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Abstract. Given a nonincreasing function f : �≥0 \ {0} → �≥0 such that (i)
f (k) − f (k + 1) ≤ 1 for all k ≥ 1 and (ii) if a = f (1) and b = limk→∞ f (k), then
|f −1(a)| ≤ |f −1(a − 1)| ≤ · · · ≤ |f −1(b + 1)|, a system of generators of a monomial
ideal I ⊂ K [x1, . . . , xn] for which depth S/Ik = f (k) for all k ≥ 1 is explicitly described.
Furthermore, we give a characterization of triplets of integers (n, d, r) with n > 0, d ≥ 0
and r > 0 with the properties that there exists a monomial ideal I ⊂ S = K [x1, . . . , xn]
for which limk→∞ depth S/Ik = d and dstab(I) = r, where dstab(I) is the smallest
integer k0 ≥ 1 with depth S/Ik0 = depth S/Ik0+1 = depth S/Ik0+2 = · · · .

2010 Mathematics Subject Classification. 13A02, 13A15, 13C15.

1. Introduction. The study on depth of powers of ideals, which originated in
[4], has been achieved by many authors in the last decade. Let S = K [x1, . . . , xn]
denote the polynomial ring in n variables over a field K and I ⊂ S a homogeneous
ideal. The numerical function f : �≥0 \ {0} → �≥0 defined by f (k) = depth S/Ik is
called the depth function of I . It is known [1] that f (k) = depth S/Ik is constant for
k � 0. We call limk→∞ f (k) the limit depth of I . The smallest integer k0 ≥ 1 for which
f (k0) = f (k0 + 1) = f (k0 + 2) = · · · is said to be the depth stability number of I and is
denoted by dstab(I).

An exciting conjecture [4, p. 549] is that any convergent function f : �≥0 \ {0} →
�≥0 can be the depth function of a homogeneous ideal. In [4, Theorem 4.1], given
a bounded nondecreasing function f : �≥0 \ {0} → �≥0, a system of generators of a
monomial ideal I for which depth S/Ik = f (k) for all k ≥ 1 is explicitly described. In
[3, Theorem 4.9], it is shown that, given a nonincreasing function f : �≥0 \ {0} → �≥0,
there exists a monomial ideal Q for which depth S/Qk = f (k) for all k ≥ 1. Unlike the
proof of [4, Theorem 4.1], since the proof of [3, Theorem 4.9] relies on induction on
limk→∞ f (k), no explicit description of a system of generators of a monomial ideal Q
is provided.

Our original motivation to organize this paper was to find an explicit description of
a system of generators of a monomial ideal Q of [3, Theorem 4.9]. However, there seems
to be a gap in the proof of [3, Theorem 4.9]. In the proof of this theorem, the authors use
an inductive method for giving a monomial ideal which has the desired depth function.
However, unfortunately, their inductive method does not work in the case that the limit
depth is 0. In fact, it cannot be valid for the nonincreasing function f : �≥0 \ {0} → �≥0

with f (1) = f (2) = 2 and f (3) = f (4) = · · · = 0 from their inductive method.
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In the present paper, given a nonincreasing function f : �≥0 \ {0} → �≥0 such that
� f (k) − f (k + 1) ≤ 1 for all k ≥ 1;
� if a = f (1) and b = limk→∞ f (k), then

|f −1(a)| ≤ |f −1(a − 1)| ≤ · · · ≤ |f −1(b + 1)|,
a system of generators of a monomial ideal I for which depth S/Ik = f (k) for all k ≥ 1
is explicitly described (Theorem 2.1). The statement of Theorem 1.1 is the exact one
that [3, Theorem 4.9] would correctly prove. Furthermore, we give a characterization
of triplets of integers (n, d, r) with n > 0, d ≥ 0 and r > 0 with the properties that there
exists a monomial ideal I ⊂ S = K [x1, . . . , xn] for which limk→∞ depth S/Ik = d and
dstab(I) = r (Theorem 3.1).

2. Nonincreasing depth functions. Let K be a field and S = K [x1, . . . , xn] the
polynomial ring in n variables over K with each deg xi = 1.

In this section, we show the following theorem.

THEOREM 2.1. Given a nonincreasing function f : �≥0 \ {0} → �≥0 such that
� f (k) − f (k + 1) ≤ 1 for all k ≥ 1;
� if a = f (1) and b = limk→∞ f (k), then

|f −1(a)| ≤ |f −1(a − 1)| ≤ · · · ≤ |f −1(b + 1)|,
there is a monomial ideal I for which depth S/Ik = f (k) for all k ≥ 1.

At first, we prepare some lemmas to prove Theorem 2.1.

LEMMA 2.2 [6, Corollary 5.11]. Let I be a monomial ideal in S. Then, for any
integer k ≥ 1, we have

depth Ik−1/Ik = min{depth Ik−1, depth Ik − 1}.

LEMMA 2.3. Let I be a monomial ideal in S. Then, the following are equivalent:

(a) depth S/Ik is nonincreasing.
(b) depth Ik−1/Ik is nonincreasing.

Moreover, when this is the case, depth S/Ik = depth Ik−1/Ik for any k ≥ 1.

Proof. Set f (k) = depth S/Ik and g(k) = depth Ik−1/Ik. Since we obtain depth Ik =
depth S/Ik + 1 for any k ≥ 1, by Lemma 2.2, it is obvious that

g(k) = min{f (k − 1) + 1, f (k)}, k = 1, 2, . . . .

Hence, we know that if f (k) is nonincreasing, then we have g(k) = f (k).
On the other hand, we assume that g(k) is nonincreasing. If f (t) = g(t) for an

integer t ≥ 1, then we have f (t + 1) = g(t + 1). Since f (1) = g(1), it follows that for any
integer k ≥ 1, f (k) = g(k). �

LEMMA 2.4. Set A = K [x1, . . . , xn′ ] and B = K [xn′+1, . . . , xn], and we let I, J are
monomial ideals in A and B. Then, for any integer t ≥ 1, we have

depth(I + J)t−1/(I + J)t = min
i+j=t+1
i,j≥1

{depth Ii−1/Ii + depth Jj−1/Jj}.
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Proof. It follows by combining [3, Theorem 3.3 (i)] and [6, Theorem 1.1]. �
The following proposition is important in this paper.

PROPOSITION 2.5. Let t ≥ 2 be an integer, and we set a monomial ideal I =
(xt, xyt−2z, yt−1z) in B = K [x, y, z]. Then

depth B/In =
{

1, if n ≤ t − 1,

0, if n ≥ t.

Proof. First of all, for each integer n ≥ t, we show that depth B/In = 0. For this
purpose, we find a monomial belonging to (In : m) \ In, where m = (x, y, z). We claim
that the monomial u = xtn−t2+tyt2−2tzt−1 belongs to (In : m) \ In. Indeed, each generator
of In forms

w(a, b, c) := (xt)a(xyt−2z)b(yt−1z)c = xta+by(t−2)b+(t−1)czb+c,

where a + b + c = n and a, b, c ≥ 0. Then, we have

xu|w(n − t + 1, 1, t − 2),

yu|w(n − t + 1, 0, t − 1),

zu|w(n − t, t, 0).

Thus, u ∈ (In : m). While the degree of u is less than that of generators in In. Hence, we
obtain u /∈ In.

Next, we show that pd In = 1 for all 1 ≤ n ≤ t − 1. In order to prove this, we use the
theory of Buchberger graphs. Let m1, . . . , ms be the generators of In. The Buchberger
graph Buch(In) has vertices 1, . . . , s and an edge (i, j) whenever there is no monomial
mk such that mk divides lcm(mi, mj) and the degree of mk is different from lcm(mi, mj)
in every variable that occurs in lcm(mi, mj). Then, it is known that the syzygy module
syz(In) is generated by syzygies

σij = lcm(mi, mj)

mi
ei − lcm(mi, mj)

mj
ej

corresponding to edges (i, j) in Buch(In) [5, Proposition 3.5].
Let G(In) := {w(a, b, c) = xta+by(t−2)b+(t−1)czb+c | a, b, c ≥ 0, a + b + c = n} be the

set of generators of In. We introduce the following lexicographic order < on G(In). Let
w(a, b, c), w(a′, b′, c′) ∈ G(In). Then, we define
� w(a′, b′, c′) < w(a, b, c) if a′ < a;
� w(a′, b′, c′) < w(a, b, c) if a′ = a and b′ < b.

OBSERVATION 2.6. For w = xaybzc, we denote degx w = a, degy w = b and degz w =
c. It is easy to see that
� degx w(a′, b′, c′) < degx w(a, b, c) if and only if w(a′, b′, c′) < w(a, b, c);
� degy w(a′, b′, c′) ≥ degy w(a, b, c) if w(a′, b′, c′) < w(a, b, c);
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� degz w(a′, b′, c′) ≥ degz w(a, b, c) if w(a′, b′, c′) < w(a, b, c)

if 1 ≤ n ≤ t − 1.

To construct the minimal free resolution of In, we compute generators of syz(In).
For w(a, b, c), w(a′, b′, c′) ∈ G(In), we define w(a′, b′, c′) � w(a, b, c) if w(a′, b′, c′) <

w(a, b, c) and there is no monomial w ∈ G(In), such that w(a′, b′, c′) < w < w(a, b, c).
Moreover, we put

σ ((a, b, c), (a′, b′, c′))

:= lcm(w(a, b, c), w(a′, b′, c′))
w(a, b, c)

e(a,b,c) − lcm(w(a, b, c), w(a′, b′, c′))
w(a′, b′, c′)

e(a′,b′,c′).

We show that

CLAIM 1. If w(a′, b′, c′) � w(a, b, c), then {w(a′, b′, c′), w(a, b, c)} is an edge of
Buch(In).

Proof of Claim 1. Note that w(a′, b′, c′) � w(a, b, c) if and only if either
a′ = a, b′ = b − 1 and c′ = c + 1 or (a, b, c) = (a, 0, n − a) and (a′, b′, c′) = (a −
1, n − a + 1, 0). In the former case, we have lcm(w(a, b, c), w(a, b − 1, c + 1)) =
xta+by(t−2)(b−1)+(t−1)(c+1)zn−a from Observation 2.6. It is enough to show that there
is no monomial w ∈ G(In) such that w | lcm(w(a, b, c), w(a, b − 1, c + 1))/xyz =
xta+b−1y(t−2)(b−1)+(t−1)(c+1)−1zn−a−1.

Assume that there exists such a monomial w ∈ G(In). Then, degx w ≤ ta + b − 1.
Hence, w ≤ w(a, b − 1, c + 1) from Observation 2.6. However, degz w ≥ b + c = n − a
from Observation 2.6 again, this is a contradiction.

Next, we consider the latter case, that is, (a, b, c) = (a, 0, n − a) and (a′, b′, c′) =
(a − 1, n − a + 1, 0). As in the former case, it is enough to show that there is no
monomial w ∈ G(In), such that w | lcm(w(a, 0, n − a), w(a − 1, n − a + 1, 0))/xyz =
xta−1y(t−2)(n−a+1)−1zn−a. Assume that there exists such a monomial w ∈ G(In). Then,
degx w ≤ ta − 1 and w ≤ w(a − 1, n − a + 1, 0) from Observation 2.6. But, we have
degz w ≥ n − a + 1 from Observation 2.6 again, this is a contradiction.

Therefore, we have the desired conclusion. �

Here, we put � := {σ ((a, b, c), (a′, b′, c′)) | w(a′, b′, c′) � w(a, b, c)}. Next, we will
show the following:

CLAIM 2. Assume that w(a′, b′, c′) < w(a, b, c) and w(a′, b′, c′) /� w(a, b, c). Then,
σ ((a, b, c), (a′, b′, c′)) can be expressed as an B-linear combination of the elements of
�.

Proof of Claim 2 Let s ≥ 3 and assume that

w(a′, b′, c′) = w(as, bs, cs) � w(as−1, bs−1, cs−1) � · · · � w(a1, b1, c1) = w(a, b, c).

From Observation 2.6, we can see that

lcm(w(a1, b1, c1), w(as, bs, cs))
lcm(w(ai, bi, ci), w(ai+1, bi+1, ci+1))
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is a monomial in B for all 1 ≤ i ≤ s − 1. Hence, we have

σ ((a, b, c), (a′, b′, c′)) = σ ((a1, b1, c1), (as, bs, cs))

=
s−1∑
i=1

lcm(w(a1, b1, c1), w(as, bs, cs))
lcm(w(ai, bi, ci), w(ai+1, bi+1, ci+1))

σ ((ai, bi, ci), (ai+1, bi+1, ci+1)).

Thus, we have the desired conclusion. �
CLAIM 3. The elements of � are linearly independent on B.

Proof of Claim 3 Assume that w(a′, b′, c′) � w(a, b, c). Recall that w(a′, b′, c′) �

w(a, b, c) if and only if

Case(1) : a = a′, b = b′ + 1, c = c′ − 1;

Case(2) : a = a′ + 1, b = 0, c = n − a, b′ = n − a′, c′ = 0.

In addition, lcm(w(a, b, c), w(a′, b′, c′)) = xta+by(t−2)b′+(t−1)c′
zb′+c′

from Observation
2.6. Hence, we have that each element of � is the following form:

σ ((a, b, c), (a′, b′, c′)) =
{

ye(a,b,n−a−b) − xe(a,b−1,n−a−b+1) Case(1);

yt−n−2+aze(a,0,n−a) − xt−n−1+ae(a−1,n−a+1,0) Case(2).

Now, we assume that∑
σ ((a,b,c),(a′,b′,c′))∈�

uσ ((a,b,c),(a′,b′,c′)) σ ((a, b, c), (a′, b′, c′)) = 0

for some uσ ((a,b,c),(a′,b′,c′)) ∈ B. Then, we have the following equalities:

uσ ((n,0,0),(n−1,1,0)) yt−2z = 0;

−uσ ((a,b,n−a−b),(a,b−1,n−a−b+1)) x + uσ ((a,b−1,n−a−b+1),(a,b−2,n−a−b+2)) y = 0

(0 ≤ a ≤ n − 1, 2 ≤ b);

−uσ ((a,1,n−a−1),(a,0,n−a)) x + uσ ((a,0,n−a),(a−1,n−a+1,0)) yt−n−2+a = 0 (1 ≤ a ≤ n − 1);

−uσ ((a,0,n−a),(a−1,n−a+1,0)) xt−n−1+a + uσ ((a−1,n−a+1,0),(a−1,n−a,1)) y = 0 (1 ≤ a ≤ n);

uσ ((0,1,n−1),(0,0,n)) x = 0.

Hence, uσ ((n,0,0),(n−1,1,0)) = 0. Therefore, we have that uσ ((a,b,c),(a′,b′,c′)) = 0 for all
σ ((a, b, c), (a′, b′, c′)) ∈ �. �

Let us return the proof of Proposition 2.5. By Claim 1, 2 and [5, Proposition 3.5],
� is the set of generators of syz(In). Moreover, by Claim 3, the elements of � are
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linearly independent on B. Hence,

0 →
⊕

j

B(−j)β1,j → B(−nt)β0,nt → In → 0

is the minimal free resolution of In. Therefore, we have pd In = 1. �
Now, we can prove Theorem 2.1.

Proof of Theorem 2.1 First, for any integers i, k ≥ 1, we define the monomial ideal
Ik,i := (xk+1

i , xiyk−1
i zi, yk

i zi) in Bi = K [xi, yi, zi]. Then, by Proposition 2.5, we obtain

depth Bi/It
k,i =

{
1, if t ≤ k,

0 if t > k.

Set n = a − b and si := |f −1(a − i + 1)| for each 1 ≤ i ≤ n. We show that I =∑n
i=1 Isi,i in S = K [x1, y1, z1, . . . , xn, yn, zn, w1, . . . , wb] is the required monomial ideal.

By Lemma 2.3 and 2.4, we immediately show the assertion follows. �
EXAMPLE 2.7. Nonincreasing functions f : �≥0 \ {0} → �≥0 with f (1) = f (2) = 2

and f (3) = f (4) = · · · = 0 and g : �≥0 \ {0} → �≥0 with g(1) = g(2) = 2, g(3) = 1 and
g(4) = g(5) = · · · = 0 do not satisfy the assumption of Theorem 2.1. However, there
exist monomial ideals I , J of S = K [x1, . . . , x6], such that depth S/Ik = f (k) and
depth S/Jk = g(k) for k ≥ 1.

Indeed, I = (x3
1, x1x2x3, x2

2x3)(x3
4, x4x5x6, x2

5x6) + (x4
1, x3

1x2, x1x3
2, x4

2, x2
1x2

2x3) and
J = (x4

1, x1x2
2x3, x3

2x3)(x4
4, x4x2

5x6, x3
5x6) + (x5

1, x4
1x2, x1x4

2, x5
2, x3

1x2
2x3) are the desired

monomial ideals.

REMARK 2.8. In the recent preprint [2, Theorem 6.7], Hà-Nguyen-Trung-Trung
has settled the conjecture of Herzog and Hibi [4, p. 549] in full generality.

3. The number of variables and depth stability number. Let I �= (0) be a monomial
ideal in S = K [x1, . . . , xn] and f (k) the depth function of I . We set limk→∞ f (k) = d
and r = dstab(I). When n = 1, we know that d = 0 and r = 1. Moreover, when n = 2,
we have 0 ≤ d ≤ 1 and r = 1.

In this section, for n ≥ 3, we discuss bounds of the limit depth and depth stability
number of a monomial ideal. In fact, we show the following theorem.

THEOREM 3.1. Assume n ≥ 3. Let I �= (0) be a monomial ideal in S = K [x1, . . . , xn]
and f (k) the depth function of I. We set limk→∞ f (k) = d and r = dstab(I). Then, one of
the followings is satisfied:
� 0 ≤ d ≤ n − 2 and r ≥ 1.
� d = n − 1 and r = 1.
Conversely, for any d and r satisfied one of the above, there exists a monomial ideal J in
S such that limk→∞ g(k) = d and r = dstab(J), where g(k) is the depth function of J.

Proof. In general, for any monomial ideal I �= (0) in S, we have 0 ≤ depth S/I ≤
n − 1. We assume that d = n − 1. Since dim S/Ir ≤ n − 1, S/Ir is Cohen–Macaulay.
Hence, for any minimal prime ideal P of Ir, we have height P = 1. In particular, P is a
principle ideal since S is UFD. Hence, Ir is a principle ideal. This says that I is also a
principle ideal. Thus, for any k ≥ 1, S/Ik is a hypersurface. Therefore, we have r = 1.
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Next, we show the latter part. Assume that 0 ≤ d ≤ n − 3 and r ≥ 2. Let J1 =
(xr

1, x1xr−2
2 x3, xr−1

2 x3) ⊂ A := K [x1, x2, x3]. By Proposition 2.5, we have

depth A/Jk
1 =

{
0, if k ≥ r,

1, if k ≤ r − 1.

Let J = J1 + (x4, . . . , xn−d ) = (xr
1, x1xr−2

2 x3, xr−1
2 x3, x4, . . . , xn−d ) be a monomial ideal

in S and g1(k) the depth function of J. Then, we have limk→∞ g1(k) = d and dstab(J) =
r. Moreover, an ideal J2 = (x1, . . . xn−d ) ⊂ S satisfies that depth(S/Jk

2 ) = d for all k ≥
1, that is, limk→∞ depth(S/Jk

2 ) = d and dstab(J2) = 1.
Next, we assume that d = n − 2 and r ≥ 1. By [4, Proof of Theorem 4.1], we can

see that a monomial ideal J3 = (xr+2
1 , xr+1

1 x2, x1xr+1
2 , xr+2

2 , xr
1x2

2x3) ⊂ A satisfies that
dstab(J3) = r and

depth A/Jk
3 =

{
1, if k ≥ r,

0, if k ≤ r − 1.

Let J ′ = J3 be the monomial ideal in S and let g2(k) be the depth function of J ′.
Then, we have limk→∞ g2(k) = d and dstab(J ′) = r.

When d = n − 1 and r = 1, we immediately obtain a monomial ideal satisfying the
condition by the former part of this proof. �

ACKNOWLEDGEMENTS. The authors are deeply grateful to referees for their careful
reading, useful suggestions and helpful comments. The first author was partially
supported by JSPS KAKENHI Grant number 17K14165. The third author was
partially supported by JSPS KAKENHI Grant number 16J01549.

REFERENCES

1. M. Brodmann, The asymptotic nature of the analytic spread, Math. Proc. Cambridge
Philos. Soc. 86 (1979), 35–39.
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