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1. Introduction. We consider a combinatorial enumeration problem 
involving certain collections of labelled rooted trees having coloured nodes 
and edges. Notations and definitions are introduced in §§2 and 3, and the 
problem is described in §4. We give recursion formulas for its solution in §5. 
Then, by using a modification of a method of Priifer, we obtain a direct solution 
in terms of multinomial coefficients and power products in §§6 and 7. These 
results are combined in §8. Working in a formal power series algebra we find 
a formal solution of the equation 

X= Ë Aiexp(BiX)1 

which expresses the unknown X as a multiple power series in the A {and the Bt. 

2. Definitions and notations. We let N0 be the set of natural numbers 
including zero and Ni the set of non-zero natural numbers. We let P be the 
set of infinite sequences of natural numbers (functions from Ni into N0) 
in which all but a finite number of terms are zero. For 

k £ No, p,q € P , p = (pu p2, . . .), q = (qu g2, . . .)» 

we make the following definitions: 

(i) \P\ = E pa 
(2) kp = (kpukpt,...); 

(3) p + q = (pi + qi, Pi + $2, . . .) ; 
(4) £ > q if and only if pi > g* for all i € iVi; 

(5) when p > g, p - g = (pi - qu p2 - g2, . . .) ; 
(6) p* = piQlp2Q2 • • • , where 0° = 1 whenever it occurs; 

(7) 0 = ( 0 , 0 , . . . ) ; 
(8) for each i G iVi, ë* is the sequence all of whose terms are 0 except the 

ith term, which is 1. 

If p = (pu p2, . . .) £ P and X is a set having \p\ elements, then we call 
a function g: X —> Ni a p-colouring of X if for each i Ç iVi there are exactly 
pi elements x £ X such that g(x) = i. We denote the set of all ^-colourings 
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of X by M(p,X). The number of elements of M(p,X) is the multinomial 
coefficient 

M(P) = ^ / ( n *>«'•)• 

3. Cycle-free functions. If X is a set and / is a function which maps X 
into itself, then for each k G No we define /*, the &th iterate of / , recursively 
as follows: for every x f l , f°(x) = x, /*+1(#) = / ( /*(#) ) • A sequence x, 
/ (x) , / 2 (x) , . . . ,fm(x) in which /*(#) ^ x for 1 < i < m and /™(x) = x will 
be called a c;yc/£ of f if m > 1, and an element x 6 X such t ha t / (x ) = x is 
called a fixed point off. A function / : X —> X having no cycles will be called 
cycle-free. 

Each cycle-free function / : X —* X may be pictured as a collection of 
rooted trees having the elements of the set X as nodes. The fixed points of / 
are the roots of the trees and an edge descends from the node x to the node y 
if and only if y ^ x and y = f(x). 

If A is a set and B is a subset of A, then we let F(A, B) denote the set of 
all cycle-free functions / : A —> A whose set of fixed points is B. 

4. The combinatorial problem. Let 

m G No, f G P , û G P , f = Oi, r2, . . .), w = Oi, «2, . . .). 

Let R be a set having m elements. Let A be a set disjoint from P and having 
\û\ elements. We consider the problem of determining the number of ordered 
pairs (f, g) satisfying the three conditions 

(1) feF(AKJ P , P) , (2) g£M(r,A\J P ) , (3) gf\A G W , ^ ) , 

where gf|̂ 4 is the restriction of the composite function gf to the set A. We 
denote the set of these ordered pairs by D{m\r,û,R, A) and the number 
of elements of this set by D(m; f, u). We emphasize that owing to Condition 
(3) the functions / and g may not be chosen independently. 

The elements (f, g) of the set D(m; f, û, P , A) may be pictured as certain 
collections of labelled rooted trees having coloured nodes and edges. The m 
elements of the set P , the fixed points of / , are the roots of the trees, and the 
\ii\ elements of the set A are the higher nodes. For each node x Ç A, f(x) 9e x 
and there is an edge descending from the node x to the node/(x). The number 
of edges is \û\. Each node x Ç A \J R is "coloured" with the non-zero natural 
number g(x) and it is required that for each i G Ni the number of nodes 
coloured i is rt. Each edge is given the colour of the node to which it descends 
and it is required that for each i G iVi the number of edges coloured i is ut. 

5. Recursion formulas for D(m;f,û). In what follows C(m,ri) denotes 
the binomial coefficient ml/(n\(m — n)\). 
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THEOREM 1. If r,U 6 P satisfy \f\ = 1 + |tz|, then 

(I) D(l;r, u) = Z C(\û\, k)D(k; f - ëit û - kêt), 

where the summation extends over all pairs (i, k) G Ni X iVo for which rt > 1 
and Ui > k. 

Proof. If one of our objects (/, g) belongs to D{\\ f, w, R, A), then the set 
R of its roots has just one element. Call it b. This root b is coloured i for some 
i Ç iVi for which r* > 1 and the number of edges descending to the root b 
is some k £ N0 satisfying ut > k. Let i£' be the set of nodes x Ç A which are 
the upper nodes of the edges descending to the root b. The set R' is one of 
the C(|tZ|, k) ^-element subsets of the \û\-element set A. If the root b and the 
edges descending to it are deleted, then the resulting object corresponds to 
one of the D(k;r — ëuû — kêt) elements of the set 

D(k; r - êuû - këif R', A - R'). 

We leave it to the reader to complete the proof by showing that this process 
can be reversed. 

THEOREM 2. Let m,n £ N0, t,w £ P. Then 

(II) D(m + n\ IjW) = X) C(\w\j \û\)D(m; f, ù)D(n\ s, v), 

where the summation extends over all f, s, û, v such that f + s = land û + v = w. 

Proof. If one of our objects (f,g) belongs to D(m + n;t, w, Ry A), then 
the set R of its roots has m + n elements. Let R = R' U R"y where R! and 
R" are disjoint sets, Rf = {bi'\ . . . , bm'}, R" = {h", . . . ,bn"}. Let A' 
(let A") be the set of nodes from which there is a chain of edges descending 
to one of the roots in R! (in R"). For each i £ iV\, let rt (let w*) be the number 
of nodes (of edges) in A' \J R! coloured i, and let st (let Vi) be the number 
of nodes (of edges) in A" \J R" coloured i. Then ti + st = tt and ut -\- vt 

= Wi. The object (/', g') (the object (/", g")) obtained by restricting (/, g) 
to 4 ' U R' (to 4 " U i?") is one of the D(m; f, u) (of the D(n\s,v)) elements 
of D(m; f, M, i?', A') (of Z>(«; s, Â, R", A")). The splitting of A into disjoint 
sets ^4' and A" is one of the C(|w|, \û\) possible splittings of A into two dis­
joint sets having \û\ and \v\ members respectively. Again we leave it to the 
reader to complete the proof. 

By writing 

(*) X(m;f,u) = D(m\r,iï)/\ù\\ 

the formulas (I) and (II) may be put into the simpler forms 

(10 X ( l ; f, û) = Xikiy^Xik; f - ëi9 û - kêt), 

(IT) X(m + n\t,w) =Y< X(m;r,ù)X(n\s,v); 

but it should now be noted that X(m;f, û) need not be an integer. 
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6. The Priifer correspondence. The correspondence to be described in 
this section is a modification of one due to Priifer (3) and more recently studied 
by Neville (2). In §7 we will make use of it in obtaining a direct evaluation 
of D(m\ f, u). 

Let A be a finite set having n elements and let B be a subset of A having 
m elements. Let H (A, B) be the set of all sequences of n — m terms chosen 
from the set A such that if n — m > 0, the last term is chosen from B. We 
shall describe a method by which the various cycle-free functions/ G F {A, B) 
can be put into one-to-one correspondence with the sequences h G H(A,B). 

Let the n elements of the set A be arranged in an order ai, #2, • . . , an in 
such a way that the m elements of B are aw-m+i, an-m+2, . . . , an. L e t / G F {A, B) 
be given. If n = m, then every element x G A is a fixed point of/ and we take 
the corresponding h G H (A, B) to be the empty sequence. If n > m, then we 
build the sequence /z- in the following manner. There is an x G 4̂ which is 
not a value of the function / . Let X\ be the first such element in A and let 
hi =f(xi). Let Ax —A — {x\\ and let f\A\ be the restriction of / to A\. 
Then Ax has w — 1 elements, £ Ç Au hi G ^4i, and f\Ax G ^G4i, -B). Now 
proceed recursively. Suppose that for 1 < k < n — rn, xk, hk, and Ak have 
been defined and that Ak has n — k elements, B C Akl hk G Ak, and f\Ak 

G -F(-4*» -B)- Then there is an x G A k which is not a value of the function 
f\Ak. Let xk+i be the first such element in Ak and let hk+i = f(xk+i). Then 
Ak+i = Ak — {Xfc+i} has » — (ft + 1) elements, B C 4*+!, Afc+i G -4*+ii and 
/ |^A;+I G ^(^l^+i, B). Continue until xw_m, hn-mj and -4W_W have been defined. 
Then An^m has m elements, B C ^4re_m, ^ _ w G ^4n-m, and/|^lw_m G F(An_m, B). 
Since 5 has m elements, B = 4̂W_W and hence hn^m G -B. Therefore, the 
sequence h = (hi, . . . , /zw_m) is in H(A, B). 

It is readily checked that distinct cycle-free functions/ G F(A, B) lead to 
distinct sequences h G H(A,B) and that every A G H(A,B) is obtainable 
from some / G ^(^4, 5 ) . One sees that the function / consists of the ordered 
pairs (x, x) for x G B together with the ordered pairs (xit hi) for 1 < i < 
n — m. In terms of our picture of a cycle-free function/ G F (A, B) as a collection 
of rooted trees, the elements of the set B are the roots of the trees and each 
ordered pair (xu hx) corresponds to an edge, the edge which descends from 
the node xt to the node ht = f(xt). We shall call the sequence of pairs (xi, hi), 
. . . , (xn-m, hn-m) the Priifer sequence of edges for / and the sequence hi, . . . , 
hn-m the Priifer sequence of nodes for / . 

7. Direct evaluation of D(m\ f, u). 

THEOREM 3. Let m G N0, f,ù G P. Then 

Î
0, if \f\ 9^ m + \û\\ 

1, if \f\ = m + \û\ = 0; 
rnlfl^M (r)M (û)f", if \f\ = m + \û\ 9^ 0. 
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Proof. Unless \f\ = m + \û\, the set M(f, A KJ R) will be empty, and we 
conclude that D(m; f,u) = 0 whenever \f\ ^ m + \û\. 

If \f\ = m + \û\ = 0, then m = 0 and \û\ = 0, so that A KJ R is empty. 
In this case b o t h / and g must be the empty function and we have D(m\ f, u) 
= 1. 

If \f\ = m + \û\ y* 0 and m = 0, then the right member in (III) reduces 
to 0. The set R is empty, but A VJ Ris not empty. Since a cycle-free function 
on a non-empty finite set must have at least one fixed point, F(A U R, R) 
is empty. Consequently, D(m\f,u) = 0 and (III) is satisfied. 

If \f\ = m + \û\ T6- 0 and |û| = 0, then the right member in (III) reduces 
to M {f). The set A is empty and the condition gf\A G M (il, A) is trivially 
satisfied. The set F(A \J R, R) = F(R, R) has just one element / and 
M (f, A \JR) = M (f, R) has M(f) elements g. Consequently, D(tn;f,û) = M (f), 
and (III) is satisfied. 

These trivial cases aside, we now turn to the main case, where \f\ = 
m + \ù\, m > 0 and \û\ > 0. For each n Ç No, let S(n) denote the set of natural 
numbers k such that 1 < k < n. We shall establish that (III) holds by describ­
ing a one-to-one correspondence from the cartesian product D(m;f, û, R, A) 
X S(\f\) to the cartesian product 

R X M(f, S(\f\)) X M(û, S(\û\)) X S(n)s^ X S(r2)
s<™ X . . . . 

To given (J, g) Ç P ( w ; f, tï, i?, -4) and s Ç 5(|f|) this correspondence assigns 
a sequence (p, ^, <f>, 6U 62, . . .) such that p G R, \p (z M(f, S(\f\)), <t> G 
M(û,S(\û\)), and for each i G JVi, ^, € ^ ( r , ) ^ ^ . 

We list the elements of the set A in order a,\, a2, . . . , a\û\ and list the ele­
ments of the set R in order b\, Ô2, . . . , bm. These lists are combined to form 
the list Q>\, Q,i, . . . , Q/\u\, 0\, U2i . . . , 0m of the elements of A \J R, and the 
elements of this list are renamed c±, c2, . . . , c\t\. Now, using the given 5 
€ 5(|f |) , we apply the cyclic permutation which puts cs into the first position, 
obtaining the sequence d\, d2l . . . , d\f\, where dt = cs+i-i for s -\- i — 1 
< \f\ and di = cs+i-i-\j\ for s + i — 1 > |f|. The elements ^1, d2, . . . , d\j\ 
are just the elements of A KJ R in a certain order and the given g Ç 
M(f, A \J R) assigns to each of them a ''colour." We transfer this colouring to 
the subscripts in the sequence of d's. The resulting f-colouring of the natural 
numbers 1, 2, . . . , \f\ is the assigned member \(/ of M(f,S(\f\)). 

Relative to the ordering c\, c2, . . . , c\t\ of the elements of A \J R, in which 
the roots occur last, the given/ G F (A \J R, R) determines a Prufer sequence 
of nodes hi, h2, . . . , h\«\ in which the last term is a root. This last term h\û\ 
is the assigned member p of R. 

Although the nodes hi, h2} . . . , h\û\ need not all be distinct, the edges 
(xi, hi), (x2, h2), . . . , (X\Û\, h\û\) in the Prùfer sequence of edges f o r / are all 
distinct. In fact, the nodes Xi, x2, . . . , X\Û\ are just the elements of the set A 
in some order. Since gf\A G M(û, A), if each edge (xj,hj) is coloured with 
the colour of the node hj to which it descends, then a ^-colouring of the edges 
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is obtained. We transfer this colouring to the subscripts in the sequence of 
h's. The resulting ^-colouring of the natural numbers 1, 2, . . . , \û\ is the 
assigned member <£ of M(û,S(\û\)). 

Now let i 6 iVi be any colour. On one hand, there are ut subscripts n in 
the Prùfer sequence hi, . . . , h\û\ for which the node hn is coloured i. We let 
these subscripts in increasing order be ni, n2, . . . , nui. On the other hand, 
there are r* nodes in the sequence di, d2, . . . , d\r\ which have the colour i. 
We list these in order of increasing subscripts and rename them di, d2, . . . , dTi. 
Now for each j satisfying 1 < j < uu let dt{j) be defined by hnj = ddiU)-
The resulting function 0* is the assigned member of S(ri)S(-Ui\ 

Conversely, if we are given a sequence (p, ^, </>, di, d2, . . .) of the specified 
type we can reconstruct the pair ((/*, g), s). We begin by reconstructing the 
Prufer sequence hi, h2l . . . , h\û\. Given the function <j>, we know what colour 
is to be assigned to each of its subscripts. We also know that the last element 
h\û\ is the given element p G R. Thus, the colour i of the element p is known, 
and if the subscripts n in the Prùfer sequence where the node hn is coloured i 
are in increasing order ni, n2, . . . , nui, then we know that the node having 
subscript nui is p. Given the function \p we know what colour is to be assigned 
to each subscript in the sequence du d2, . . . , d\j\. Let the nodes coloured with 
i, the colour of p, be di, d2f . . . , dri. Given the function 07- and using hnj 

— dsi(j) with j = uuwe can determine the position of the root p in the sequence 
di, d2l . . . , dri, and hence also its position in the sequence di, d2, . . . , d\-?\. 
We are now able to determine the natural number s associated with the cyclic 
permutation which carries d, c2l . . . , c\r\ into di, d2, . . . , d\r\. Now all nodes 
in the sequence di, d2, . . . , d\r j are known, and therefore the function g is 
known. Finally, by using the various functions 6 we can determine the nodes 
occurring in the Prùfer sequence. When the Prùfer sequence is known, the 
function / c a n then be reconstructed. 

This completes the proof of Theorem 3. Working with the special case 
where there is only one "colour," we obtain the corollary that the number of 
cycle-free functions from an ^-element set A to itself having a specified m-
element subset B as the set of fixed points is mn7l^m~'1. (This may also be ob­
tained directly from the Prùfer correspondence.) Then, summing over all 
choices of the subset B, we obtain the well-known result that the total number 
of cycle-free functions from A to itself is (n + l)72"1. Also included as a special 
case (involving two colours) is a recent result of Clarke (1). 

8. Formal solution of X = X ^ e x p ( J ^ X ) . It is interesting to restate 
the preceding results in terms of formal series. We suppose that R is a commuta­
tive ring which contains the rational numbers, and we consider the formal 
multiple power series algebra with coefficients in R which consists of the 
functions / : P X P —> R. Using indeterminates Ai, A2, . . . ; Bu B2, . . . , 
and letting ÂrBu stand for 
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A1
riA2

r2...B1
uiB2

U2. . . , 

a typical element/ of this power series algebra takes the form E/ ( f , û)ÂTBli
f 

where the sum extends over all pairs (f, û) G P X P . Sums, scalar multiples, 
and products in this algebra are defined in the usual way; in particular, for 
products we have 

(E/(f, Û)ÂTB»)(Z g{h V)A"B'V) = E HI w^Ë*, 

where h(t,w) = ^L,f(r,v)g(s,v), this last sum extending over all f, s, û, v 
such that f + s = I and û + v = w. 

Now working with the X(m;r, u) defined in (*) at the end of §5, let us 
look at the particular formal power series 

X = ZX(U ?,*)£*&. 

First, by using the convolution formula (II')» we can prove inductively that 
the powers of X satisfy 

Xm = E X ( m ; f , ^)Â?£*. 

Then by applying (I') we have 

X = E X(l;f,û)Â?5* = E ( Z m^X^f - ëuû - kë.yjA^B^ 

where (r,û) £ P X P and (i, k) G iVi X N0 must satisfy f > ë* and w > fee*. 
Inverting the order of summation, we may write 

x = E (feir^iSA E * (* ; f - ^i. « - kët)!7-1'!?-*'9*), 

where (i, k) G iVi X iV0 and (f,û)Ç;PXP must satisfy f — ë* > Ô and 
TZ — kêt > 0. Since (f — ëiy û — ket) may take any value in P X P , we may 
simplify this to 

oo oo oo 

X = £ (fe!)-\4,B,*X* = E -4, E (fcir^B.X)* = £ .4,expCB4X). 

These observations are summarized in the following theorem. 

THEOREM 4. Let X(m; f, u) be defined by (*) of §5 and (III) 0/ §7. Then the 
formal power series X = *£, X(l;f, û)ÂrBu is a formal solution of the equation 

00 

E AtexpiBiX) =X. 

In the special case where there is just one colour, this theorem yields the 
familiar result that the solution of z = we2 which vanishes when w = 0 is 
given by the series 

00 

2 = E («n~7«!K. 
7 1 = 1 
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