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Abstract

High-resolution simulations such as the ICOsahedral Non-hydrostatic Large-Eddy Model (ICON-LEM) can be used
to understand the interactions among aerosols, clouds, and precipitation processes that currently represent the largest
source of uncertainty involved in determining the radiative forcing of climate change. Nevertheless, due to the
exceptionally high computing cost required, this simulation-based approach can only be employed for a short period
within a limited area. Despite the potential of machine learning to alleviate this issue, the associated model and data
uncertaintiesmay impact its reliability. To address this, we developed a neural network (NN)model powered by evidential
learning,which is easy to implement, to assess both data (aleatoric) andmodel (epistemic) uncertainties applied to satellite
observation data. By differentiating whether uncertainties stem from data or the model, we can adapt our strategies
accordingly. Our study focuses on estimating the autoconversion rates, a process in which small droplets (cloud droplets)
collide and coalesce to become larger droplets (raindrops). This process is one of the key contributors to the precipitation
formation of liquid clouds, crucial for a better understanding of cloud responses to anthropogenic aerosols and,
subsequently, climate change. We demonstrate that incorporating evidential regression enhances the model’s credibility
by accounting for uncertainties without compromising performance or requiring additional training or inference.
Additionally, the uncertainty estimation shows good calibration and provides valuable insights for future enhancements,
potentially encouraging more open discussions and exploration, especially in the field of atmospheric science.

Impact Statement

This research employs a cutting-edge approach—deep evidential regression—to predict autoconversion rates from
satellite data. The distinctive advantage of thismethodology lies in its inherent capacity to concurrently assess both data
and model uncertainties, all without requiring additional training or inference steps. This not only reduces the overall
cost but also significantly increases the credibility of the machine learning model. In addition, evidential regression is
easy to implement. By seamlessly incorporating uncertainty estimation into the prediction of autoconversion rates,
evidential regression offers a new perspective that goes beyond prediction. This enhanced credibility and improved
understanding of uncertainties have the potential to foster greater transparency and trustworthiness inmachine learning
results, paving the way for a broader discussion, particularly within the domain of atmospheric science.
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1. Introduction

Future climate projections demand a deeper understanding of interactions between aerosols and clouds
since they constitute the biggest uncertainty in estimating the radiative forcing of climate change (IPCC,
2021). One way to reduce such uncertainty is to understand the interaction between aerosols, clouds, and
precipitation processes.

Aerosols have a dual effect on climate – directly, through interactions with solar radiation involving
scattering and absorbing, and indirectly, bymodifying cloud properties, thereby impacting Earth’s energy
budget. Specifically, high aerosol concentrations can reduce the radius of cloud droplets, thereby
increasing the cloud albedo (Twomey, 1974). At the same time, smaller cloud droplets reduce precipi-
tation efficiency and prolong cloud lifetime (Albrecht, 1989; Gryspeerdt et al., 2019; Bellouin et al.,
2020). This interplay leads to complex feedback mechanisms, making it challenging to accurately
quantify the radiative forcing caused by aerosol-cloud interactions. This complexity contributes to
uncertainties in our understanding of future climate projections.

One of the high-resolution simulations suitable for investigating the intricate interactions among
aerosols, clouds, and precipitation is the high-resolution ICON-LEM (Zängl et al., 2015; Dipankar et al.,
2015; Heinze et al., 2017). Nevertheless, due to the exceptionally high computing cost required, it can
only be employed for a limited period and geographical area. Specifically, running this simulation model
demands around 13 hours on 300 computer nodes, only to generate a single hour of climate data over
Germany, incurring a cost of around EUR 100,000 per simulated day (Costa-Surós et al., 2020).

While machine learning has the potential to alleviate the challenges mentioned (Novitasari et al., 2024,
attached), it is important to note that predictions made by machine learning models may be affected by
noise and model inference errors (Malinin, 2019). In our previous research (Novitasari et al., 2024,
attached), we demonstrated that machine learning can effectively predict one of the key processes of
precipitation, namely autoconversion rates, directly from satellite data. This approach leverages satellite
data, which covers extensive geographical areas and spans over two decades. Because satellite data is both
comprehensive and easily accessible, it enables significant cost savings by reducing the need for extensive
and costly atmospheric simulation data. However, the degree of uncertainty in amodel prediction depends
on both the model itself and the quality and availability of data. These uncertainties might be more
pronounced for climate forecasts, raising concerns about the model’s reliability.

In machine learning, uncertainty can be disentangled into aleatoric and epistemic uncertainties (Der
Kiureghian and Ditlevsen, 2009; Hüllermeier and Waegeman, 2021). Aleatoric uncertainty is related to
data and can be learned directly from the data. It typically does not depend on the sample size.Meanwhile,
epistemic uncertainty is related to the machine learning model or prediction and can be reduced by adding
more sample data to the trained model or refining the machine learning model itself.

In agreement with the concepts discussed by Haynes et al. (2023), in machine learning literature, there
is occasional interchangeability or confusion between the terms ‘aleatoric’ and ‘stochastic’ or
‘irreducible,’ leading to the perception that aleatoric uncertainty is synonymous with irreducible uncer-
tainty. However, the distinction between aleatoric and epistemic uncertainty in machine learning is
context-dependent and hinges on whether the uncertainty is inherent to the data itself or arises from
the model’s limitations, rather than solely based on the stochastic nature of the uncertainty source.

For instance, enhancing a machine learning (ML) model can reduce epistemic uncertainty without
affecting aleatoric uncertainty. Yet, augmenting the dataset with additional features, without increasing its
size, might paradoxically decrease aleatoric uncertainty by providingmore insights into the inherent noise
or randomness in the system, while potentially increasing epistemic uncertainty due to the model’s
inability to capture more complex relationships without more data. This scenario challenges the notion of
aleatoric uncertainty being ‘irreducible’ in the context of ML, as introducing more informative features
can help better characterize and potentially reduce the inherent noise or randomness in the data.

As an example, consider a dataset with sensor measurements. Adding additional features such as
environmental conditions or sensormetadata can help better understand and account for the inherent noise
or randomness in the sensor measurements, thereby reducing the aleatoric uncertainty associated with the
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data. However, this assumes that the additional features are indeed informative and relevant to capturing
the inherent noise or randomness in the data. At the same time, these additional features may also increase
the complexity of the data-generating process, leading to higher epistemic uncertainty for the model until
more data is provided to learn the intricate relationships.

Several approaches for handling uncertainty inML exist. Bayesian Neural Networks (BNNs) (Kendall
and Gal, 2017) are among the most common methods for uncertainty quantification. BNNs incorporate
probabilistic priors over the weights and employ sampling techniques to estimate the variance of the
output. However, BNN models involve high computational costs due to their iterative sampling during
inference. Another prevalent method for uncertainty estimation is deep ensembles (Lakshminarayanan
et al., 2017), which offer a simpler implementation compared to BNNs. Nonetheless, they are also
computationally very expensive as they require additional training. In practical applications, implement-
ing BNNs or deep ensemble models is often more challenging and involves slower computational
training/inference when contrasted with non-Bayesian Neural Networks and models without ensemble
methods.

In our study, we advocate for the adoption of deep evidential regression (Amini et al., 2020; Meinert
et al., 2023) as an alternative. Deep evidential regression provides a compelling framework for uncertainty
modeling without the inherent computational burden associated with Bayesian NNs and ensemble
models. Unlike these approaches, evidential deep learning seamlessly integrates uncertainty quantifica-
tion into the learning process, eliminating the need for extra training or inference steps. In addition, it is
easy to implement in practice.

Thus, the aforementioned issues are addressed in this study by employing deep evidential regression
and the massive collection of satellite data, providing long-term global spatial coverage up to several
decades. Specifically, we aim to address the well-known issue of overconfident predictions in ML
algorithms, which frequently overlook the inherent variability and randomness in atmospheric physical
processes. For example, traditional models might predict a specific amount of rainfall in a given area, but
they often overlook the inherent randomness introduced by sensor noise or measurement errors. Even
high-quality sensors can have variability in their readings due to factors such as slight calibration
differences or environmental interference. This randomness, known as aleatoric uncertainty, results in
predictions that seem more precise than they actually are, as the model might not fully account for the
randomness in the sensor data. Additionally, many ML models suffer from epistemic uncertainty, which
arises from limitations in the model itself, such as insufficient data to fully capture complex atmospheric
dynamics. When models fail to account for these uncertainties, they produce overconfident predictions
that can mislead decision-makers, particularly in the context of climate modeling where accurate
uncertainty quantification is crucial.

We focus in particular on autoconversion rate estimation since this is one of the key processes in the
precipitation formation of liquid clouds, hence crucial to better understanding cloud responses to
anthropogenic aerosols and, ultimately, climate change.

Our current work represents a continuation and enhancement of our previous research efforts. Our
previous work (Novitasari et al., 2021; Novitasari et al., 2024, attached) also considered the prediction of
autoconversion rates from satellite data; however, we have not quantitatively assessed the inherent
uncertainty in our previous findings. In our previous research, we proposed predicting autoconversion
rates directly from satellite data via a two-stage process: first, we trained, validated, and tested the
autoconversion rates using simulation model output (ICON); then, we used the best model to predict the
autoconversion rates directly from satellite data (MODIS). We explored various ML models, including
random forest (RF), shallow neural network (NN), and deep neural network (DNN), but found that the
performance differences among them were not significant. This led us to hypothesize that altering the
architecture of the ML model with the same dataset might not substantially improve performance. We
suggested that incorporating uncertainty estimation could be a valuable direction for future research to test
this hypothesis. In this manuscript, we address this hypothesis by integrating uncertainty quantification
methods, thereby enhancing the robustness and interpretability of the predictions. This work offers a
computationally effective solution while still obtaining accurate predictions of autoconversion rates with
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deep evidential learning, which also quantifies data and model uncertainties without the need for
additional training or inference.

Our paper is structured in the following manner: Section 2 provides a detailed exploration of the
methodology utilized in our study, covering aspects such as datasets, ML models, procedures employed,
and the evaluation of these models. Proceeding to Section 3, we showcase a range of experimental results.
This includes hyperparameter selection for the evidential regression models and the uncertainty evalu-
ation, followed by autoconversion rate prediction results using the chosen model on both simulation and
satellite data, and then uncertainty estimation for both simulation and satellite data. Finally, in Section 4,
we conclude our paper by providing a number of summary remarks and proposing potential areas for
future research.

2. Methodology

We present a novel approach for direct autoconversion rate extraction from satellite observation, which
includes the estimation of data and model uncertainties via evidential regression. The general framework,
as illustrated in Figure 1, involves climate science-based steps for generating training and testing datasets,
along with an ML framework incorporating uncertainty quantification methods, as elaborated in the
following section. We would like to emphasize again that this work builds upon our previous research
(Novitasari et al., 2024, attached). The methodology is very similar to our earlier work, with the key
addition of incorporating uncertainty quantification methods.

In general, the left-hand side of the figure illustrates howwe extract the input–output pairs used to train
and test our ML models from the outputs of the atmospheric simulation models, ICON-LEM and ICON-
NWP. Details regarding the datasets are described further in Subsection 2.1.

During theML framework preparation, we train and validate themodels using the evidential regression
approach. This involves selecting the best hyperparameters and evaluating the calibration of the
uncertainty estimation, as detailed in Subsection 3.1, as well as experimenting with different evidential
models, as described in Subsection 3.2.

Once the model training and validation are complete, and we ensure that our uncertainty evaluation
shows good calibration, we proceed with model testing and further uncertainty quantification. In the
model testing phase, similar to our previous research (Novitasari et al., 2024, attached), we assess the

Figure 1.General framework. The left side of the image illustrates the climate science-based procedures
we apply to our dataset to generate input–output pairs for training and testing. The center of the image
represents our ML framework, which also includes uncertainty quantification. The right side depicts the
satellite observation data we used and the procedure to predict the autoconversion rates from the satellite
data, including its inherent uncertainty. 1 ICOsahedral Non-hydrostatic Large-Eddy Model; 2

Uncertainty Quantification; 3 Moderate Resolution Imaging Spectroradiometer.
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performance of our model for predicting autoconversion rates against simulation model output in the
initial stage, as detailed in Subsection 3.3. In the second stage, shown on the right-hand side of the figure,
we predict autoconversion rates directly from satellite data using our chosen (best) model, as detailed in
Subsection 3.4. Although this may appear similar to our previous work, the goal is to demonstrate that
incorporating evidential regression enables effective uncertainty quantification without compromising
model accuracy. Additionally, we provide uncertainty quantification for both data and model across both
stages: simulation and satellite data, as described in Subsection 3.5.

2.1. Data

For our research, we utilize datasets derived from ICON-LEM output over Germany on 02 May 2013, a
day characterized by distinct cloud regimes that enable the exploration of various aspects of cloud
formation and evolution (Heinze et al., 2017). As described in the study conducted by Costa-Surós et al.
(2020), the cloud regimes over ICON-LEM Germany on 2 May 2013 included low-level clouds
(Cumulus, Stratocumulus, Stratus), mid-level clouds (Altocumulus, Altostratus, Nimbostratus), high-
level clouds (Cirrus, Cirrostratus), and deep convective clouds.

The specific time window of investigation spans from 09:55 UTC to 13:20 UTC with random
timesteps. The total number of ICON-LEM images used for training, validation, and testing in this study
is five images. We first split the dataset into 80% for training (including validation) and 20% for testing.
For this initial split, we divided the data at the image level, where the first four images (based on the
timestamp) were used for training and validation, and the last imagewas used for testing. Thismethodwas
chosen to simplify the visualization of the test results, and the selection of the last image for testing was
arbitrary, as the order of the images is not critical.

After preprocessing, we further split the training set into 80% for training and 20% for validation, with
the split performed randomly on the clean data points (pixels). Consequently, the training/validation and
testing sets are independent, with no overlap between them. We focus on ICON-LEM with a native
resolution of 156 m on the ICON grid, subsequently regridded to a regular 1 km resolution to align with
the MODIS resolution. An icosahedral grid divides the surface of a sphere into equilateral triangles,
providing a more uniform distribution of grid points compared to latitude-longitude grids, which can
become distorted near the poles. The number of clean data points after preprocessing, which covers only
cloudy data points, is around 4 million for training and validation.

To further test the performance of our ML model, we use the dataset of ICON numerical weather
prediction (ICON-NWP) Holuhraun which was performed over the North Atlantic Ocean around the
Holuhraun volcano in Iceland. This dataset spans for a week, from 1 to 7 September 2014, with 1-hour
timesteps. During this time, lava was growing quickly, releasing a lot of SO2 into the atmosphere, and
clear volcanic plumes were observed, providing a comprehensive examination to further evaluate the
effectiveness of our MLmodels (Kolzenburg et al., 2017; Haghighatnasab et al., 2022). The ICON-NWP
simulations for the Holuhraun volcano feature a vertical grid with 75 altitude levels, extending up to
30 km, and a horizontal resolution of about 2.5 km.

The ICON-NWP Holuhraun dataset features diverse meteorological conditions compared to the
ICON-LEM Germany. The ICON-NWP comprises a large variety of clouds, including those associated
with cold and warm fronts, as well as marine boundary layer clouds. ICON-NWP primarily occurs over
the ocean, resulting in a cloud regime that is predominantly marine. In contrast, ICON-LEM mainly
occurs over land, leading to a cloud regime that is primarily continental. Both the ICON-LEM and ICON-
NWP simulations utilize the two-moment microphysical parameterization proposed by Seifert and
Beheng (2006). Both datasets include various features such as temperature, pressure, humidity, cloud
effective radius, and cloud optical thickness, among others. However, the final input feature we use is
cloud effective radius only, in alignment with our previous study (Novitasari et al., 2024, attached).

Autoconversion rates in both our training and testing datasets are computed using the two-moment
microphysical parameterization proposed by Seifert and Beheng (2006). Notably, the autoconversion rates
pertaining to cloud tops simulating satellite data are determined based on instances where the cloud optical
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thickness (COT), calculated from top to bottom, exceeds 1. The optical thickness serves as a crucialmeasure
indicating the extent to which optical satellite sensors can capture cloud microphysical details.

Furthermore, in relation to the satellite observation data illustrated on the right-hand side of Figure 1,
we use the Collection 6 of cloud product level-2 obtained from Moderate Resolution Imaging Spectro-
radiometer (MODIS) (Platnick et al., 2017, 2018). MODIS is a widely utilized remote sensing instrument
in Earth science research, operates on both the Terra and Aqua satellites. Terra’s orbit passes the equator
from north to south during the morning, while Aqua’s orbit traverses from south to north in the afternoon.
Terra’s satellite typically passes over around 10:30 am local time, and Aqua’s overpass occurs at
approximately 1:30 pm local time.

2.2. ML models

In this study, our MLmodels were trained with input derived from ICON-LEM output. To clarify, we use
datasets derived from ICON-LEM Germany to train, validate, and test our ML models, and we use
datasets derived from ICON-NWP Holuhraun for additional testing only. The details of the training and
validation data are outlined in Section 2.1,while the testing scenarios/datasets are explained in Section 2.5.
The ML model specifically focuses on the cloud effective radius, a critical parameter in cloud micro-
physical state, commonly obtained from satellite retrievals as highlighted by previous studies (Platnick
et al., 2017; Grosvenor et al., 2018), as input. The resulting output of the ML model, serving as ground
truth, comprises autoconversion rates derived from ICON-LEM output.

We split the data into 80% for training and validation, and 20% for testing, as explained in detail in the
Data section (Section 2.1). To enhance themodel performance, logarithmic transformations are applied to
both the input and output variables for normalization. This normalization process effectively addresses
data presented with extremely small numerical values, thereby improving the model’s stability during
training andmaking the model’s predictions more interpretable. Furthermore, the input variables undergo
additional normalization using standard scaling techniques, as described below.

Consider a collection of labeled examples consisting of the sets X and Y, defined as follows:

X ¼ x1,x2,…,xNf g,
where each xi represents the cloud effective radius (CER) andN represents the size of the collection. Each
instance i corresponds to a real-valued target yi:

Y ¼ y1,y2,…,yNf g,
where yi represents the autoconversion rate. Here, each xi and yi are scalar values (i.e., one-dimensional).

We apply the normalization transformation independently to the single feature xi in the input data X .

1. Calculate the mean μ and standard deviation σ of the logarithmically transformed feature values
across all samples:

μ¼ 1
N

XN
i¼1

log10 xið Þ (2.1)

σ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i¼1

log10 xið Þ�μð Þ2
vuut (2.2)

2. Normalize each feature value xi using the formula:

x0i¼
log10 xið Þ�μ

σ
(2.3)
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The assessment of each model’s performance involves a comprehensive evaluation through the
calculation of various metrics. These metrics encompass R2 (Coefficient of Determination), MAPE
(Mean Absolute Percentage Error), RMSPE (RootMean Squared Percentage Error), PSNR (Peak Signal-
to-Noise Ratio), and SSIM (Structural Similarity Index), all of which are applied to the testing data.

R2 is utilized to assess the overall goodness-of-fit of the model and determine the proportion of
variance in the dependent variable that it captures. MAPE measures the average percentage difference
between predicted and actual values, providing insights into the accuracy of the model’s predictions in a
more interpretable form, particularly through percentage-based errors. RMSPE is a variation of MAPE,
incorporating a square root to give more weight to larger errors and, consequently, to penalize them more
significantly. PSNRmeasures the ratio between themaximum possible power of a signal and the power of
corrupting noise, serving as a metric to evaluate the quality of model predictions. SSIM assesses the
similarity between two images, considering luminance, contrast, and structure. It is particularly relevant in
our study, which involves image comparison between the ground truth and the model predictions.

Prior to calculating each metric, both the actual output and the predicted output are normalized by
transforming them using base 10 logarithms and then scaling them to a range between 0 and 1, ensuring a
fair and meaningful evaluation of model performance across diverse datasets and models.

We then trained and tested deep evidential regression models (Amini et al., 2020;Meinert et al., 2023).
The NN models are trained to infer the hyperparameters of the evidential distribution by applying
evidential priors over the original Gaussian likelihood function. In this study, we exclusively consider
NN models since the utilization of NNs, including DNNs, can be paired with evidential learning,
facilitating the estimation of both aleatoric and epistemic uncertainties without requiring additional
training.

To facilitate comparison, we train our deep evidential regression using two distinct NN architectures.
The first model, referred to as the shallow NN or NN, is a basic neural network with a single hidden layer
comprising 64 neurons. In contrast, the second model, known as the pyramid-shaped DNN, features a
more intricate architecture and a greater number of trainable weights. Both models were also employed in
our previous studies (Novitasari et al., 2024, attached; Novitasari et al., 2021).

TheDNNarchitecture of the evidential regressionmodel consists of five fully connected hidden layers,
with 1024 nodes in the first layer, 512 nodes in the second layer, 256 nodes in the third layer, 128 nodes in
the fourth layer, and 64 nodes in the fifth layer.

For both NNmodels (NN and DNN), the activation function used at each hidden layer is Leaky ReLU.
For the loss function, we use evidential deep regression loss (refer to Section 2.3). Furthermore, the
training was performed using Adam’s optimizer. The batch size and learning rate are set based on
the Keras tuner algorithm (O’Malley et al., 2019). Given our use of evidential deep learning, we modify
the final layer of both models to incorporate the evidential component. For enhanced clarity, Figure 2
presents the visualization of the architecture for our NN evidential model. It involves the input of cloud
effective radius (re) alongside a single hidden layer comprising 64 nodes and 4 outputs, representing γ or

Figure 2. The architecture of our evidential NNmodel, with cloud effective radius (re) as the input and the
autoconversion rate (au or γ) as the output, along with three other evidential parameters: υ, α, and β.
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the autoconversion rate (au), as well as the remaining evidential parameters utilized for calculating data
and model uncertainties (υ, α, β).

We opted for a shallow NN model as our final model due to its ability to produce similar outcomes
while utilizing significantly fewer trainable weights compared to a more complex DNN model, as
elaborated in Section 3.2. Despite the slightly better outcomes produced by the DNN model, the
difference is not statistically significant in our scenario.

In the early stages of our series of experiments, we first selected the evidential hyperparameters and
evaluated the uncertainty estimation, as explained in Section 3.1, rigorously assessing their calibration
through the implementation of the spread-skill plot (Wilks, 2011; Haynes et al., 2023). To further verify
the reliability and calibration of our uncertainty estimates, we also employed the discard test method
(Barnes and Barnes, 2021; Haynes et al., 2023). Both uncertainty evaluation methods are discussed in
detail in Section 2.4.

For the autoconversion rate estimation stages, we first compared our models’ performance against
simulation data (as detailed in Section 3.3). We then leveraged our final model (a shallow NN) to directly
predict the autoconversion rates from satellite data (see Section 3.4). Finally, extending the scope of our
analysis, we calculated the data (aleatoric) andmodel (epistemic) uncertainties, as explained further in the
Experimental Results section (under Section 3.5). This involved not only making predictions but also
estimating the associated uncertainties.

2.3. Evidential regression for uncertainty quantification

To capture the uncertainty associated with the predicted autoconversion rates, we adopt the evidential
regression framework introduced by Amini et al. (2020). However, we incorporate the modified version
as proposed by Meinert et al. (2023).

Amini et al. (2020) approach the regression problem by assuming that the underlying data follows a
normal distribution with an unknown mean (μ) and variance (σ2). This assumption entails assigning a
normal prior distribution (N ) for the mean, and an inverse-Gamma prior distribution (Γ�1) for the
variance, which can be expressed as:

y1,…,yNð Þ�N μ,σ2
� �

μ�N γ,σ2ν�1
� �

σ2�Γ�1 α,βð Þ

(2.4)

In this formulation, N represents the size of the dataset or the number of observations yi. Each
observation yi (for i¼ 1,…,N) represents a data point of the autoconversion rate and is drawn independ-
ently and identically distributed (i.i.d.) from a normal distribution with mean μ and variance σ2. The mean
μ itself follows a normal prior distribution with mean γ and variance σ2ν�1, while the variance σ2 follows
an inverse-Gamma prior distribution with shape parameter α and scale parameter β.

As a result, they obtain a joint prior distribution over μ and σ2 known as Normal-Inverse-Gamma,
characterized by the parameters γ,ν,α, and β, with γ∈ℝ, ν> 0, α > 1, β > 0. To elaborate further, γ serves as
the prior means for μ, representing our initial belief about the data’s central tendency before observing any
samples. ν is related to the measure of the strength or weight of the prior belief μ, with a larger ν indicating
more confidence in our prior mean γ and a smaller ν allowing for more uncertainty. The variance of μ is
given by σ2ν�1, making ν a scaling factor for our trust in the prior mean. α is the shape parameter of the
Inverse-Gamma distribution for σ2, influencing the shape of the variance distribution. Larger α values lead
to a distribution that is more peaked (narrower around its mean), implyingmore certainty about σ2. On the
other hand, β is the scale parameter of the Inverse-Gamma distribution for σ2, affecting the spread of the
variance distribution. A higher β allows the distribution to accommodate larger values for σ2, which
means it can capture a wider range of possible variances and allows for greater variability. These
parameters work together to capture uncertainties in both the mean and variance of the data.
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As shown in Equation 2.4, the target values y1,…,yN , which in our case are the autoconversion rates,
are assumed to be normally distributed (Gaussian). We acknowledge that the distribution of our observed
data, after normalization, does not perfectly follow a Gaussian distribution. This is due to the inherent
complexity of atmospheric simulation data, which aims to capture real-world conditions. Achieving a
perfect Gaussian distribution with real-world data is challenging. However, our data distribution remains
reasonably close to Gaussian, as shown in Figure 3. To quantify this, we computed the Kullback–Leibler
(KL) divergence between our data distribution and a Gaussian distribution. The KL divergence value of
0.02 indicates a relatively small difference, suggesting that while our data distribution is not perfectly
Gaussian, it is sufficiently similar for the purposes of our analysis. KL divergence is a measure of how one
probability distribution diverges from another, with lower values indicating greater similarity. In this
context, a KL divergence of 0.02 suggests that the Gaussian assumption is reasonable for our data, even
though it is not a perfect fit. We have included a discussion of these findings and their implications in
Section 3.5.

Therefore, with the Normal-Inverse-Gamma distribution serving as a prior, the marginal likelihood or
model evidence is established as the probability of an observation, yi, given the parameters of the prior,
denoted asm, wherem¼ γ,ν,α,βð Þ (Amini et al., 2020). In probability theory, this computation involves
marginalizing over the likelihood parameters θ, where θ¼ μ,σ2ð Þ, as follows:

p yijmð Þ¼
Z
θ
p yijθð Þp θjmð Þdθ (2.5)

¼
Z ∞

σ2¼0

Z ∞

μ¼�∞
p yijμ,σ2
� �

p μ,σ2jm� �
dμdσ2 (2.6)

As shown by Equation 2.6, computing the model evidence (marginal likelihood) is generally non-
trivial due to the challenging nature of the double integral, which involves potentially high-dimensional
integration over continuous variables. Nonetheless, in certain cases, such as when using conjugate priors
(where the posterior distribution belongs to the same family as the prior), analytical solutions are possible.

The Normal-Inverse-Gamma (NIG) prior is conjugate to the normal likelihood. This means that when
multiplying the Gaussian likelihood for μwith the Gaussian prior and an inverse-Gamma distribution for
σ2, the resulting posterior distribution remains in the same family as the prior. Put simply, the posterior

Figure 3. Histogram of the log-transformed autoconversion rates.
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distribution of μ and σ2 after observing the data will also follow a NIG distribution. In the case of NIG
priors, the marginal likelihood p yijmð Þ has a closed-form expression and is known to follow a Student’s
t-distribution with 2α degrees of freedom:

p yijmð Þ¼ St yi;γ,
β 1þ νð Þ

να
,2α

� �
: (2.7)

Given a set of xi,yið Þ pairs, where mi ¼ γi,νi,αi,βið Þ¼ f xi;wð Þ, the overall loss function L w;xi,yið Þ for
the NN, as defined by Amini et al. (2020), where w represents a set of weights, is formulated as:

L w;xi,yið Þ¼LNLL w;xi,yið Þþ λLR w;xi,yið Þ, (2.8)

where LNLL represents the negative log-likelihood to maximize the model fit and LR denotes the
regularization term, which is scaled by a regularization coefficient, λ. The NLL term is defined as:

LNLL w;xi,yið Þ¼ 1
2
log

π
νi

� �
�αi logΩþ αiþ1

2

� �
log yi� γið Þ2νiþΩ

� �
þ log

Γ αið Þ
Γ αiþ1

2

� �
0BB@

1CCA, (2.9)

where Ω¼ 2βi 1þ νið Þ and Γ :ð Þ represents the gamma function.
The NLL term focuses on fitting the model to the observed data xi,yið Þ. If the regularization term

LR w;xi,yið Þ is given a low weight (i.e., λ is small), the model heavily prioritizes minimizing
LNLL w;xi,yið Þ. This can lead to overfitting, where themodel fits the training data very closely, potentially
capturing noise as if it were a true signal. As a result, the model becomes overconfident in its predictions, as it
assumes the patterns in the training datawill perfectly generalize to unseen data,which is often not the case. The
regularization term introduces a form of constraint or penalty to the loss function. By increasing the value of λ,
the impact of the regularization termLR w;xi,yið Þ becomes more significant. This helps to prevent overfitting
by discouraging the model from becoming too complex and sensitive to the training data. Instead, the model
remainsmore robust andgeneralizable,which translates to better handling of uncertainty in predictions.When λ
is set too high, the model may become too simple, failing to capture relevant patterns in the data and thus
exhibiting excessive uncertainty in its predictions. The regularization coefficient λ determines the trade-off
between these two aspects, impacting the overall performance and reliability of the model. Choosing a low
value for λ could lead to overconfidence, whereas opting for a high value might result in excessive uncertainty.

Amini et al. (2020) defined the regularization term LR w;xi,yið Þ as:
LR w;xi,yið Þ¼ ∣yi� γi∣ �Φ, (2.10)

whereΦ serves as the total evidence. However, instead of utilizing theL1 error as proposed byAmini et al.
(2020), as shown in Equation 2.10,we employ an adjustment to the residuals by incorporating thewidth of
the Student’s t-distribution (wSt), as suggested by Meinert et al. (2023).

We incorporate the modified version proposed by Meinert et al. (2023) because the regularizer
formulation proposed byAmini et al. (2020) is insufficient for finding themarginal likelihood parameters.
High noise levels in the data can lead to large residuals, which in turn result in large gradients during
optimization. This can negatively affect the training process. To mitigate the impact of these large
residuals caused by high noise, Meinert et al. (2023) propose scaling the residual bywst, which represents
the aleatoric uncertainty. By normalizing the residual with wst, Meinert et al. (2023) aim to reduce the
influence of high noise levels on the gradient magnitudes. This normalization helps to prevent large
residuals, particularly those resulting from high noise, from disproportionately affecting the optimization
process. Consequently, this adjustment inhibits the convergence for large but insignificant residuals
associated with aleatoric uncertainty, allowing the model to focus on reducing more meaningful errors.
This approach effectively creates an adaptive learning mechanism, where the model becomes more
tolerant of errors in high-uncertainty regions while remaining sensitive to errors in low-uncertainty areas.
Consequently, the regularization term can be expressed as:
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LR w;xi,yið Þ¼ yi� γi
wSt

				 				p �Φ, (2.11)

where the parameter p serves as an additional hyperparameter, determining the magnitude of residual
impact within regularization. Additionally, wSt is computed as:

ual�wSt¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βi 1þ νið Þ

αiνi

s
: (2.12)

Intuitively, asMeinert et al. (2023) state, the standard deviation of a normal distribution, approximated by
wst, can be interpreted as the aleatoric uncertainty (ual) of the data (see Equation 2.12). Conversely, the
epistemic uncertainty (uep) is defined by Meinert et al. (2023) as:

uep�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var μi½ �

p ffiffiffiffiffiffiffiffiffiffiffi
E σ2i½ �

p ¼

ffiffiffiffiffiffiffiffiffi
E σ2i½ �
νi

r
ffiffiffiffiffiffiffiffiffiffiffi
E σ2i½ �

p ¼ 1ffiffiffiffi
νi
p : (2.13)

The total evidence, denoted as Φ, is defined as (Meinert and Lavin, 2021; Meinert et al., 2023):

Φ¼ νiþ2αi: (2.14)

As explained by Meinert and Lavin (2021) and Meinert et al. (2023), Equation (2.14) provides a better,
more intuitivemeasure of the total evidence because it directly incorporates both the virtual measurements
for the mean and the variance. In the conjugate prior NIG distribution, parameters νi and 2αi act as virtual
observations that encapsulate our prior beliefs. Therefore, the total evidence is determined by combining
these two parameters. For the uncertainty quantification part, we employMeinert et al. (2023)’s approach
to measure the aleatoric and epistemic uncertainties, as shown in Equations 2.12 and 2.13, respectively.

2.4. Evaluation of uncertainty quantification

We evaluate the calibration of the uncertainty estimation through the implementation of the spread-skill
plot (Wilks, 2011; Haynes et al., 2023). Additionally, to further verify the reliability and calibration of our
uncertainty estimates, we also employ the discard test method (Barnes and Barnes, 2021; Haynes et al.,
2023).

2.4.1. Spread-skill plot
The spread-skill plot assesses the calibration of themodel’s uncertainty estimates across different levels of
predicted uncertainty. It compares the predicted spread (uncertainty) with the actual prediction errors to
determine how well the uncertainty estimates reflect the true uncertainty in predictions.

Algorithm 1 Spread-Skill Plot.

1: Input: Set of xi,yi,byi,σið Þf gNi¼1
2: Output: Spread-Skill plot points Sk ,RMSEkð Þf gKk¼1
3: Bin the data into K bins based on σi
4: for k¼ 1 to K do
5: Sk 1

nk

P
i∈ binkσi

6: RMSEk 
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
nk

P
i∈ bink yi�byið Þ2

q
7: end for
8: Plot Sk vs RMSEk for each bin k
9: return Sk ,RMSEkð Þf gKk¼1

Environmental Data Science e45-11

https://doi.org/10.1017/eds.2024.37 Published online by Cambridge University Press

https://doi.org/10.1017/eds.2024.37


The spread-skill plot algorithm, as depicted in Algorithm 1, aims to assess the calibration of uncertainty
estimates generated by a predictive model across varying levels of predicted uncertainty. It begins by
taking as input a dataset comprising N instances, each characterized by a feature vector xi ∈ℝD, a true
target value yi ∈ℝ, a model-predicted value byi, and an associated uncertainty estimate σi. The algorithm
proceeds by partitioning these instances into K bins based on their respective uncertainty estimates σi.

Within each bin k, the algorithm computes two key metrics: Sk , representing the average predicted
uncertainty across instances in the bin, and RMSEk, which denotes the root mean squared error between
the model predictionsbyi and the true targets yi within that bin. Specifically, Sk is computed as the average
of the uncertainty estimates σi for instancewithin bin k, while RMSEk is computed as the square root of the
average squared differences between byi and yi for those same instances.

After computing Sk and RMSEk for allK bins, the algorithm generates a spread-skill plot by plotting Sk
against RMSEk for each bin k. This plot visually illustrates the relationship between predicted uncertainty
and actual prediction errors across different levels of uncertainty. The spread-skill plot assesses how well
the model’s uncertainty estimates σi align with actual prediction errors. Ideally, points should lie along the
line RMSEk ¼ Sk , indicating well-calibrated uncertainty estimates where predicted uncertainties accur-
ately reflect actual prediction errors. Points below the line suggest underconfidence (overestimated
uncertainty), indicating room for improvement in uncertainty estimation. Conversely, points above the
line indicate overconfidence (underestimated uncertainty), where actual errors are larger than predicted
uncertainties, suggesting potential overestimation of model certainty.

2.4.2. Discard test
The discard test evaluates the reliability of uncertainty estimates by progressively discarding predictions
with the highest uncertainty andmeasuring the accuracy of the remaining predictions. Thismethod checks
whether the discarded high-uncertainty predictions indeed correspond to larger errors.

Algorithm 2 Discard Test.

1: Input: Set of xi,yi,byi,σið Þf gNi¼1
2: Output: Discard test plot points p,RMSE pð Þð Þf g
3: Sort predictions based on σi in descending order
4: Δp step size for p (e.g., 0.1)
5: for p¼ 0 to 1 in steps of Δp do
6: Discard top p �N predictions with highest σi

7: RMSE pð Þ 
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
1�pð ÞN

P
i∈ remaining yi�byið Þ2

q
8: end for
9: Plot RMSE pð Þ vs. p
10: return p,RMSE pð Þð Þf g

The discard test algorithm, depicted in Algorithm 2, evaluates the reliability of uncertainty estimates
generated by a predictive model. It begins by taking as input a dataset comprising N instances, each
characterized by a feature vector xi ∈ℝD, a true target value yi ∈ℝ, a model-predicted value byi, and an
associated uncertainty estimate σi.

The algorithm sorts these instances based on their uncertainty estimates σi in descending order. It then
systematically evaluates the model’s uncertainty estimates by progressively discarding predictions with the
highest uncertainty (σi) in steps determinedbyΔp. For each stepp from0 to1,wherep represents the proportion
of predictions to discard, it computes the root mean squared error of the remaining predictions RMSE pð Þ.

This RMSE measures the accuracy of predictions after discarding the top p �N predictions with the
highest uncertainty. The algorithm generates a discard test plot by plotting RMSE pð Þ against p, providing
a visual representation of how the accuracy of remaining predictions changes with the proportion of
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discarded high-uncertainty predictions. Awell-calibrated model would show a decreasing trend in RMSE
as p increases, indicating that higher uncertainty predictions correspond to larger errors, while deviations
from this trend can highlight issues in uncertainty estimation.

2.5. Testing scenarios

Building upon the methodology of our prior work (Novitasari et al., 2024, attached), where we tested
against various scenarios, this study adopts similar testing scenarios, as follows:

1. ICON-LEM Germany: In this testing scenario, we evaluate the performance of our ML models
using the same data that was utilized during its training process. This dataset encompasses cloud
effective radius and autoconversion rates corresponding to various points in three-dimensional
space, obtained through ICON-LEM simulations conducted specifically overGermany. The testing
dataset differs from that employed for model training, specifically featuring data on 2May 2013, at
1:20 pm. This testing scenario allows us to evaluate the model’s capacity for generalization to
different data within the same region and day, taking into account significant variations of weather
conditions that underwent substantial changes (Heinze et al., 2017). The dataset consists of
approximately 1 million data points.

2. Cloud-top ICON-LEMGermany: In this second testing scenario, we assess the performance of our
ML model by employing the same dataset as in the previous scenario, albeit with a specific focus
solely on the cloud-top information within the data, representing satellite-like data. The dataset
utilized in this testing scenario consists of pairs of cloud-top autoconversion rates and cloud-top
effective radius, corresponding to 2D spatial points. These points represent a specific range of
latitude and longitude, each associated with a particular altitude, specifically the cloud-top height.
We derive this 2D cloud-top data from the 3D atmospheric simulation model by selecting the
feature value at specific latitude and longitude points where the integrated COT exceeds 1. The
integration is carried out by summing values vertically from the cloud-top. The dataset consists of
approximately 200 thousand data points.

3. Cloud-top ICON-NWP Holuhraun: In this final testing scenario, we utilize completely different
data that features diverse meteorological conditions compared to the previous scenarios. Specif-
ically, we utilize cloud-top data from ICON-NWPHoluhraun, collected at distinct locations, times,
and resolutions, in contrast to the data used in the prior scenarios. Details of this dataset can be
found in the Data section (Section 2.1). Similar to the second scenario, the dataset utilized in this
testing scenario consists of pairs of cloud-top autoconversion rates and cloud-top effective radius,
corresponding to 2D spatial points. These points represent a specific range of latitude and
longitude, each associated with a particular altitude, specifically the cloud-top height. In particular,
this involves ICON-NWPHoluhraun data on 1 September 2014 at 1 pm and 4 September 2014 at 2
pm. The dataset consists of approximately 1.7million and 1.5million data points, respectively. The
model’s capacity to generate reliable outcomes when applied to new data (unseen data) is crucial
across various practical applications. This ensures accurate predictions for data not encountered
during training, demonstrating effective adaptability to diverse geographic locations, and show-
casing its capability to deliver optimal results under varying meteorological conditions.

3. Experimental results

In this section, we present the outcomes of our experiments, providing a detailed examination of various
aspects related to our current study. Initially, we delve into the process of selecting the evidential
regularizer (λ), a crucial hyperparameter that significantly influences the performance of our deep
evidential regression models, followed by conducting an evaluation of our uncertainty estimation,
employing two different metrics to assess its calibration. Subsequently, we explored two distinct
evidential ML models we employed—one simpler and the other more complex—providing insights into
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their architectures and comparing the outcomes between the two.Moving forward, we examine the results
of autoconversion prediction using simulation data, followed by the forecasting of autoconversion rates
directly from satellite data. Finally, we showcase the uncertainty of both data andmodel in both simulation
and satellite data, offering a comprehensive overview of the uncertainty estimation inherent in our study.

3.1. Selection of the evidential regularizer and evaluation of uncertainty estimation

In our prior study (Novitasari et al., 2024, attached), we explored diverse ML models for predicting
autoconversion rates. Despite this, we observed that the results exhibited no significant variations among
the different models. Consequently, in this section, we opt for one of the models with a fewer number of
training parameters from the two NN models we intend to develop using evidential regression, as
elucidated in the subsequent section.

Our evidential regression models were trained with varying evidential regularizer coefficients λ
ranging from 1e-2 to 1e-9. This training was based on a shallow NN with a single layer consisting of
64 neurons. λ is a regularization coefficient to scale the regularizer of the evidential regression loss, as
previously explained in Section 2.3. Additionally, followingMeinert et al. (2023), the hyperparameter p –
which signifies the extent of the residual impact within regularization – was chosen with the value of
2. The calibration of uncertainty estimation was evaluated using a spread-skill plot, and the most well-
calibrated coefficient was selected. The results of this experiment are shown in Figure 4.

The best coefficient λwas found to be 1e-6 as it was the closest to the ideal line in the spread-skill plot.
The ideal line represents a scenario where the predicted uncertainty matches the actual error of prediction.
A value above the diagonal indicates overconfidence in the model’s predictions, resulting in an under-
estimation of uncertainties, while a value below the diagonal represents underconfidence, leading to an
overestimation of uncertainties. This alignment signifies a well-calibrated model, wherein the estimated
uncertainties closely approximate the actual uncertainties.

The evaluation of the total uncertainty performance, encompassing both aleatoric and epistemic
uncertainties, played a pivotal role in our investigation of evidential regression applied to simulation
data. In addition to the skill-spread plot, we also employed a discard test to further evaluate the calibration
of the uncertainty estimation. More detailed explanations of the spread-skill plot and the discard test
methods can be found in Section 2.4.

The discard test, presented in Figure 5 as a supplementary evaluation metric, further validates the
model’s calibration by revealing a monotonically decreasing trend from left to right. The discard test
evaluates the reliability of uncertainty estimates by progressively discarding predictions with the highest

Figure 4. The spread-skill plot of the deep evidential regression model (based on shallow NNmodel) with
varying evidential regularizer coefficients.
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uncertainty and measuring the accuracy of the remaining predictions. This method checks whether the
discarded high-uncertainty predictions indeed correspond to larger errors, confirming a systematic and
dependable elimination of low-confidence predictions.

This comprehensive evaluation highlights the evidential regression model’s performance in capturing
both aleatoric and epistemic uncertainties in simulated data. Both the skill-spread plot and discard test
validate the model’s robust calibration, offering valuable insights for potential real-world applications.

3.2. Evidential ML models

To facilitate comparison, we train our deep evidential regressionmodels using two distinct neural network
architectures: a shallow NN and a DNN, as explained in more detail in Section 2.2. We use a lambda
coefficient of 1e-6, determined as the most well-calibrated coefficient based on previous experiments
(refer to Section 3.1 for more details), and additionally, following Meinert et al. (2023), the hyperpara-
meter p was chosen with the value of 2.

Table 1 illustrates the comparison between our ML models utilizing shallow NN and DNN, evaluated
on ICON-LEMGermany on 2May 2013 at 1:20 pm. The table also compares thesemodels when focusing
on the cloud-top of ICON-LEM Germany at the same timestamp. Additionally, Table 1 showcases a
comparison of the ML models on the cloud-top of ICON-NWP Holuhraun data on 1 September 2014 at
1 pm.

The comparison results, as presented in Table 1, demonstrate that all models exhibit comparable
performance, delivering quite good results for different testing datasets and scenarios. Despite the fact that
the DNN model yields slightly better results in our specific scenario, we consider the NN model (our

Figure 5. Evaluation of uncertainty estimation on simulation data (ICON) via discard test.

Table 1. Evaluation of autoconversion rate prediction results on simulation data (ICON) using
evidential ML models, including both shallow neural network (NN) and deep neural network (DNN)
architectures, across various testing scenarios: (1) ICON-LEM Germany, (2) Cloud-top ICON-LEM

Germany, and (3) Cloud-top ICON-NWP Holuhraun

Testing scenario Model R2 MAPE RMSPE SSIM PSNR

1 NN 90.54% 9.14% 11.27% 90.11% 26.30
1 DNN 90.50% 9.19% 11.26% 90.26% 26.29
2 NN 89.88% 10.86% 13.89% 89.96% 25.89
2 DNN 89.95% 10.74% 13.65% 90.18% 25.93
3 (1 Sept) NN 84.39% 8.56% 10.73% 91.50% 25.81
3 (1 Sept) DNN 84.99% 8.39% 10.83% 91.77% 25.98
3 (4 Sept) NN 83.99% 9.26% 11.12% 90.96% 24.79
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current approach) to be preferable since it can achieve comparable outcomes with significantly fewer
trainable weights.

3.3. Autoconversion on simulation data (ICON)

This part is very similar to our previous work (Novitasari et al., 2024, attached); however, the difference
here is that we conduct the same experiment using a differentMLmodel. In our previous research,we used
traditional regression methods and did not include evidential regression. In this continuation work, we
apply an evidential regression model. We aim to show that by employing the evidential model, which
provides both epistemic and aleatoric uncertainties without additional training or inference, we do not
sacrifice the accuracy of the prediction.

We evaluate our NN model using different testing datasets and scenarios associated with the ICON-
LEM simulations over Germany and the ICON-NWP simulations over Holuhraun, as explained in
Section 2.5.

In summary, those testing scenarios consist of the following: (1) ICON-LEM Germany (different
times), (2) Cloud-top ICON-LEM Germany (satellite-like data), and (3) Cloud-top ICON-NWP Holuh-
raun (different date, time, location, and resolution). Through different testing scenarios, as shown in
Table 1, we observe that SSIMvalues for all cases are approximately around 90%,while R2 values are also
around 90% for the German cases.

SSIM ranges from �1 to 1, where 1 indicates perfect structural similarity, 0 indicates no structural
similarity, and �1 would suggest perfect negative structural similarity (which is rare in practice). An
SSIM of 90% indicates high structural similarity between our predicted and ground truth images,
demonstrating that our model effectively preserves important image features and structures.

R2 ranges from 0 to 1 and measures the proportion of variance in the dependent variable that is
predictable from the independent variable(s). An R2 of 90% suggests that our model explains 90% of the
variability in the data, indicating a strong fit between the predicted and actual values. Higher R2 values
generally indicate better model performance, reflecting that ourmodel captures a significant portion of the
data’s variability.

Meanwhile, for the Holuhraun cases, despite having a lower R2 compared to the Germany cases, they
still perform reasonably well. In line with our previous research (Novitasari et al., 2024, attached), the
observed performance decline is expected since our model was trained solely on ICON-LEM Germany
data, rather than ICON-NWPHoluhraun data. Nonetheless, we find that themodel trained on ICON-LEM
Germany data can still be effectively applied to ICON-NWP Holuhraun data without requiring further
re-training, showcasing the model’s robustness.

Regarding theMAPE, the results are mostly less than 10% for all cases. This is further supported by the
fact that the difference between the prediction results and the ground truth, as depicted in Figure 6 for all
cases, are also mostly less than 10%. From the figure, it is evident that despite a slight tendency for
overprediction, as indicated by the dominance of the blue color compared to red in the difference parts on
the right-hand side, the predictions closely resemble the ground truth.

In general, the results presented in Table 1 and the corresponding Figure 6 demonstrate robust
performance. This confirms our approach’s ability to accurately estimate autoconversion rates using
simulation data. Since the results in this study are similar to those in our previous study [Novitasari et al.,
2024, attached], this indicates that we do not sacrifice accuracy by adding the evidential regression
component to our model.

3.4. Autoconversion on satellite observation (MODIS)

Similar to Section 3.3, this part of the study closely parallels our previous work (Novitasari et al., 2024,
attached). However, while the previous work did not utilize evidential regression, this continuation
incorporates it. Our objective is to demonstrate that integrating the evidential model, which provides both
epistemic and aleatoric uncertainties without requiring additional training or inference, does not com-
promise predictive accuracy.
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This stage involves testing our models on satellite data. Specifically, we utilize MODIS data
corresponding to ICON-LEM over Germany and ICON-NWP over the North Atlantic (Holuhraun),
aligning with the testing scenarios outlined in Section 2.5 (scenarios 2 and 3). For the Germany case, the
latitude range spans from 47.50° to 54.50°N, and the longitude range extends from5.87° to 10.00° E. This
dataset was observed on 2 May 2013, at 13:20 local time. Additionally, for MODIS data associated with

Figure 6.Visualization of the autoconversion prediction results of ICON-LEMGermany and ICON-NWP
Holuhraun. The left side of the image depicts the ground truth, while the middle side shows the prediction
results obtained from the NN model. The right side displays the difference between the ground truth and
the prediction results. The top image (a) compares the ground truth and predictions from ICON-LEM
Germany at a resolution of 1 km, while the second image (b) focuses on cloud-top information only at a
resolution of 1 km. The third (c) and fourth (d) figures illustrate the comparison between ground truth and
predictions of the ICON-NWP Holuhraun data with a horizontal resolution of 2.5 km, focusing on cloud-
top information only.
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ICON-NWP Holuhraun, it encompasses latitudes from 60° to 75° N and longitudes from �40° to 0°
E. This dataset was captured on 4 September 2014, at 2 pm local time.

Even though satellite predictions cannot be directly compared with simulation results – due to the fact
that the ICON-LEM simulation does not put clouds in their exact right places – the autoconversion rates
obtained from the simulation output and the predicted autoconversion rates from satellite data demon-
strated statistical concordance, for both Germany and Holuhraun cases, as shown in Figure 7. The mean,
standard deviation, median, 25th, and 75th percentiles of the autoconversion rates of the cloud-top ICON-
LEM Germany and ICON-NWP Holuhraun compared to MODIS are relatively close, especially for the
Germany one. Despite the model being trained on ICON-LEM Germany simulation data rather than on
ICON-NWP Holuhraun data, the autoconversion rates for the Holuhraun case still indicate statistical
closeness between the ICON-NWP Holuhraun simulation and MODIS satellite data predictions. This
implies that our approach is capable of estimating autoconversion rates directly from satellite data.

Since the results in this study are similar to those in our previous study (Novitasari et al., 2024,
attached), this indicates that we do not sacrifice accuracy by adding the evidential regression component
to our model.

3.5. Uncertainty estimation on satellite-like and satellite data

Figure 8 displays the visualizations of aleatoric and epistemic uncertainties on satellite-like data over
Germany. Additionally, Figure 9 illustrates aleatoric and epistemic uncertainties, specifically on satellite
data over Germany. Aleatoric uncertainties are shown on the left-hand side of the figures, while epistemic
uncertainties are shown on the right-hand side of the figures. The brown dot represents the training data
points, with the brown line depicting the predictions. Additionally, the purple blob represents both
aleatoric and epistemic uncertainties, with darker purple indicating one standard deviation of the
uncertainty and the brighter purple showing two standard deviations of the uncertainty. The pink line,
available only in simulation data, represents the ground truth.

As mentioned in Section 2.3, our data (normalized autoconversion rates) does not follow a perfect
Gaussian distribution. However, it is still reasonably close to Gaussian and can still be used for the
purposes of this study. The implications of this are evident in the uncertainty quantification results, where
the data is not symmetrically distributed around the modeled uncertainties, as observed in Figures 8 to 11.

Figure 7. Mean, standard deviation (Std), median, and percentiles (p25, p75) of cloud-top ICON and
MODIS variables over Germany (a and b) and Holuhraun (c and d): cloud effective radius (CER) and
autoconversion rates (Aut).
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Based on these results, we infer that the greater the deviation of the data from a Gaussian distribution, the
more pronounced the asymmetry in the distribution of the uncertainties.

From these figures, we also see that some data points fall outside the uncertainty bounds. This does not
imply that the results are invalid. While the uncertainty quantification is not perfect, it remains a useful
tool for interpreting the data. Themajority of data points fall within the uncertainty bounds, demonstrating
that the uncertainty estimates are generally reliable, even though a small proportion of data points fall
outside the expected range. This conclusion is further supported by the evaluation of the uncertainty
estimation itself, as explained in Section 3.1.

Turning to the results of the uncertainty quantification itself, these plots reveal a broader range of
aleatoric uncertainty compared to epistemic uncertainty. This observation aligns with the fact that a single
independent variable can correspond to multiple ranges of dependent variables, as demonstrated in

Figure 8. (a) Aleatoric and (b) epistemic uncertainty estimates of autoconversion rates prediction
(kg.m�3.s�1) on atmospheric simulation data (ICON) over Germany.

Figure 9. (a) Aleatoric and (b) epistemic uncertainty estimates of the autoconversion rates prediction
(kg.m�3.s�1) on satellite data (MODIS) over Germany.
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Figure 8. This observation is further validated by a consistent pattern observed in satellite data, as shown
in Figure 9, and by the Holuhraun dataset, which includes both satellite-like and satellite data. Refer to
Figure 10 for the satellite-like data and Figure 11 for the satellite data, respectively. These discoveries
demonstrate that our results remain aligned and consistent across different datasets.

The results presented show that altering or increasing the complexity of the ML model architecture,
using the same dataset, is unlikely to result in a substantial improvement in prediction performance. This
finding is further confirmed by our previous experiment in Section 3.2, where adding complexity to our
MLmodel did not significantly enhance the results. The observed lack of improvement is attributed to the
dominance of aleatoric uncertainty rather than epistemic uncertainty. Consequently, the focus should shift
towards improving data quality, including the addition of more relevant features. Examples of such
features include COT per layer, cloud droplet number concentration (CDNC) per layer, and so forth.

Figure 11. (a) Aleatoric and (b) epistemic uncertainty estimates of the autoconversion rates prediction
(kg.m�3.s�1) on satellite data (MODIS) over Holuhraun.

Figure 10. (a) Aleatoric and (b) epistemic uncertainty estimates of the autoconversion rates prediction
(kg.m�3.s�1) on atmospheric simulation data (ICON) over Holuhraun.
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Unfortunately, these features are currently absent from satellite data. Therefore, future research endeavors
should prioritize the implementation of these additional features before integrating them into the ML
model. This preliminary step is crucial for laying the foundation for more comprehensive and effective
enhancements in prediction results.

4. Concluding remarks

In this study, we provide a computationally efficient solution to unravel the key process of precipitation
formation for liquid clouds, the autoconversion process, from satellite data by employing the fewest
attributes necessary while still obtaining meaningful results. Furthermore, we employ evidential
learning to estimate both data (aleatoric) and model (epistemic) uncertainties, eliminating the need
for additional training or inference, hence reducing the overall costs. It has demonstrated good
calibration, enhancing the model’s credibility, and providing valuable insights for future improve-
ments.

Our findings show that data uncertainty contributes the most to the overall uncertainty, suggesting that
modifying the model architecture is unlikely to improve outcomes significantly. This conclusion aligns
with both our previous study (Novitasari et al., 2021; Novitasari et al., 2024, attached) and our current
study, as explained in Section 3.2, in which we experimented with various ML models to forecast
autoconversion rates, nevertheless, the outcomes did not significantly differ across the different models.
Instead, in line with other observations by the ML community (Kiureghian and Ditlevsen, 2009; Jain
et al., 2020; Singh Sambyal et al., 2022), it would be more effective to prioritize enhancing data quality or
incorporating an additional crucial feature, such as COTor CDNC per layer. Unfortunately, satellite data
lacks this information, but future efforts will focus on estimating this feature to enhance autoconversion
rate estimation and reduce uncertainty.

As the use ofML in atmospheric science gains prominence, the imperative to prioritize trustworthiness
becomes crucial. Our method, which leverages evidential regression and is easy to implement in practice,
stands as a pivotal contributor to this goal, particularly in refining the reliability of our ML model and
comprehensively delving into the intricacies of the uncertainties inherent in the atmospheric science
domain. This substantial improvement not only holds the potential to increase the transparency and
trustworthiness of ML results but also facilitates a better understanding of the contributing uncertainties.
By discerning whether these uncertainties are rooted in data or models, we can strategically tailor our
approach. If the uncertainty is data-centered, interventions such as improving data quality can be
implemented; if it is model-related, strategies such as refining the ML model or adding samples to the
training dataset can be explored. Ultimately, this has the potential to encouragemore open discussions and
research, especially within the field of atmospheric science.
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