SOME GEOMETRIC EXTREMAL PROBLEMS *

EINAR HILLE
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1. Background and notation

In a recent study of generalized transfinite diameters [4, 5] some geo-
metric extremal problems were encountered. These form the subject matter
of this note.

A generalized transfinite diameter is based on an averaging process
defined by a strictly monotone and continuous function F(x), 0 < u. If
X is a complete metric space, E a closed bounded set in X, let P,, P,,. ..,
P, be n points of E and set 8, = d(P,, P,). The F-average of the N =
#n(n—1) numbers d, is defined by

() Fa)=y5 3 Fla)
1Si<ksn

The first problem is to maximize this average. If for a given » the supremum
of a is denoted by F-4,(E) then the sequence {F-9,(E)} is decreasing.
Its limit F-6,(E) is by definition the transfinite F-diameter of E. The case
F(u) = w* will figure prominently in the following. Here we write 6" (E)
instead.

In the following we restrict ourselves essentially to inner product spaces
such as m-dimensional Euclidean space R™ and Hilbert space H. The set
E will be the unit ball of such a space. We write U™ in R™ and U¥ in H.

2. The basic identity

A straightforward computation shows that for any » vectors X, in an
inner product space

@) 51X, — X+ ] é X, = n S IXIP

1Si<k=n
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The particular case # = 2 with

(3) [1X1 4 Xol 2+ X, — X112 = 2([|1 X, [P 4|1 X %)
is very well known and is often used as a characterization of an inner product
space.

For the case of real or complex numbers, the identity has been known
for some thirty odd years and has been used in the geometry of numbers
by authors such as R. Remak, J. G. van der Corput, and G. Schaake [1].
I am indebted to Professor Kurt Mahler for this information. For the case
of vectors in R™ priority appears to be due to L. Fejes Thét [2] who, however,
gives credit to E. Makai. Closely related work was done by J. Schopp [6].
Some of the results given below (especially Theorems 1 and 2 for $ = 1) are
included in the work of these authors. I am indebted to Professor A. Rényi
for this information.

3. The mean square case

From the identity (2) we obtain

THEOREM 1. If the X’s are unit vectors in an inmer product space, then

(4) 2 X, —X* = n?
155 5ksn

with equality if and only if 3 X, = 0.
Let us now take F(u) = %2 in formula (1). Using (4) we see that
1 Y _l/ n
max (Z-gv 26"‘) = ’\/2 n—-—-i

and that the maximum value is attained for any choice of points P;, § = 1,
2, ..., n, on the unit sphere under consideration such that the corresponding

-
unit vectors X, = OP, satisfy >7 X,=0. Hence

Q) a0 = 9" = va ) 25
and, letting #n — oo,

Q #)(Um) = #(U7) = V2
Since for any admissible function F we have

(7) V2 < F-8,(U8) < 2,

we see that the minimum value 4/2 is attained for F(u) = u2.
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4. The pth power case, 0 < p < 2.

Here we use Holder’s inequality to get
(8) Z 6?,, < N1-—#/2 ( z 6?,‘)"/2 < Ni-p/2 49
i<k i<k
with equality in the first place if and only if all 4,, are equal and in the

second place if and only if 37 X, =40. For each n the maximizing configu-
ration is unique up to a rotation. This gives

THEOREM 2. For 0 < p < 2 the p-th power mean of the lengths of the
edges of an (n+-1)-simplex inscribed in U™ is an absolute maximum if the
simplex is regular.

Formula (8) gives upon letting # - o

(9) 57 (UF) = v2
but gives no information about U™ except the trivial

&P (U™) = V2.

5. The pth power case, 2 <p

Here the discussion is based on the observation that #* < #? for
0 < u =< 1 with equality if and only if # = 0 or 1. This leads to the following
sequence of inequalities

205 =23 (}4,)” = 2° 3 (304)*
i<k i<k i<k
= 22382 < 90-2p2,

i<k

(10)

Here equality holds in the first place if and only if all 8, are 0 or 2 and in the
second place if and only if 37 X, = 0. If n is even, # = 2v, both conditions
can be satisfied by choosing an arbitrary unit vector X and setting X, =
Xforl Sj=<v and X; = —X for v+1 < 5§ < 2v. It follows that

2 (U () (TTH 1—1/ v\
m) —— §\P = 21-1/» .
2(U) = o2 U) (55)
Hence
(11) 6},”)(U"') — 5&” (UH) = 21-1/?, 2 < p.
The last result has a bearing on the problem of finding & (U,) where
U, is the unit ball in the space (/,) of sequences (£,) such that

llzll = (Z1&1°)7* < 0.
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If in the preceding argument we choose X = (1,0, 0, ...), then this is a
unit vector in (/,) and we see that

2 1/p
o) = 2 ()

so that
(12) oP(U,) = 217, p > 2.

Here it is not unlikely that the sign of equality holds, but the argument does
not show it.

6. Convex F-functions

The results obtained above hold also for certain classes of convex func-
tions F(u).

THEOREM 3. If F(u) is decreasing and strictly convex then
(13) F-8,(U%) =+/2.
Moreover, the analogue of Theorem 2 holds for such averages.

Proor. We have

F(a) = ]%,EF((S,,,) >F (Z%, za,,,) > F(\/é V%) .
so that

_1 »
a <142 w1
with equality if and only if >7 X; = 0 and d,, are equal. This means that for
each # the maximizing configuration is given by the regular #-simplex which
is unique up to a rotation. Passing to the limit with » we get formula (13).
This completes the proof.
The same type of proof gives

THEOREM 4. If F(u) is increasing and strictly concave, then formula (13)
holds as well as the analogue of Theorem 2.

This includes the case F(4) = %®, 0 < p < 1, as well as F(u) = log %
which leads to the geometric mean. Professor Basil Rennie of the RAAF
Academy has called my attention to the fact that the theorem remains
valid if we replace F () by F(1/%). It then includes F (4) = u? for 0 < p < 2.
The proof of the extension is immediate.
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7. Other cases

We have a less favorable situation if F (%) is increasing and strictly con-
cave. The special case F(u)= #®, 2 < p, indicates that the transfinite
F-diameter of U# depends effectively on F. In the general case all we can
get are inequalities.

THEOREM 5. If F,, F,, F are increasing and strictly convex and if for

0sux?2
Fy(u) < F(u) = Fy(u),
then
(14) Fy-8y(U%) < F-84(U%) < Fyb4(U%).

Since the graph of v = F(u) lies below the chord joining [0, F(0)] with
[2, F(2)] we get

1 1
¥ ZF0x) S FOTHFR)-FO)] 5 30

1
< FO-+3IFEI-FO)) (257

— F(0)+3v2[F(2)—F(0)]
whence

(15) F-8,(U") = F{(1—3v2)F (0)+3v2F (2)}.

Using the convexity of F we see that the right member exceeds 4/2 and
since F is increasing we have

(16) F-8,(U%) < 2

for this class of means.
In the opposite direction we observe that

(17) F-5,(U") > 4/2
if F(y/u) is increasing and strictly convex in (0, 4). This implies that
(18) F(v2) <3[F(0)+F(2)]

and this is the only implication of the convexity that we need. To establish
(17) we proceed as in the proof of formula (11). We take # = 2y and choose
» unit vectors X and » unit vectors —X. In formula (1} we have y?—v terms
F(0) and »? terms F(2) while N = »(2v—1). It follows that F(a) is at least.
equal to

YL FO)+ 2 F@) > HFO+FE) > FW/3)

and this implies (17).
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8. Remarks on other polyhedra

It was found in Section 4 that the extremal configuration in U¥ for a
given # is produced by # unit vectors whose sum is 0 and whose end points
are equidistant from each other. This is a regular #-simplex which can be
inscribed in U1, In particular, for # =4 we are dealing with extremal prop-
erties of a regular tetrahedron: Of all 4-simplexes inscribed in U® the reg-
ular tetrahedron shows the largest pth power average for the lengths of its
sides. This holds for < 2. For p = 2 the regular tetrahedron gives Y &3,
its maximum value 16 but now there are infinitely many 4-simplexes which
give the same square sum.

This raises the question whether or not other regular polyhedra have
extremal properties with respect to sums of squares of lengths of the sides.
In the case of the octahedron the square sum is 24 and for the cube 16 if the
circum radius is 1. Here it turns out that the regular polyhedra are far from
maximizing the square sums. There exist degenerate ‘‘octahedra’” with
square sum 32 and degenerate ‘“hexahedra’ with square sum 48. The latter
are of some interest and are obtained by the following construction. In an
ordinary cube let the eight vertices be given by the unit vectors X to Xj.
Let the twelve edges be denoted by the symbols

(1,2), (2,3), (3,4), (1), (1,6), (3,68)
(5,6), (6,7), (7,8), (8,5), (4,5), (2, 7).

Here (7, k) is the line joining the endpoints of the vectors X; and X,.. Here
each side has the length £4/3 and the square sum is 12 -4 = 16. Let us now
deform the cube by moving X, X;, X;, X, into coincidence, say with the
vector (0, 0, 1), and by moving X,, X,, X, X; into the antipodal position
(0,0, —1). Let (j, ) still denote the “edges’” of the new “hexahedron”
where (7, £) runs over the list (19). Each of these edges will now have the
length 2 and the square sum is 48. This shows that

(19)

(20) max Y 05, = 48.
Moreover
(21) max » 6, = 24

while the regular cube would give only 84/3. Thus the regular cube does not
even maximize the sum of the lengths of the edges of hexahedra inscribed in
a fixed sphere. I have not examined corresponding properties of dodeca-

hedra and icosahedra.
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