vertex besides a in common.

A simple example is furnished by a graph consisting of
the two vertices a and b joined by 2e€ edges.

2. Disentangling pairings. Let r‘ be a graph and let V
denote a set containing an even number of vertices belonging to
r. A partition of V into (mutually disjoint) pairs will be
called a disentangling pairing of V with respect to f—\ if F
contains a set of paths with the properties that corresponding
to each pair of the partition there is a path of the set having
the two vertices of the pair as its two end-vertices, and no
two paths of the set have more than one vertex in common.
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THEOREM B. If P is a connected graph and V is a
set containing an even number of the vertices of l—' then there
exists a disentangling pairing of V with respect to [—\

Proof. Let |V| =2v. Corresponding to an arbitrary
partition P of V into v pairs, | contains a set of v
paths such that corresponding to each pair of P there is a
path of the set having the two vertices of the pair as its end-
vertices; for r is connected, and among all such sets of
paths there exists at least one set having the property that the
sum of the lengths of the v paths in it is minimal. Let L{P}
denote this minimal sum. Among all possible partitions of V
into pairs one may be selected, P say, with the property

that I(P ) is minimal. Let {v < 3, ..., {v v '} be
o 1 1 v oV

the v pairs of P and ri, ..., r be v paths contained in
e} v
[—‘ such that r, has v, and v.,' as its end-vertices for
i i i

i=41, ..., v and the sum of the lengths of the v paths is

No two of ri, e, T have more than one vertex in
1%

common. Proof: suppose on the contrary that e.g., T, and

r, have more than one vertex in common. Going along r,

from .VZ to vz' let x be the first and y the last vertex of

r1 encountered, _}E#X because r1 and rZ have more than

one vertex in common. It may be assumed without loss of
generality that going along r, from vy to Vil , X is
encountered before y. The convention will be adopted that if
r is a path and m and n are vertices of r then r[m,n]
denotes that path contained in r which has m and n as its
two end-vertices if m # n, and r[m,n] denotes m if m =n;
||r|| denotes the length of r. In this notation let

=71 , x| v s = L Yyl
Fypg Tl o nlvy x] and G = nplvytyl v v, 'yl

rv+1 and T2 are paths contained in ]—' having VeV

and vi' ) VZ‘ respectively as their end-vertices, and

I=,, Bele, =l ey = Dy D Lyl < e, Dl I
So if P1 denotes the partition obtained from P0 by replacing

2
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the two pairs {vi,v1'} and {VZ,VZ‘} by the two pairs
{V1,V2} and {vi‘ ,VZ‘} then L(P1) < L(Po), which
contradicts the minimality of L(PO). This contradiction

proves that no two of r1, ..., r have more than one vertex
v

in common.

P is therefore a disentangling pairing of V with
o

respect to r‘ This proves Theorem B.

3. Proof of Theorem A by induction over ¢ . The
theorem is obviously true for ¢ =1 because a is nota cut-
vertex. Assume that the theorem is true for 1 <€ <&, and
suppose that the vertex a 1is nota cut-vertex of the graph /\ .
Let E be a set of 26 edges of A each of which is incident
with a.

If there are two edges in E, e and e, say, connecting

a with the same vertex of A , b say, then by the induction
hypothe51s A - e, (the graph obtained from [\ by deleting
e, and ez) contains a set of & - 1 circuits with the properties
stated in Theorem A. These circuits and the circuit

aub v e, \Je2 together constitute a set of & circuits with

the required properties.

Suppose that no two edges of E connect a with the same
vertex of A . Then a is joined by edges to a set of 26
vertices; let V denote this set. A - a (the graph obtained
from /\ by deleting a and all edges incident with a) is
connected since a is not a cut-vertex of /\. By Theorem B
there exists a disentangling pairing of V with respect to A - a.

Let r , ..., Te denote the corresponding paths. For

1’
i=1, 2, ..., 6§ let C, denote the circuit obtained by joining a
i 2

to the two end-vertices of r ; clearly C, CA . Anytwo of
i

Ci’ e, C6 have at most one vertex besides a in common

andnotwoof C , ..., C6 have an edge in common; for any

two of ri, ey r6 have at most one vertex in common and no
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two of r1, e, r6 end in the same vertex. C , ..., C6

therefore satisfy the conditions of Theorem A. Theorem A is
thus true for € =6 if it is true for 1< e < §, and it is true
for € =1. Therefore the theorem is true for all finite € .
Note: Theorem A clearly remains true if loops are counted
as circuits.

4. Vertices with infinite valency. A theorem will be
established from which the analogue of Theorem A for infinite
€ follows obviously. Itis convenient to distinguish two special
type of graphs. An L’\Co—fence is the union of an infinite path r

and an enumerable set of mutually disjoint paths T rz, 3’
such that for each i>1, r " r., consists of one of the end-
- i

T

vertices of r.; the other end-vertex of r 1is called an end-
1 1

vertex of the ’No—fence. A \-pencil, where \ is an integer

>3 or an infinite power, is the union of X\ distinct paths such
that one vertex, called the focus, is end-vertex of all the paths
and any two of the paths have the focus and nothing else in
common; the other end-vertices of the paths are called end-
vertices of the A-pencil.

THEOREM C. If the vertex a of the graph / is nota
cut-vertex of [, and has valency > € , where € is an infinite
power, then if € > X either a is joined to some vertex by

° had

at least e edges or a is joined to every end-vertex of an
€ -pencil contained in /\-a; and if € = ¢ then either at least
o

one of the alternatives just mentioned holds, or a is joined to

infinitely many vertices of an infinite path contained in A—a,

or else a is joined to every end-vertex of an "¢ -fence containe
o

in \-a.

The analogue of Theorem A for infinite € clearly follows
from Theorem C.

Theorem C follows from

THEOREM D. Let r' be an infinite connected graph and
V an infinite subset of the set of vertices of I—'. If V is
enumerable |_’ either contains a |V |-pencil whose end-vertices
all belong to V or an infinite path containing infinitely many
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vertices belonging to V or an ™ -fence whose end-vertices
o

all belong to V; if V is not enumerable then r contains a
]VI-pencil whose end-vertices all belong to V.

Proof of Theorem D. By transfinite induction or Zorn's
Lemma it can be shown that r contains a connected subgraph
l—" to which all the vertices of V belong and which is such that
any proper subgraph of [ ' either does not contain all the
vertices of V or is disconnected; l—" = ]—' possibly.

I_—:' does not contain a circuit. ... (1)

For if [ ' contained a circuit then deleting any one edge
of the circuit would leave a connected graph containing all the
vertices of V.

Every edge of P' belongs to some path whose end-
vertices belong to V. ...(2)

Because if an edge did not have this property then the
graph obtained by deleting it from [—" would consist of two
connected components by (1), and one of the two connected
components would contain no vertex belonging to V; this
would contradict the minimal property of r' .

Corresponding to any two distinct vertices of | ' there
is a unique path contained in r' which has them as its end-
vertices. ... (3)

%

For [ ' is connected and contains no circuit. The
length of the path will be called the distance between the two
vertices in I— .o

If b is any vertex of [ ' incident with at least three
edges of [—" then r' contains a pencil which has b as
focus, which contains every edge of P' incident with b
and whose end-vertices all belong to V. ... (4)

This follows from (1) and (2). -

Suppose that V is enumerable. If some vertex of r'

is incident with infinitely many edges of P'A, then r" contains
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a |V|-pencil whose end-vertices all belong to V, by (4). If no
vertex of r‘ is incident with infinitely many edges of [_" then
by a theorem of D. Kénig [3] each vertex of [ ' is the end-
vertex of some infinite path contained in ]—“ . Let r denote

an infinite path contained in [—" with the vertex c as end-
vertex. There are two alternatives: either r contains infinitely
many vertices belonging to V or it does not. If r does not
contain an infinite number of vertices belonging to V then, by
the minimal property of r" , r contains an infinite number of
vertices having valency > 3 in |—" ; let these be denoted by

c1, CZ’ c3, ... in order along r starting from <, and for

i=1, 2, 3, ... let e, be an edge incident with <, and not
i

belonging to r. By (2) for each i> { there is at least one path
contained in r-" which has c¢. as one end-vertex, contains e,
1 1

and has a vertex belonging to V as its other end-vertex; let

such a path be denoted by r.. By (1) rwv I, T, T is

an %O-fence whose end-vertices all belong to V. This proves

Theorem D for enumerable V.

If V is not enumerable then [—" contains a vertex
incident with ]VI edges of [_' '. (By (4) no vertex of r" is
incident with more than IV} edges of r“ .) For suppose that
every vertex of F‘ has valency < |V|. Let a denote an

arbitrarily chosen vertex of l—-" and fori=1, 2, 3, ... let
A, denote the set of those vertices of [ '' which are at a
i

distance i from a in ]—". Since the product of two powers

each smaller than |V| is smaller than |V| we have that

!Ail<lVl for i=1, 2, 3, ... and lAiquuAau... | <‘>~40|VI

lV[ , which is a contradiction. Hence r‘ contains a vertex
incident with |V| edges of [ ''.

It follows from (4) that [ '' contains a |V |-pencil whose
end-vertices all belong to V. This completes the proof of
Theorem D.

Proof of Theorem C. Let V denote the set of those
vertices of A which are joined to a. Either there exists a
vertex joined to a by at least € edges, or else |V[ >e€.
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If IVI > € then Theorem C follows from Theorem D applied to
A-a.

Note. If a is a cut-vertexof /) but A -a has fewer
than € connected components then the assertion of Theorem C

is still true, because at least one of the connected components
of A\~a has the property that at least € edges connect a with it.
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