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ISOMORPHISM CLASSES OF 
GRAPH BUNDLES 

JIN HO KWAK AND JAEUN LEE 

ABSTRACT. Recently, M. Hofmeister [4] counted all nonisomorphic 
double coverings of a graph by using its Z2 cohomology groups, and 
J. Kwak and J. Lee [5] did the "same work for some finite-fold cover­
ings. In this paper, we give an algebraic characterization of isomorphic 
graph bundles, from which we get a formula to count all nonisomorphic 
graph-bundles. Some applications to wheels are also discussed. 

1. Graph Bundles. Let G be a finite simple connected graph with vertex 
set V(G) and edge set E(G), and let |X| denote the cardinality of a set X. The 
number /3(G) = \E(G)\ — \V(G)\ +1 is equal to the number of independent cycles 
in G and it is referred to as the Betti number of G. We denote the set of vertices 
adjacent to v G V(G) by N(v) and call it the neighborhood of a vertex v. A 
graph means a finite simple graph throughout this paper. 

A graph G is called a covering of G with the projection p : G —» G if there 
is a surjection p : V(G) —• V(G) such that P\N(V) • N(v) —•+ N(v) is a bijection 
for any vertex v G V(G) and v G p~x{v). We say that G is an n-fold covering 
of G if the covering projection p is «-to-one. 

Every edge of a graph G gives rise to a pair of oppositely directed edges. We 
denote the set of directed edges of G by D(G). By e~l we mean the reverse 
edge to an edge e. Each directed edge e has an initial vertex ie and a terminal 
vertex te. Following [3], a permutation voltage assignment </>ona graph G is a 
map (j> : D(G) —* Sn with the property that (j>(e~x) = (j>(e)~l for each e G D(G), 
where Sn is the symmetric group on n elements { l , . . . , n } . The permutation 
derived graph G^ is defined as follows: V(G^) = V(G) x { l , . . . , n } , and for 
each edge e G D(G) and j G { 1 , . . . , n} let there be an edge (e, j) in D(G^) with 
*'(<?,./) = (U,j) a nd f(ej) = (te,(j)(e)j). The natural projection p^ : G^ —• G is a 
covering. An ordinary voltage assignment <j> on G, with values in a finite group 
r , is a map </> : D(G) -* T such that ^O"1) = </>(e)-1 for each e G D(G). The 
ordinary derived graph G x^T has the vertex set V(G) x Y and the edge set 
E(G) x T. An edge (e,g) has / ( ^ = (/e,g) and t(e,g) = {te,<j>{e)g). The natural 
projection p<f> : G x^T —+ G commutes with the left multiplication action of the 
<j)(e) and the right action of T on the fibres p^l(v), v G V(G), which is free and 
transitive, so that p^ is T-regular. It is well-known [3] that every covering (resp. 
regular covering) graph G of a given graph G can be described by a permutation 
(resp. ordinary) voltage assignment </> such that the edges of an arbitrary fixed 
spanning tree T of G are assigned identity voltages. 
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We now consider a triple of the form (X,/?, G), where X is a graph and p is 
a cell preserving projection of X onto G, written p : X —• G. The graph G is 
called the base and X is the total graph of the triple (X,/?, G). Here we allow p 
to be degenerate. In other words, p maps vertices to vertices, but an image of 
an edge can be either an edge or a vertex. We say that an edge e is degenerate 
if p(e) is a vertex, and non-degenerate otherwise. The projection p thus induces 
a (fundamental) factorization X = G UR of X into G and R, where if D is the 
set of degenerate edges then R — (V(X),D) contains all degenerate edges and 
G = (V(X),E(X)—D) contains non-degenerate ones. For each vertex v G V(G) 
we define a fibre of v to be the graph Rv = p~l(v). Obviously, R = Uvev(G)Rv 

Let F be a graph. A triple p : X —• G will be called a gra/?/z bundle with fibre 
F (or, briefly, an F-bundle) [6] if the following three conditions are satisfied: 

(a) Each fibre Rv is isomorphic to F. 
(b) p — /?|ç : G —• G is a |V(F)|-fold covering projection; this implies that 

for an arbitrary edge e G D(G) the set of p~l(e) of the lifted edges induces a 
bijection </>, : V(Rie) ->V(Rte). 

(c) Each mapping <j>e determines a graph isomorphism <\>e : /?^ —> 7?,e. 
To construct an F-bundle over an arbitrary graph G one can proceed as fol­

lows. Take a permutation voltage assignment <j> on D(G) into 5|V(F)| with values 
in the automorphism group Aut(F) of the graph F. Define a graph X so that 
V(X) = V(G*) and X = G^ U /?, where R = (G - E(G)) x F is the cartesian 
product. We denote the resulting graph X by G x^ F. Then X is clearly an 
F-bundle over G. Conversely, every F-bundle over G admits such a description. 
More precisely, if (X,p, G) is an arbitrary F-bundle then G admits a permutation 
voltage assignment <j> and there is an isomorphism T : X - > G x ^ such that 
the diagram 

X Gx<t>F 

commutes. 
Clearly, a graph bundle is just an «-fold covering graph if its fibre F is the 

complement Kn of the complete graph Kn of n vertices. Intuitively speaking, a 
graph bundle is the 1-skeleton of a fibre bundle where both the base and the 
fibre are graphs. 

2. A characterization of isomorphic F-bundles. Let G be a graph and let 
T be a group of (graph-) automorphisms of G. 

DEFINITION 1. Two F-bundles Gx^F and G x^F are isomorphic with respect 
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to r if there exists an isomorphism O : G x^ F —> G x^ F and 7 G T such that 
the diagram 

Gx?F o -> Gx^F 

• 

> G 

commutes. We write Gx^F ĉ p Gx^F. The corresponding isomorphism classes 
are called F-bundles over G with respect to T. 

Example. It is well-known that the torus and the Klein bottle are the only 
topological bundles over the 1-sphere with the 1-sphere as fibre. Let's triangu­
late the 1-sphere as the complete graph K?>. Then their total spaces receive the 
structure of 2-dimensional complexes and their 1-skeletons are graph bundles 
with base K^ and fibre K3. But Figure 1 gives total graphs of at least three 
nonisomorphic graph bundles with base K^ and fibre K3. 

It will be shown later that any graph bundle with base K3 and fibre K$ is 
isomorphic to one of three bundles in Figure 1. Graph bundles of Types I and 
III are 1-skeletons of the torus, and a graph bundle of Type II is a 1-skeleton 
of the Klein bottle. 

An isomorphism class of F-bundles over G can be characterized through the 
corresponding equivalence class of functions (/> : D(G) —-> Aut(F) such that 
<j>(e-x) = <l>{eTx. 

Let C°(G; Aut(F)) denote the set of functions / : V(G) —• Aut(F) and 
let CX{G\ Aut(F)) denote the set of functions <j> : D(G) —• Aut(F) such that 
(j)(e~l) = <j>{e)~x. Note that the set CX(G; Aut(F)) can fail to be a group with 
pointwise multiplication. 

We define T-actions on the set C°(G; Aut(F)) and on the set CX{G\ Aut(F)) 
as follows: 

and 

7(/)(v)=/(7"1(v)) 

!{<i>){e) = <j>(l-x(ie)l-
x{te)) 

for any 7 G TJ G C°(G; Aut(F)), and </> G CX{G\ Aut(F)). 

THEOREM 1. Two F-bundles G x^ F and Gx^ F are isomorphic with respect 
to T, T ^ Aut(G), if and only if there exist leTandfe C°(G; Aut(F)) such 
that l'x^{e) =f(te)(t)(e)f(ie)-

x for all e G D(G). 
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Type I 

GUR with G 

Type II 

GUR w i t h G 

Type III 

GUR w i t h G 

Figure 1. Three nonisomorphic graph bundles 
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Proof. Assume that G x^ F ~r G x^ F with an isomorphism O : G x* F —> 
G x^F . Then 0|p-.(v) : pjl(v) -*/fy,(7(v)) is an isomorphism for all v G V(G) 

and for some 7 G T. Now, we define/ : V(G) —> Aut(F) by/(v) = ^ - ^ v ) 

for all v G V(G). If (/e,/z) is joined to (te,k) in G x^ F, then </>0)(/i) = k and 
(l(ie\f(ie)(h)) is joined to (l(te)J(te)(k)) i n G x ^ F . Thus 

for all g G £>(G). Conversely, define O : G x^ F -> G x^ F by 0>(v,/i) = 
(7(v),/(v)(A)) for any (v, A) in V(G x^ F). If ( I ^ / I ) is joined to (teik) in G x^ 
F, then (f)(e)(h) = £ and <S>(ie,h) = (l(ie),f(ie){h)) is joined to Ofo,fc) = 
(l(te),f(te){k)). Thus O is the desired isomorphism to complete the proof. • 

Let F be a fixed spanning tree in G with root vo. Define a map S # : 
C^G; Aut (F)) —• C°(G;Aut(F)) as follows: for any v G V(G) there exists 
a unique path e\e2- — em in the tree F from vo to v and we define 

3*(0)(v) = (#ew) • • • <Kex)y
x = <Kexr

l - • • ^ m ) - ! . 

We write 

C|(G; Aut(F)) = {(/) G C'(G; Aut(F)) : <j>{e) 

= identity for each e € D(T)}, 

and define S* : C\G\ Aut(F)) - • C|(G; Aut(F)) by 

3*(Me) = S#((/))fe)</>(e)3#((/>)(/,)-1 

for any <j> G C1 (G; Aut (F)) and any e G D(G). Then, 3* is clearly well-defined 
and the identity on C\(G\ Aut(F)). Hence, we have 

COROLLARY 1. Any F-bundle G x^ F over G, <\> G CX(G\ Aut(F)), w isomor­
phic to an F-bundle G x^ F with respect to the identity automorphism of G for 
some V?G C\(G\ Aut (F)). 

3. Some counting formulas. Let F be a fixed spanning tree of G and let 
Aut(G, F) denote the subgroup of Aut(G) consisting of all automorphisms / of 
G fixing F, i.e., f(T) = T. Then for any subgroup T of Aut(G, F), the subset 
C|(G; Aut (F)) of CX(G\ Aut(F)) is invariant under the T-action. Denote the 
number of nonisomorphic F-bundles over G with respect to a subgroup T of 
Aut(G) by Isop(G; F). From now on, we only consider a group T of automor­
phisms of G which fix a given spanning tree F of G and voltage assignments 
<t> which are in C|(G; Aut(F)). Note that |C|(G; Aut (F))| = |Aut(F)|^(G), and 
it will be used later. Let F* denote the cotree of F in the graph G. 
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THEOREM 2. Gx^F ~ r Gx^F if and only if there exists G T and g G Aut (F) 
such that 7 _ 1 V>0) = g<t>{e)g~l for all e G D(T*) = D(G) - D(T). 

Proof Since both 7_1,0 and </> are identity on the spanning tree T, the map / 
satisfying 7_1/0(£) = f{te)<t>{e)f(ie)~X must be constant. The proof is now clear 
by Theorem 1. • 

LEMMA 1. For any 7 G T, any <j> G C|(G; Aut (F)), and any g G Aut (F), we 

have g{l<t>)g-{ ^l{g(j>g-{). 

Proof For any edge e in D(G), {g{Kj>)g-{)(e) = gO<j>(e))g-{ = 
g(W(ie)l-

l(te)))g-1 = l{g(t>g-x){e). D 

With the conjugate action of Aut (F) on C\(G\ Aut (F)), we define an action 
of the product group T x Aut(F) on C^(G; Aut (F)) by (7,g)(<£) = 7(g</>g-1) 
for (7,g) G r x Aut(F) and </> G C|(G; Aut (F)). It is well-defined by Lemma 
1. Now, Burnside's Lemma and Theorem 2 give 

THEOREM 3. For any subgroup T of Aut(G, T) 

b0r(G;F)=|r||AÙt(F)l S |FiXl | A u t ( F ) | ^ i—<%*)!> 

where Fix(7,g) = {0 G C|(G; Aut (F)) : (7,g)<£ = 0}. 

It is easy to show that if (7i,gi) and (72, £2) are conjugate in T x Aut(F), 
then |FiX(7l^,)| = |Fix(72^2)|. Thus, we can rewrite 

THEOREM 4. For any subgroup T of Aut(G, T) 

1 
I S ° r ( G ; F ) = lrllAut(F)l £ i C ^ l l F i x o , ._)b 

where (7, g) runs over all representatives of the conjugacy classes of F x Aut (F), 
and C(7,g) denotes the conjugacy class of{l1g)inTx Aut(F). 

Every group is isomorphic to the automorphism group of some graph and 
many graphs can have the same automorphism group. For example, the auto­
morphism group of a graph F is isomorphic to that of its complement F, and 
with four small-order exceptions, the automorphism group of a connected graph 
is isomorphic to that of its line graph (see [8]). 

COROLLARY 2. If Aut(Fi) is isomorphic to Aut(F2), then Isop(G;Fi) = 
Isor(G;F2). 

COROLLARY 3. IfTis trivial, then 

Iso{1}(G ;JF)= Î ^ ^ ^ |C^)| |Fixg | , 
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where g runs over all representatives of conjugacy classes of Aut(F), and C(g) 
is the conjugacy class of g in Aut(F). 

If G is tree or Aut(F) is trivial, then C\(G\ Aut (F)) is trivial and Isop(G; F) — 
1 for any T. Hence, we have 

COROLLARY 4. (a) Any two bundles over a tree G with the same fibre are 
isomorphic with respect to any subgroup T of Aut(G). (b) Any two bundles over 
a graph G with a fibre having the trivial automorphism group are isomorphic 
with respect to any subgroup T of Aut(G). 

Consider the case that Aut(F) is abelian, so that the action of Aut(F) on 
Cj(G\ Aut (F)) is trivial. Then the isomorphism classes of F-bundles G x^ F 
over G for <j> G C|(G; Aut (F)) depend only on the T-action. Hence, Burnside's 
Lemma gives 

THEOREM 5. If Aut (F) is abelian, then 

Isor(G;F)=^- J2 lFix^l 

for any subgroup T of Aut(G, T). In particular, if T is trivial 

Iso{1}(G;F)= |Aut(F)|^(G). 

Next, we aim to find a formula to find |Fix(7^)| for a given (7, g) in Tx Aut (F). 

LEMMA 2. Let <f> be an element in Fix(7^). Then the voltage (j)(lne) is com­
pletely determined by the voltage (j){e) for all n and e G D(G). 

Proof For any <j> G Fix(7^) and for any e G D(G), 

<j>(e) = g(<t>{l-\ie)l-\te)))g-x 

= g2($(l-2(ie) l-\te)))g-2 

= g\<Kl-\ie) l~\te)))g-3 

Hence, for all n 

<j>{lne) = gn<t>{e)g-\ • 

Since all voltages are assumed to be the identity on the tree F, we need to 
consider only the voltages of edges which are in the cotree T* of T. 

For an element 7 in T, we define an equivalence relation ~ 7 on D(T*) — 
D(G) — D{T) as follows: e\ ~ 7 ei if and only if e\ — 7^2 for some I. Note 
that if (j) is an element of Fix(7^)7 then the voltages <j> in an equivalence class 
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[e] containing e are completely determined by the voltage of (f>(e), by Lemma 
2. An equivalence class [e] of e is called of class 1 if e and e~x are contained 
in the same class, and of class 2 otherwise. For any edge e G D(T*), we define 
a number 77(7, e) to be the smallest natural number £ such that e~l = lle if [e] 
is of class 1, and the smallest natural number £ such that e = lle if [e] is of 
class 2. This number is well-defined because 7 has finite order in T. 

Now, for an element <\> in Fix(7^) the voltage (f>(e) of e must satisfy 
g*vty(e)g-'/(V) = ^ - 1 if [e] is of class 1, and g^^<l>(e)g-^e) = </>(e) if 
[e] is of class 2. Denote that 

/ten) = {/ JGAut(F):g' '%-" = / l-
1} 

and 

Z(gn) = {he Aut(F) : gnhg-n = h} 

as a subset of Aut(F). Now, for <j> G Fix(7?<?) the voltage </>(<?) of £ must be 
contained in /(g^7 '^) if [̂ ] is of class 1, and contained in Z(g^1,e)) if [e] is of 
class 2. Note that if [e] is of class 2, so is [e-1]? and the voltages of edges in 
[e~l] are also completely determined by the voltage of (j){e). Hence, we get the 
following formula to compute |Fix(7g)|: 

THEOREM 6. 

iFix(̂ )i=[ n i^^ilf n WM)\\2, 
\[e]eClass\ J V[e]eClass2 J 

where the product over the empty index set is defined to be 1. 

Let T be trivial. Then, every edge in D(T*) is of class 2, and for any g G 
Aut(F), <f) is contained in Fix^ if and only if <f>(e) G Z(g) for every positively 
oriented edge e in D(T*). Hence, we get 

COROLLARY 5. IfTis trivial, then 

|Fix,| = |Z(£)rG ) 

for any g G Aut(F). 

We recall that a bundle having F = Kn as fibre over G is an «-fold covering 
of G and that each permutation in A u t ^ ) = Sn can be resolved into a product 
of disjoint cycles in a unique manner up to the order of the cycle factors. And, 
each conjugacy class C(g) of Sn is determined by the cycle type (£1, • • •, £n) 
of g, where Ik is the number of cycles of length k in the factorization of an 
element g in Sn into disjoint cycles, so that £\ + U2 + • • • + n£n — n. Then 
\Z(g)\ = £x\2

ln2\ ->nl»ln\ if g is of the cycle type £ = (l\,--,ln)-
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THEOREM 7. The number of isomorphism classes ofn-fold coverings of G with 
respect to the trivial automorphism group, is 

lso{l}(G;Kn) = J2 W-2'2^ -~nl*lnvf{G)-1. 
ti+2t2+-+nl„=n 

Proof Clearly, Aut(Kn) = 5„, |Aut(£„)| = n ! and \C(g)\ \Z(g)\ = rc ! for any 
g £ Sn. The theorem comes from Corollaries 3 and 5. D 

For example, the number of isomorphism classes of «—fold coverings of the 
complete graph Km with respect to the trivial automorphism group, is 

lso{l](Km;K„)= J2 (til2t*e2\---n
t-tnrf'*H-3). 

li+2i2+'~+ntn=n 

If Aut(F) is abelian, then the set I(gn) is the subgroup of Aut(F) consisting 
of all elements of order 2, and Z(gn) is the total group Aut(F) for all n. Hence, 
if we denote «(F) = \{g G Aut(F) : g2 = identity}|, o(F) = |Aut(F)|, and the 
number of equivalence classes in D(T*)/ ~ 7 of class j by «/(7) for j = 1, 2, 
then we have 

COROLLARY 6. If Aut(F) is abelian, 

|Fix7| =/c(F)* , (7^(F)i"2(7). 

For example, if Aut(F) = Z *i x • • • x Zpmn, then, by Theorem 5 and Corollary 
6, 

f n \ 5«2(7) 

Iso r(G;F)= ± £ 2°">™ MQ P?) 
' ' 7er Vi=i J 

where a is the number of pt which is 2. In particular, if Y is trivial, then 

Iso{1}(G;F)= (f[p? 

4. Applications to wheels. Let K\ denote the trivial graph with vertex 0 and 
Cm an m-cycle with consecutively labelled vertices 1,2, . . . ,m. Then the join 
Wm — K\ VCm of K\ and Cm is called a wheel for m ^ 3. Let Fm be the spanning 
tree of Wm consisting of all edges incident with the vertex 0. For convenience 
to apply our result, we only consider m ̂  4. 

First we evaluate Isor(Wm;F), T ^ Aut(Wm) when Aut(F) is an abelian 
group. Note that Aut(Wm) is the dihedral group Dm for m ^ 4. Let Dm denote 
the dihedral group generated by two permutations p and r, where r(/) = m+1 — / 

p v ^ ; 
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and p(i) = / + 1. Note that all arithmetic is done modulo m. Then Dm is the 
semi-direct product of Zm and Z2, where Zm and Z2 are cyclic groups generated 
by p and r respectively, and any subgroup T of Aut(Wm) = Dm fixes Tm for all 
m ^ 4. For each pk e Zm, let o(fc) denote the order of pk in Zm and %{k) the 
index of the subgroup generated by pk in Zm. 

With notation discussed before Theorem 6, we first compute «/(7) and 77(7, e) 
for any 7 G Aut(Wm) and e G £>(Wm). Note that an element of Aut(Wm) is 
either of the form rpk or of the form pk, i.e., either a reflection or a rotation. 
Geometrically, we can identify Aut(Wm) = Dm as the symmetric group of the 
regular ra-gons. Hence, for any nontrivial symmetry 7 G Aut(Wm), [e] is of class 
1 and (7, e) = 1 if an edge e is fixed by 7, and [e] is of class 2 and 77(7, e) is 
the order of 7 otherwise. Hence, we get the following lemma. 

LEMMA 3. Let G — Wm, m ^ 4 be a wheel. Then, 

{ 1 if m is odd and 0 ^ k ^ m — 1 

2 (/" m /s ev£« an J 0 ^ k = even ^ ra — 1 

0 j/ra is even and 0 ^ k — odd ^ m — 1, 

flra/ r\{rpk
 1 e) — 1 /or a/ry & and any [e] m D(T*)/ ~Tpk of class 1. 

{
m — 1 if m is odd and 0 ^ k ^ m — I 

m — 2 if m is even and 0 è k = even ^ m — 1 

m ' (/"m w eve/î and 0 è k = odd ^ m— \, 

and rj(rpk
1 e) — 2 for any k and any [e] in D(T*)/ ~Tpk of class 2. 

(c) n\(pk) = 0, tî2(pk) = 2i(k) and rj(pk,e) — o(k) for any k and any e in 
D(T*). 

By Theorem 5, Corollary 6 and Lemma 3, we get the following theorem. 

THEOREM 8. Let Aut(F) be an abelian group, 

(a) If r is the total group Aut(Wm) = Dm, then 

T - [Y,o(Fy(k)+mK(F)o(F)^ I 
m \k=o J 

^0Aut{Wm)(Wm; F) = { 
if m is odd 

if m is even. 

(b) If r ~ Zm w J/ze cyclic group generated by p, then 

t m—1 

IsoZ|B(Wm;F) = - V tf(F)l(*} /or a// m. 
£ - 0 
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Iso Z 2 (W m ;F)= { 

(c) If r ~ Z2 is the cyclic group generated by r, then 

(o(F)m + KiFMF)^) if m is odd 

I \ (o(F)m + KiFfoiF)^} if m is even. 

(d) If r is the cyclic group generated by rp, then 

(o(F)m + KiFMF)*?) if m is odd 
Isor(Wm,F) = 

(o(F)m + o(F)ï if m is even. 

If the fibre F = Kn has only n vertices, then an F-bundle G x ^ F over a graph 
G is an «-fold covering of G. Note that Aut(Kn) is abelian only for n — 2. 

COROLLARY 7. (a) The number of isomorphism classes of double covers of 
Wm with respect to Aut(Wm) = Dm is 

IsoAui(Wm)(Wm\K2) = < 

fm-\ 
— Y^ 2m + rn2^ if m is odd 
2m 

1 

2m 

\k=0 

m-\ 

J2 2l(k) + 3m2n¥ if ml is even. 

a=o 

(b) The number of isomorphism classes of double covers ofWm with respect to 
Lm is 

1 m—\ 

Iso z (Wm;K2) = - V 2%{k) for all m. 
m m *—J k=0 

(c) The number of isomorphism classes of double covers ofWm with respect to 
Z? is 

. m-\ ._ m-\ 

UoZ2(Wm;K2) = 
2~ (2— + 1) if m is odd 

2^{2~ + 1) if m is even. 

In particular, if m is prime 

(d) UoAM(Wm)(Wm;K2)=^-(2m+2m-2 + m2^). 
2m 

(e) lsoZm(Wm;K2) = -(2m + 2m- 2). 

(f) lsoZ2(Wm;K2) = 2 ^ ( 2 ^ + 1). 
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Finally, we consider the general case, i.e., Aut(F) is not necessarily abelian. 
By using Theorems 4, 6 and Lemma 3, we get 

THEOREM 9. Let F be any graph as the fibre of Wm. 
(a) If r is the total group Aut(Wm) = Dm, then 

IsoAut(Wm)(Wm; F) = < 

^\c(E)\[j:\z(go(k)tk) j i_ 
2m ~o~{F) 

+ m\I(g)\\Z(g2)\^ 

m-\ 

if m is odd 

V } 8 Xk=0 

m + - ( | / ( g ) | z + |Z(g2)|)|Z(g 

(b) If T ~ Zm is the cyclic group generated by p, then 

if m is even. 

lsoZm(Wm;F) = - -L- Y\ \C(g)\ [ V \Z(g°W)\*k> I for all m. 
m °{F) g VU J 

(c) If r ~ 7J2 is the cyclic group generated by r, then 

1 l xic(g)i(|z(f)r+|/(g)iiz(g2)i^) 

Iso Z 2 (W m ;F)= { 

2 o(F) 

if m is odd 

2OJF) 
Ô 7^YJ\

C^)mig)\m^\I(g)\2\Z{g2)\^) 

if m is even. 

(d) If r is the cyclic group generated by rp, then 

f 1 1 

I s o r ( W m ; F ) = { 

2 o(F) 

1 1 

^\C(s)\(\Z(g)\m ^\I(g)\\Z(g2)\^) 

g 

if m is odd 

2 o(F) Ei c ^)i ( i z ^)i m + i z ^ 2 ) i ? ) 

if m is even. 

Here, all summations are taken over the representatives g over the conjugacy 
classes of Aut(F). 
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In particular, if the fibre F is Kn,n ^ 3, then we can count the number of 
isomorphism classes of «-fold covering of Wm. Note that |Z(g)| |C(g)| = n\ for 
all g G Sn, where Z(g) is the centralizer subgroup of g in Sn and C(g) is the 
conjugacy class of g in Sn. 

COROLLARY 8. (a) The number of isomorphism classes of n-fold coverings of 
Wm with respect to Aut(Wm) = Dm is 

IsoAut(wm)(Wm; Kn) = < 

iE^I(Ew">r 
g ' - ' ^ k=0 

+ m\I(g)\\Z(g2)\^ ) if m is odd 

• ( * ) iE^(|w»')r 
+ - ( | Z ( g 2 ) | + | / ( g 2 ) | | Z ( g 2 ) | ^ 

if m is even. 

(b) The number of isomorphism classes of n—fold coverings of Wm with 
respect to Zm is 

m-\ 

g k=0 ' V 6 / | 

(c) The number of isomorphism classes of n—fold coverings of Wm with 
respect to Z2 is 

^ E T^-A(\Z(8)\m
 + \I(8)\\Z(g2)\^) 

lsoZ:(Wm;Kn)=<> 

\Z(g)\ 
if m is odd 

5E j~((\z(gT + \i(g)\2\z(g
2)\^) 

if m is even. 

In particular, if m is prime, then 

(d) lsoAut(Wm)(Wm;Kn) = i - V — ! — ((|Z(g)|m + (m - \)\Z{g" 
2m *—* \Z(g)\ 

+ m\l(g)\\Z(g2)\^)) 
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(e) lsoZm(Wm;Kn) = - V ) T ^ T T ((\Z(g)\m + (m - l)|Z(gm)|)). 

//ere, a// summations are taken over the representatives g of the conjugacy 
classes of Sn. 

5. Counting of regular p-fold covering graphs. Let p b e a prime number, 
and let T be a fixed spanning tree in a graph G. For the graph A^ of p vertices, 
Aut(A^) is the symmetric group Sp. Let Zp denote the subgroup of Sp generated 
by the /?-cycle p — (0 1 2 • - -p — 1) in Sp. Then, it is well-known [3] that every 
regular /7-fold covering of G can be considered as an Â^-bundle Gx^ Kp with <j> 
in Cj{G\ Zp), where Cj(G; Zp) denotes the set of functions </> : D(G) —» Zp such 
that (f>(e~l) = </>(̂ )_1 and 0 is the identity on D(T). Let Iso^^G;/?) denote the 
number of isomorphism classes of regular /7-fold coverings of G with respect to 
the identity automorphism of G. 

Let any two coverings G x^Kp and G x^Kp, </>, -0 £ C|(G; Z^), be isomorphic 
with respect to the identity automorphism, then there exists an element a G 
Aut(^) = Sp such that ^(e) = a(f)(e)a~l for all e G D(G)-D(T), by Theorem 
2, and such a must be contained in the normalizer N(Zp) of Zp in Aut(Â^) = 5^. 
But the normalizer N(Zp) of Zp in Sp is the set N(Zp) = {a G Sp : a p a - 1 = p' 
for some i = l , . . . , p — 1}. The Aut(Kp)-action on Cj(G\Kx\t(Kp)) induces 
an A^(Z/?)-action on C^(G;Zp), on which Zp acts trivially. Hence, it induces 
an A^(Zp)/Z/7-action on C^(G;Zp), and the quotient group N(Zp)/Zp is clearly 
isomorphic to the cyclic group of order p — 1. Let us write Ap = N(Zp)/Zp = 
{gb • • • , &>-l} With g;g; = gycmod̂ ). 

THEOREM 10 ([5]) . 

Iso*(G;p) - — ! — ( / ( G ) +/7 - 2). 
1 1 ( / 7 - 1 ) 

Proof Clearly 

, f/(G) ifî = l 
iFixfti = r 

^ 1 otherwise, 
and Burnside's Lemma gives our theorem. D 

COROLLARY 9 ([4]). The number of double covers of G is 

Iso*}(G;2) = 2«G). 

Let r be any subgroup of Aut(G) which fixes a spanning tree T of G. Let 
IsOp(G;/?) denote the number of isomorphism classes of regular p-fold coverings 
of G with respect to T. If we apply Theorem 3 to this situation, we have the 
following theorem. 
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THEOREM 11. 

Iso?(G;p) = | r | Y, lFix(^7)|. 
KP n ' (ghi)eApxr 

COROLLARY 10. The number of double covers of G with respect to Y ^ 
Aut(G; T) is 

I s o £ ( G ; 2 ) = | l YJ 2Kl(7)+^2(7). 
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