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Abstract

In this paper we treat two non-linear differentia/ equations which come from complex dynamics theory. We
give a complete classification of the equations when they possess transcendental meromorphic solutions.
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1. Introduction and main results

In this paper we consider the following equations with the assumption that they possess
transcendental meromorphic solutions:

0.1) if'T = q(z)P(f)P0(f')(f - z)m,

(1-2) (/"')" = i(z)ep'U)P(f)(f - z)m,

where q(z) is a rational function, P(z), Po(z), Po(O) ^ 0, P,(z) are polynomials,
and m, n e N. Here we use the word 'meromorphic' meaning meromorphic in the
complex plane unless a domain is specified. The equations above have interesting
properties of complex dynamics relating to the wandering domains of their solutions.
The theory of complex dynamics is one of the active research areas in the complex
analysis. An exposition can be found, for instance, in the recent books [4, 22] for
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rational functions, [6] for transcendental functions. Recalling the theory of complex
differential equations, it is possible that an equation possesses rational solutions and
transcendental meromorphic solutions. The dynamical properties in the iteration of
rational and transcendental solutions of differential equations have been studied in
[5, 8, 9, 16, 23]. In [8], Bergweiler and Terglane considered the class 3f. of all
meromorphic solutions of the following differential equations:

(1.3) f' = qiz)(f-z)2,

(1.4) f' = q(z)(f -r)(f -z),

(1.5) (f')2 = q(z)(f -x){f -z)\

(1.6) (f')2 = q(z)(f -t)(f-S)(f-z)\

where r and S (T ^ S) are constants. They proved that no f e Sf, has wandering
domains. Then Wang [23] discussed the wandering-domain problem for meromorphic
solutions of the equations (1.1) and (1.2).

Bergweiler and Terglane mentioned in [8] the conditions of the existence of mero-
morphic solutions of the linear equation and the equations (1.3)—(1.6), citing [15].
In [9] they also gave references [2, 15] for the existence conditions of meromorphic
solutions. We mention a reference, for instance [3], for the Riccati equation. However
there are not many articles in which authors consider the existence theorems for the
equations (1.1) and (1.2). The purpose of the present paper is to give complete classifi-
cations of the equations (1.1) and (1.2) when they possess transcendental meromorphic
solutions. Our main results are as follows.

THEOREM 1.1. Suppose that the equation (1.1) has a transcendental meromorphic
solution. Then (1.1) must be of one the equations of the form (1.3)—(1.6), or a linear
equation of the form f — q(z)(f — z).

THEOREM 1.2. Suppose that the equation (1.2) has a transcendental meromorphic
solution. Then (1.2) must be one of the equations of the form

(1.7)

(1.8)

(1.9)

(1.10)

(1.11)

where X\ and x2 (x\
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It is not intended to investigate further properties of the iteration of solutions in this
note. We treat the equations (1.1) and (1.2) in Section 2 and Section 3 respectively. We
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use standard notations of the Nevanlinna theory, see for example [11,19]. In particular,
for a transcendental meromorphic function/, S(r, f) denote any quantity that satisfies
S(r, f) = o(l) T(r, f) as r —*• oo, possibly outside a set of r of finite linear measure.
A meromorphic function a is called small with respect to / if T(r, a) = S(r, f)
holds. We employ the arguments from Malmquist-Yosida-Steinmetz type theorems,
for example, [15, 17]. In the remaining part of this section we state some lemmas
below, which are needed later. First we recall the Mokhon'ko-Steinmetz type theorem,
see for example, [18, 21].

LEMMA 1.3. Let I be a positive integer. Suppose that an algebraic differential
equation

(1.12) n ( z , / , / ' , . . . , / ( / ) ) = 0

possesses an transcendental meromorphic solution f (z). Let rj(z) be a meromorphic
function small with respect to f (z). Ifr)(z) does not satisfies the equation (1.12), then
we have

(1.13) m(r,-±- )=S(r,f).

The following lemma is derived from the Nevanlinna second fundamental theory.

LEMMA 1.4. Let f(z) be a transcendental meromorphic function, and let a{(z),
a2(z) and a^ (z) denote small functions with respect to f (z) (possibly constant and oo).
Then we have

(1.14) T(r,f)<Y,N(r,- )+S(rJ).
/ a /

Zhu [25] generalized Hayman's inequality which is required in Section 3.

LEMMA 1.5. Let / ( z ) be a transcendental meromorphic function and <p(z) be a
small function with respect to f (z). Then

(1.15) T(r,f) < SN (r, j} + SN (r, JT^T) + 5(r>/)-

Note that in (1.13), (1.14) and (1.15), we can write O(log r) in place of S(r,f) if
f(z) is of finite order. Gol'dberg [10] showed that all transcendental meromorphic
solutions of first order algebraic differential equations are of finite order, (see also
Bank and Kaufman [1], Bergweiler [7] and Laine [17]). Hence when we treat solutions
of (1.1) we may write O(log r) in place of S(r, f ) .
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2. Differential equation (1.1)

At the beginning of this section we make the following remark. Under the assump-
tion that (1.1) possesses a transcendental meromorphic solution we can write (1.1) as
follows:

(2.1) (/")" = q(z)P(f)(f' -a)'{f -z ) m ,

where a e C \ {0}, t e N U {0}. In fact, in the case PQ(Z) is not a constant, we write

W ) = A o ( f - aO" • • • ( / ' - ak)\ ^T tj = deg Po,
y=i

where Ao # 0 is a constant, and ah j = 1, 2 , . . . , k, are distinct constants and fy,
y = 1, 2 , . . . , k, are positive integers. It follows from (1.1) that ctj j = 1 , . . . , k
are Picard values of / ' (z ) . This implies that & must be 1. Hence we may write
Pod') = ( / " - a)1, a € C \ {0}, r 6 N U {0}.

In the case / = 0, by Bank and Kaufman [2], and Steinmetz [20], (2.1) is one of the
equations of the form (1.3)—(1.6) or a linear equation when (2.1) has a transcendental
meromorphic solution. In the sequel, we consider the case where t is a positive integer.
In the first part of this section we shall prove the main lemma (Lemma 2.1) and in the
second part we shall treat separately the equations obtained in Lemma 2.1.

2.1. In this subsection, we prove the following lemma.

LEMMA 2.1. Suppose that t > 0 in (2.1) and suppose that (2.1) possesses a tran-
scendental meromorphic solution f (z). Then (2.1) is one of the equations of the form

(2.2) (fy=q(z)(f-z)n(f'-ay, t < n,

(2.3) (/•')" = q{z){f-T)"-2'(f-zYif'-a)', 2t\n.

We need Lemma 2.2-Lemma 2.5 to prove Lemma 2.1. We write

k

(2.4)

where A ^ 0 is a constant, and xt•, j = 1,2,..., k, are distinct constants and r,,
j = 1,2,..., k, are positive integers.

We first observe the value distribution of poles of/ (z).

LEMMA 2.2. Suppose that t > 0, m > n in (2.1) and suppose that (2.1) possesses a
transcendental meromorphic solution f (z). Then f (z) has infinitely many poles and
t < n.
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PROOF. First we consider the case p < n. We write (2.1) as

(f'Y .*, = q(z)(f'-a)'(f -z)m.P(f)
Setting / — z = g, we have

Hence, in view of the Clunie lemma, see for example [11], and [17], we get

tm(r,f -a) = tm(r, g' + 1 - a) < m (r, ^-j-\ + S(r, g) < O(logr).

Hence, / ' (z ) has infinitely many poles, and thus / (z) has infinitely many poles.
Next we consider the case p > n. In the case there is no r, > n in (2.4), we can

write (f')"/P(f) as:

' * " ' I ,** > s i~ \ -^ * ' , r

-*k)n)\

where C*,- are constants. From the last equation it follows that (f')n/P(f) is a
polynomial in / ' and proximity functions of all coefficients are small order of growth.
Hence in view of the Clunie theorem again, we obtain m(r, f' — a) = O(log r) by the
same argument as above. This gives that / ' (z) has infinitely many poles, and hence
/ (z) has infinitely many poles.

It remains to consider the case where r, > n for some j . We assume that r{ > n,
r2 > n, ... , rt > n, I < k and / (z) has only finitely many poles. Looking at the
equation (2.1), / (z) has only finitely many r,-points for; = 1 , . . . , I. By the Picard
theorem, / must be 1. Hence we can write/ (z) as

(£••)) J (Z) = K\Z)C T M,

where Q(z) is a polynomial and R(z) is a rational function. It follows from (2.5) that
the left-hand side of (2.1) is a polynomial in eQ(z) of degree n with small coefficients.
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On the other hand, the right-hand side of (2.1) is a polynomial in eQiz) of degree
T\ + t + ns > n having small coefficients with respect to eQ(z\ a contradiction.
Therefore, / (z) has infinitely many poles in the case p > n.

We show that/ < n. In order to do this, we assume on the contrary that t > n. Since
/ (z) has infinitely many poles, there exists a pole zp off (z) such that q(zp) ^ 0, oo.
Write (2.1) as

(2.6)

From the assumption above, the left-hand side of (2.6) is analytic at zp. However, the
right-hand side of (2.6) has a pole at zp, a contradiction. •

We discuss the value distribution of fixed points of/ (z).

LEMMA 2.3. Suppose that t > 0 in (2.1) and that (2.1) possesses a transcendental
meromorphic solution f (z). Then

(2.7) N (r, — y = T(r, f) + 0(log r).

Further, m = n and n — 2t — p > 0.

PROOF. Obviously, t](z) = z does not solve the equation (2.1). Thus by Lemma 1.3
and the first fundamental theorem due to Nevanlinna we get (2.7). Hence / (z) has
infinitely many fixed points. Let zo be a fixed point satisfying q(zo) ^ 0, oo. In a
neighbourhood of zo we write

where C ^ 0 and A. > 1 is an integer. Then

Substituting the above expansions into (2.1), we see that the right-hand side of (2.1)
has a zero of order km at zo- Hence the left-hand side of (1.2) must have a zero at zo,
which is only attained for A = 1 and C = — 1. The order of the zero of the left-hand
side of (2.1) is sn for some integer s, which gives that m = sn.

By the Valiron-Mokhon'ko theorem, see [17], and from (2.6), we have

max(n, t)T(r,f) + O(logr) = T (r, ^ \ = T (r, q(z)P(f)(f - z)m)

= (p + m)T(r,f)+O(logr),
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that is,

(2.8) max(n, t) T(r, f') = (p+m)T(r,f)+ O(log r).

We have T(r,f) < 2T(r,f) + O(logr). By Lemma 2.2, we have t < n. Using
(2.8), we see that p+m=p+sn< 2n, which gives that n — m, (s = 1).

Now we have t < n and m = n. By Lemma 2.2, / has infinitely many poles.
Hence we can take zp a pole of/ satisfying q(zp) ^ 0, oo. We denote by /x the order
of pole at zp. Write (2.1) as

(2.9) (-/^-) =q(z)P(f)(f'-a)'.

The left-hand side of (2.9) has a pole of order n at zp, and the right-hand side admits
a pole of order p ^ + (/* + l)f. It gives that

(2.10)
p + t

Since /x is a positive integer, from (2.10) we get n — 2t — p > 0. Thus Lemma 2.3 is
proved. •

In view of Lemma 2.2 and Lemma 2.3, we need only treat the case t < n and
m = n. Next we consider the zeros of P(f (z)).

LEMMA 2.4. Suppose that (2.1) possesses a transcendental meromorphic solution
f (z). Then we have

(2.11) m(r,-^—\ = O(\ogr), i = 1, 2 k,

where zit i = 1, 2 , . . . , &, are given in (2.4).

PROOF. We fix i and put M = \/{f — r,) in (2.1). Then we get an algebraic
differential equation in u

(2.12) (-«')• =

By Lemma 2.3, we have n — 2t — p = n — 2t — £ r, > 0, which gives that
2n — rt > n. Hence u2n~r' is the term that attains the total degree of (2.12), and no
other term attains the total degree of (2.12). Therefore, by the Clunie type theorem
we obtain m{r, u) = 0(log r). Thus we have proved (2.11). •
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LEMMA 2.5. Suppose that (2.1) possesses a transcendental meromorphic solution
f (z). Then either P(f) in (2.1) is a constant or is of the form

(2.13) P(f) = A(f - T ) " - 2 ' , 2 / | n .

PROOF. We assume that P(f) is not a constant and use (2.4). By Lemma 2.3 we
can set m = n in (2.1). By Lemma 2.4, / (z) has infinitely many r, points for all
j = 1,2,... ,k. We fix y. Let Zj be a r, point satisfying q{Zj) ^ 0, oo. From (2.1),
it is clear that f'(zj) = 0. Hence we write / (z) in a neighbourhood of Zj as

(2.14) / ( z ) = xj + Bj (z -ZjY' +••• , fl, / 0 ,

where Vj > 2 is an integer. Substituting (2.14) into (2.1), we get

(2.15) (Vj - 1)« = VjTj, that is, r, = (1 - l/v,)n.

Hence from (2.15)

(2.16) p --

Using n — 2t — p > 0 (see Lemma 2.3) we get

(2.17) k + -

n

We show that k < 1. In fact, we assume on the contrary that k > 2. Then by (2.17) and
using Ylk

J=i l/vi < k/2,wegetk+2t/n < l+it/2, and hence, 0 < At/n < 2-k < 0,
which is absurd. Therefore, we consider the case k = 1. From (2.15)

(2.18) (v-l)n = vp,

where we write Vi = v for the simplicity. Combining (2.10) and (2.18), we have

_ n-2vt

vn — n + vt

If ix > 2, then n - 2vt > (v - l)n + vt, that is, (2 - v)n > 3vt > 0, which gives a
contradiction since v > 2. If /x = 1, then we have n = 2vt and p = n — 2t by (2.18),
which gives the form (2.13). •

Here we give the proof of Lemma 2.1.

PROOF OF LEMMA 2.1. By Lemma 2.3, we may only consider the case m = n. By
Lemma 2.5, either P(f) must be a constant or P(f) must be of the form (2.13). The
former case yields an equation of the form (2.2) and the condition t < n follows
from Lemma 2.2. In the latter case, we see that (2.1) must be an equation of the
form (2.3). •
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2.2. In this subsection we treat the equations (2.2) and (2.3). We first show that
the transcendental solutions of (2.2) and (2.3) satisfy a certain type second order
differential equation.

LEMMA 2.6. Suppose that the following differential equation

(2.19) (f')"=q(z)P(f)(f -z)n(f'-a)', t<n

possesses a transcendental meromorphic solution f (z). Then f (z) satisfies a second
order differential equation with some rational function r(z)

r f £ rr

(2.20) (M + l ) ^ M77 = r W '
f-z f'-a

where \i is given by (2.10).

PROOF. For the sake of brevity we denote by F(z) the left-hand side of (2.20). We
show that T{r, F) = 0(log r) which implies that F(z) is a rational function. First we
consider the counting function of F(z). In the proof of Lemma 2.3, we obtained that
almost all zeros of / (z) - z are simple and from (2.19) they are also zeros of / ' (z ) .
Hence almost all poles of / '(z)/(/ (z) — z) are only from poles of/ (z). We see from
the proof of Lemma 2.2 that almost all poles of/ (z) are of order n which is given by
(2.10). Therefore only at poles of/ (z), the function f'(z)/(f (z) - z) has poles and
their order is one having residue —/z with finitely many exceptions.

It is not difficult to see from (2.19) that / ' (z ) has only finitely many a-points.
Hence only at poles of / ( z ) the function /"(z)/( / ' (z) — a) has poles and their order
is one having residue — /x — 1 with finitely many exceptions. These properties implies
that F(z) has only finitely many poles, which gives N (r, F) = O(log r).

Secondly, we estimate the proximity function of F(z). By Lemma 2.3 and by the
theorem on logarithmic derivatives

tn(r, F) < m I r, — I + m I r, - I + m I r, — J + O(log r)

= O(logr).

Thus we have proved Lemma 2.6. •

PROPOSITION 2.1. Differential equation (2.2) does not possess any transcendental
meromorphic solutions.

PROOF. We assume that (2.2) possesses a transcendental meromorphic solution
/ (z). Consider logarithmic derivatives of both sides of (2.2). Then we get

r It n'(7\ f' 1 f n

(2.21) J=l±l+nL + ,_J. .
/ ' q(z) f - Z f ' - a
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From (2.10), we have [i = (n — t)/t. By Lemma 2.6, we see that for a rational
function r(z), f (z) satisfies

<2.22, IJL.'^I^
tftf-z t f'-a

Combining (2.21) and (2.22), we obtain the first order differential equation

(2.23) (C, (z)f + Co(z))f' + By (z)f + Bo(z) = 0,

with

fli(z) = antq(z)r(z), B0(z) = antzq(z)r(z),

C,(z) = t(t - n)q(zMz) + (t- n)q'(z),

C0(z) = («2d - a) + nt(zr(z) - l))q(z) + (t - n)zq\z).

By Lemma 2.2, / (z) has infinitely many poles, and hence all rational functions Co, C\,
Bo and B{ in (2.23) must vanish. Hence we have r(z) = 0, q'(z) = 0 and t = (1 —a)n.
In what follows we write q{z) as q(^ 0), since q{z) is a constant. Using these results
and (2.2), we have

that is,

Put g = / ' — a in the equation above. Then g(z) satisfies an equation of the form

(2.24) g' = cgx+"n,

where c is a constant. However, (2.24) has no transcendental meromorphic solution
which is seen by quadrature, a contradiction. •

In order to prove Proposition 2.2 we also need the following lemma.

LEMMA 2.7. There is no transcendental meromorphic function satisfying both
equations

(2.25) (M')4 + q(z)(l + k(z)u)\au2 + u')=0

and

(2.26) -2k(z)q(z)(u'f + (m(z) + h{z)u)u' + B(z)(l + k(z)u)u2 = 0,

where q{z) ^ 0, k(z) # 0, m(z), h(z) and B(z) # 0 are rational functions.
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PROOF. We assume that there exists a transcendental meromorphic function that
satisfies both (2.25) and (2.26), and we shall derive a contradiction. To do this we
eliminate (i/)2 by using (2.25) and (2.26) to obtain the equation of the form

(2.27) G(z, u)u' + H(z, u) = 0,

where G(z, u) and H(z, u) are polynomials in u whose coefficients are rational func-
tions. By the Malmquist-Yosida theorem, see for instance Hille [14] and Laine [17],
we have three possibilities:

(i) the equation (2.27) is a Riccati equation;
(ii) the equation (2.27) is a linear equation;

(iii) G(z, u) = 0 and H(z, u) = 0, that is, all coefficients of G(z, u) and H(z, u)
vanish.

We need only treat the case (iii). In fact, it follows from (2.26) that almost all poles
of u(z) are double poles. Further, by the Clunie theorem we have m(r, u) = S(r, u)
(= O(logr) in the case u(z) is of finite order). If u(z) satisfies a Riccati equation,
almost all poles of u(z) are simple poles. If u(z) satisfies a linear equation, u(z) has
only finitely many poles. Hence occurrences of cases (i) and (ii) are impossible.

We actually compute G(z, u) and H{z, u). For the sake of brevity, we omit the
argument z, for instance, we write q(z) = q.

(2.28) G(z, u) = m
+ (h3 +4Bk2mq+4Bkhq+32k6q4) u3 + (4Bk2hq + 8k1q4) u4= 0

and

(2.29)

H(z, u) = (Bm2 + 8a*V) u2 + (Bkm2 + 2Bmh + 32ak4q4) M3

+ (2Bkmh + Bh2 + 2B2kq + 4Sak5q4) u4

+ (Bkh2 + 4B2k2q + 32ak6q4) u5 + (2B2k3q + Kak'q4) u6 = 0.

From (2.28) and (2.29) we compute au2G(z, u) - H(z, u) as

(2.30) (-5m2 + am3) u2 + (-Bkm2 - 2Bmh + 3am2h) u3

+ (-2Bkmh - Bh2 + 3amh2 - 2B2kq + 4aBkmq) u4

+ (-Bkh2 + ah3 - 4B2k2q + 4aBk2mq + 4aBkhq) u5

+ (-2B2k3q + 4aBk2hq) u6 = 0.

Observing the coefficients of u6 and u2 in (2.30), we get

Bk
(2.31) h = — and m2(-B + am) = 0.

2a
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According to the second relation in (2.31), we consider two cases. In the case m =
B/a, from the coefficient of «3 in (2.30), we have —Bik/(2a2) = 0, a contradiction.
In the case m = 0, the coefficients of w4 and M5 in (2.30) give

--2<7 = 0 and - 2q = 0,
4a2 * 8a2 H

which is impossible since B(z)k(z) # 0 . •

PROPOSITION 2.2. Differential equation (2.3) does not possess any transcendental
meromorphic solutions.

PROOF. We assume that (2.3) possesses a transcendental meromorphic solution
/ (z). We note that almost all poles of / (z) are simple poles. As in the proof of
Proposition 2.1, by Lemma 2.6 and (2.3), we have that / ( z ) satisfies the following
two differential equations:

f " d'(z) f f ' - l f "
(2.32) nJ— = i ^ f + (n - 2t)-/— + nJ- + t- J

f q(z) 7 - r f-z f'-a
and

(2.33) 2 / -f = r(z),
f-z f'-a

where r(z) is a rational function. Combining (2.32) and (2.33), we obtain the first
order differential equation

(2.34) J2(z)(f')2 + Mz,f)f + MzJ) = 0,
with

Uz) = q(z)(r - z)(n - 2t),
Mz) = (f- r)(((t - n)q(z)r(z) - q\z))f

+ q(zK(l - 2a)n + Zr(z)(n - t)) + zq\z)),
Uz) = anq(z)r(z)(f - z)(f - r).

Further, we put u = \/(f — r) in (2.34). Then we see that «(z) satisfies the differential
equation of the form

(2.35) (« - 2t)(z - r)q(zHu')2 + (A,(Z)II + ho(z))u'

+ anq{Z)r{z)u2{\ + (r - z)«) = 0,

where ho(z) = q'(z) + (n - t)q(z)r(z), h{(z) = nq(z)(2a - 1) + (r - z)ho(z) are
rational functions. It is impossible that r(z) = 0. In fact, if we assume the contrary,
from (2.35) u(z) has only finitely many poles, a contradiction.
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From (2.35), almost all poles of u(z) are double poles. This implies that / (z) has
infinitely many r-points of order 2. Hence we obtain v = 2 and n/2t = 2. Using this
we may write (2.3) as

(2.36) (f'y = q(z)(f -r)2(f -Z)4(f'-a),

where q(z)4 = q(z) is a rational function. From (2.36), u(z) satisfies

(2.37) (M')4 = -q(z)(l + (r - z)u)\au2 + «').

We write q(z) simply as q(z) and we consider (2.37) and also (2.35) with n = 4,
t = 1, that is,

(2.38) q(z)(z - T)(M')2 + (3r(z)?(z) + q'(z) + (4$(z)(2fl - 1)

+ (r - z)(3r(z)9(z) + q\z))u)u' + 4aq(z)r(z)(l + (T - z)u)u2 = 0.

However, by Lemma 2.7, equations (2.37) and (2.38) do not have any common
transcendental meromorphic solutions, a contradiction. •

PROOF OF THEOREM 1.1. Using Lemma 2.1, Proposition 2.1 and Proposition 2.2,
we conclude that if t > 0, then (2.1) has no transcendental meromorphic solution.
Therefore, by the Steinmetz, Bank and Kaufman theorem for binomial equations, we
obtain Theorem 1.1. •

3. Differential equation (1.2)

In this section we are concerned with the differential equation (1.2) under the
assumption that it possesses a transcendental meromorphic solution / (z). We call
/ ( z ) an 'admissible' solution, if T(r, ep') = S(r,f). By means of the He-Laine
theorem [13] generalizing the Steinmetz theorem, if (1.2) has an admissible solution,
then (1.2) reduces to one of the equations (1.7)—(1.11).

The natural question arises whether we would arrive at the same conclusion when
we do not assume that/ (z) has the 'admissible' property.

Similarly as in Section 2, we divide this section into two parts. In the first part we
investigate conditions which must be satisfied if (1.2) has a transcendental meromor-
phic solution (Lemma 3.2-Lemma 3.4). Combining these conditions we restrict forms
of (1.2), which is a main purpose (Lemma 3.1) of the first part. In the second part
we separately treat the equations that are obtained in the first part (Proposition 3.2-
Proposition 3.6).
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3.1. In the first part we prove the following lemma.

LEMMA 3.1. Suppose that the equation (1.2) has a transcendental meromorphic
solution. Then (1.2) must be one of the following nine equations:

(3.1)

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)

(3.9)

/ '

(f'Y
(f'Y
(f'Y
(f'Y
(f'Y
(f')2

(f'f
(f'f

= q(z)ep'iz)(f

= q(z)ePdz)(f

= q(z)ep'(z)(f

= q(z)e™(f

= I(z)e™(f

= q(z)ePliz)(f

= q(z)ep'^(f

= q(z)ePdz)(f

-q(z)ep'(z)(f

-zY,
- z ) " + I .
- ri)(f -

-nY~l(f
- T,r-'(/
- Ti)(/ -

- r,)(/ -
- T,)(f -

- Tl)(/ -

z)".

- z ) " ,
- z ) " + 1 ,
T2)"-'(/-Z)",

T2X/-Z)21,

T2)</ " Z),

r2)(/ - r3)(f - z),

w/iere tj•, j = 1,2,3 are distinct constants, and s is a positive integer.

We state two lemmas relating poles and fixed points.

LEMMA 3.2. Suppose that (1.2) possesses a transcendental meromorphic solution
f (z) having infinitely many poles. Then almost all poles are of order

(3.10) li = ,
p + m — n

and
(3.11) n < p + m < 2n,

where p = deg P.

PROOF. It follows from the hypothesis that there exists a pole zo such that q(zo) ^
0, oo. We denote by fi the order of pole at zo- The left-hand side of (1.2) has a pole of
order n(n + 1) at zo, and the right-hand side admits a pole of order (p + m)\x. Thus

p + m — n

Since /LA is a positive integer, we get (3.11) from (3.10). •

LEMMA 3.3. Suppose that (1.2) possesses a transcendental meromorphic solution
f (z) having infinitely many fixed points. Then for a positive integer s

(3.12) m = ns.
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PROOF. Since we assume that / (z) has infinitely many fixed points, there exists a
fixed point zo satisfying q(zo) ^ 0, oo. In a neighbourhood of zo we write

(3.13) f(z)-z = C(z-Zo)" + --- ,

where C J^ 0 and A > 1 is an integer. Then

(3.14) f'(z) = l x 1

Substituting (3.13) and (3.14) into (1.2), we see that the right-hand side of (1.2) has a
zero of order km at zo- Hence the left-hand side of (1.2) must have a zero at zo, which
is only attained by k = 1 and C = — 1. Thus the order of the left-hand side of (1.2) is
sn for some integer s, the assertion follows. D

Similarly as in Section 2, we write

(3.15) Pif) = A(f -rty...(f - r * ) r ' ,

where A ^ 0 is a constant, and T;, j = 1, 2 , . . . , k are distinct constants and /},
j = 1,2,..., k are positive integers.

LEMMA 3.4. Suppose that (1.2) possesses a transcendental meromorphic solution
f (z) and suppose that f (z) has infinitely many r, points for an arbitrary fixed j .
Then we have that almost all tj points are of multiplicity

(3.16) Vj = — — ,
n-rj

where v, is a positive integer at least 2.

PROOF. From the assumption, that is to say, / (z) has infinitely many x} points,
there exists a pole Zj such that q(zj) ^ 0, oo. We denote by v, the order of pole at z,.
From (1.2), it is clear that / '(Zj) = 0. Hence we write / (z) in a neighbourhood of zj

(3.17) f(z) = Tj+Bj(z-Zjy' +••• , Bj^O,

where y, > 2 is an integer. Substituting (3.17) into (1.2), we get

(3.18) (vj — l)n = VjTj, namely, ry = I 1 In,

which gives the assertion. •

PROOF OF LEMMA 3.1. We divide the proof into four cases as follows:

I. / (z) has infinitely many poles and infinitely many fixed points.
II. / (z) has infinitely many poles and only finitely many fixed points.

III. / (z) has only finitely many poles and infinitely many fixed points.
IV. / (z) has only finitely many poles and only finitely many fixed points.
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Case I. (f (z) has infinitely many poles and infinitely many fixed points.)
From (3.11), we see that s is 1 or 2 in this case. In particular, in the case s = 2

(m = In), p must be 0, say P{f) is a constant. Thus (1.2) must be the equation
of the form (1.8). Therefore, the case s = 1 (m = n) is left to be considered.
Further, we divide Case I into three cases below according to the number of the Picard
values:

(I.i) / (z) has infinitely many Tj points for all j .
(I.ii) / (z) has only finitely r, points for one j .

(I.iii) / (z) has only finitely r, points for two j .

(I.i) By means of Lemma 3.4 and (3.18), we have ry = (1 — l/vj)n. Hence by
Lemma 3.2

(m

that is,

Since Vj > 2 for all j , we see that the right-hand side of (3.19) is at most k/2. This
concludes that k < 2. Looking at (3.19) in the case k = 2, we have 1/vi + l/v2 = 1.
This results in v{ = v2 = 2, and hence n = r2 = n/2. Hence (1.2) must be the
equation of the form (1.11), (or (3.7)). Next we treat the case k = 1. By Lemma 3.4
(or (3.18)), r, = n(vi — l)/vj which implies that (1.2) is an equation of the form (3.4)
with s — 1. In the case k = 0 we arrived at (3.1) with 5 = 1.

(I.ii) We may assume that / (z) has only finitely rt points and has infinitely many
Tj points for j =2, ... , k. Similarly as in the case (i), we have

* / i \
(m + p =)n + rx + /_, I 1 ) n — 2 « .

1

that is, k-2+— < Y ^ — .

The right-hand side is at most (k — l)/2, which implies that k + 2rt/n < 3, and hence
k<2.

First we treat the case k = 2. We can set orders of poles and r2 points >u. and v2

respectively with only finite exceptions by Lemma 3.2 and Lemma 3.4. Then in view
of the Nevanlinna second fundamental theorem

m ( r, + W r, ) + m{r,f)
/ - T2 / V2 \ J -

< 2T(r,f) + S(r,f).
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From the assumption of (I.ii), m(r, 1// — Ti) = T(r,f) + S(r,f). Thus we have

(3.20) T(r,f) < -N (r, -z-^—) + -N(r,f) + S(r,f).

If rx + r2 < n holds, then by Lemma 3.2, we have //. > 2. It follows from (3.20)
that fx = v2 = 2. Using v2 = 2 and (3.18), we get r2 = n/2. Further from (3.18),
n/(r\ + r2) = n/(ri + n/2) = 2, namely, /̂  = 0, a contradiction. Hence o + r2 = «.
By Lemma 3.4, we get ry = (vi — l)«/vi and r2 = n/v\. Thus (1.2) must be an
equation of the form (3.6).

In the case k = 1, by Lemma 3.2, setting the order of poles /A, we obtain n = n//x.
Therefore, (1.2) must be an equation of the form (3.3) in this case.

(I.iii) We may assume that/ (z) has only finitely r, and z2 points and has infinitely
many T, points for j = 3 , . . . , k. By the Nevanlinna second fundamental theorem,
we see that AT(r, 1//') = S(r,f). Hence it follows from (1.2) that N(r, \/{f - z)) =
S(r,f), which contradicts Lemma 1.4.

Case II. {f (z) has infinitely many poles and only finitely many fixed points.)
First we consider the case k > 2. We choose r, and r,. We apply Lemma 1.4 to xu

x, and z. From the assumption, say / (z) has only finitely many fixed points, we get

(3.21)

By Lemma 3.4, for any j almost all T, points are of order v, which is given by (3.16).
Hence in each case/ (z) has infinitely many r, points o r / (z) has only finitely many
Tj points, we have

(3.22)

It follows from (3.21) and (3.22) that

N (r, 7-!—) = -N (r, -z-^—) + S(r,f).
\ f ~ TjJ vj \ f -zjj

<T(r,f) + S(r,f).

Hence we see that / (z) has infinitely many r; points and r, points, and that almost
all those points are of order 2. Thus for all j we have r, = n/2 by Lemma 3.4,
which implies p = nk/2. In view of Lemma 3.2 we obtain 2n > nk/2 + m, namely,
4 — 2m/n > k. We conclude that k is at most 3. Therefore we divide Case II into four
cases according to k:
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(H.i) k = 3.
(Il.ii) k = 2.
(Il.iii) k = 1.
(Il.iv) * = 0.

(Il.i) As seen in the argument above, we have vi = v2 = v3 = n/2. Since we
assume that/ (z) has infinitely many poles, we get by Lemma 3.2 that almost all poles
are of order

(3.23)
3n/2 + m-n n/2 + m'

and we have 3n/2 + m < 2n, namely, m < n/2. Now we shall show that m = n/2.
To do this we suppose m < n/2 and arrive at a contradiction. Using (3.23), we get
ix > 2. Applying Lemma 1.4 to r,, oo and z, we have

T(r,f) <l-T{rJ) + -N(r,f) + S(r,f),

hence,

Thus /x = 2, and hence 2 = n/{n/2 + m), that is, m = 0, a contradiction. Hence
(1.2) must be the equation of the form (3.9).

(Il.ii) In this case we also have vx = v2 = n/2. Hence, by Lemma 3.2, almost
all poles are of order // := n/m. It follows that m < n. If we assume m < n, then
H > 2. Similarly to the case (Il.i), by applying Lemma 1.4, we obtain fi = 2. Thus
m = n/2, in this case m < n, and hence we arrive at the equation of the form (3.8).
For the case m = n we obtain (3.7) (or (1.11)).

(Il.iii) Simply we write ruvu and r{ as r, v and r, respectively. By Lemma 1.4

T(r,f) < -N (r, -±-) + -N(r,f) + S(r,f).(3.24)

If f(z) has only finitely many x points, then fi = 1 and m(r,f) = S(r,f) from
(3.24). Hence we have 2n — m + r by Lemma 3.2, which results in

(3.25) (f'T = q(z)e™(f - x)2"-m{f - z)m.

We infer that / (z) satisfies a Riccati equation. To show this, we set

/ ' / ' - I(3-26) ro(z) =
f - r f - z

Note that ro(z) # 0 otherwise / (z) is a rational function. By the theorem of loga-
rithmic derivatives we have m(r, ro) = S(r, f ) . The poles of ro(z) are r points, fixed
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points or poles of / (z). Since / (z) possesses only finitely many r points and fixed
points, almost all poles of ro(z) are poles of/ (z). However, by the Laurent expansions
of the right-hand side of (3.26) at poles of/ (z), poles of/ (z) are not poles of ro(z)-
This implies that N(r, 7b) = S(r, f ) . Hence ro(z) is a small function with respect to
/ (z), and hence / (z) satisfies a Riccati equation given by (3.26), that is,

In the case z + l/ro(z) = r, we see that

(3.27) g> = -
T - Z

where g = \/{f — r). Since ro(z)/(r — z) is a small function with respect t o / (z) and
also g(z), (3.27) is impossible by the Hayman-Miles theorem [12], a contradiction.
In the case z + l/ro(z) # r, combining the Riccati equation above and (3.25), we get

which gives that N(r, \/{f — z — l/^o)) = S(r, f). We apply Lemma 1.4 to r, z and
z + l/ro(z). Then we get T(r,f) = S(r,f) which is absurd. Therefore / (z) has
infinitely many r points. Then by Lemma 3.4

(3.28) 2 < v = n/(n - r).

On the other hand, by Lemma 3.2

(3.29) n = n/(r + m-n).

It follows from (3.28) and (3.29) that r = n(v - l)/v and m - n + r = n//x. Thus
we see that v | n and /x | n. We can write n = s/i.v for a nonzero integer j (possibly
negative). Here we get

(3.30) m = SJXV — sn(v — 1) + sv = s(^i + v).

Hence we can represent (1.2) as

(3.31) (fTv = q(z)ePUz)/s(f - r)2»w-»(f - z)v+

where q(z) = q(z)i/s is a rational function. From (3.24),

T(r,f)<l- + -)T(r,f) + S(r,f),

which implies that 1 < I//A + l/v, that is,
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This gives n = 1 in the case v > 2, and fi = 1, or 2 in the case v = 2. Therefore
from (3.31) we obtain (3.5) and (3.3) with n = 2.

(Il.iv) By Lemma 3.2, n/(m — n) = fi is an integer. Thus we see that (1.2) must
be the equation of the form (3.2) in this case.

Case III. (f (z) has only finitely many poles and infinitely many fixed points.)
By Lemma 3.4, almost all r, points have the same multiplicity for fixed j . We

apply the Nevanlinna second fundamental theorem

* / / i \ v. _ i / l \ \
ylmlr, + - N\r,- )+m(r,f) <2T(r,f) + S(r,f).
i—i \ \ f —Xi 1 Vt \ f — X, I I

From this inequality, we get

* i / i \ k
(3.32) (it - l)T(r,f) <T-N[r, + S(r,f) < -T(r,f) + S(r,f),

j=\ VJ \ J xj / z

which implies that it - 1 < /t/2, and hence k < 2. In the case k = 2, namely when the
equality holds in (3.32), we see that v, = v2 = 2, and that m(r, \/(f - r,)) = S(r, f),
fory = 1 , 2 . Thus by Lemma 3.4, r, = r2 = n/2. On the other hand, for any k by
Lemma 3.3, for a positive integer s, m = sn. Therefore (1.2) must be the equation of
the form (3.7).

For the cases k = 1, we first prove that / (z) has infinitely many Xi points. If we
assume the contrary, we can write

f(z) = xi + R(z)eQiz),

where R(z) is a rational function and Q(z) is a nonconstant entire function. Hence
we obtain

(3.33) «R'(Z) + R(z)Q'(z))eQ(z)y = q(z)R(z)r'er'Q(z)+PM(f (z) - z)m.

From (3.33) we have

o < l o g f ) s S(r-f)-

It follows from (1.2) and from the assumption (f (z) has only finitely many ri points)
that#(r, 1//') = S(r,f). Putting F(z) = f(z)-z and applying Lemma 1.5 to F(z),
we get

T(r,f) = T(r, F) + O(logr) < N (r, ^ + N (r, j ^ j + S(r,f)

N (r' 7 ) + S(r'f) ± S(r,f),
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which is absurd. Hence by Lemma 3.4, rt = n(vi — l)/vi, vt is a positive integer.
Therefore, (1.2) must be the equation of the form (3.4).

In the case it = 0, we immediately see that (1.2) must be the equation of the form
(3.1) by Lemma 3.3.

Case IV. {f (z) has only finitely many poles and only finitely many fixed points.)
We can write / (z) in this case as follows:

(3.34) f(z) = z + R(z)eQ(z\

where R(z) is a rational function and Q(z) is a nonconstant entire function. We assert
that P(f) is a constant. If we assume the contrary, by Lemma 3.4,/ — r, has infinitely
many zeros almost all of which are of multiple order, or only finitely many zeros. This
implies that N(r, l/(f - r,)) < ±77(r, \/{f - r,)) + S{rJ). Then by Lemma 1.4
for the fixed j , we have

T(r,f) < ~N(r,f)+W(r, l/(f - z)) + W(r, l/(f - T,)) + S(r,f)

a contradiction. Therefore, P ( / ) is a constant. Hence substituting (3.34) into (1.2),
we get

(3.35) (1 + (R'(z) + R(z) Q'(z))eQ(z))n = q(z)R(z)memQM+p'(z).

We assert that R'(z) + R(z)Q'(z) = 0. If we assume the contrary, we see that
N(r,(R'(z) + R(z)Q'(z))e°M) = S(r, e^>)andiV(r, l/(R'(z) + R(z)Q'(z))e^) =
S(r, eQU)) since R'(z) + R(z) Q(z) is a small function with respect to eQ(z). Further it
follows from (3.35) that N(r, 1/(1 + (R'(z) + R(z) G'(z))«G(z))) = O(log r). Hence,
by Lemma 1.4, we get T(r,eQ(z)) < S(r,eQ(z)), a contradiction. Thus we have
R'(z) + R(z) Q(z) = 0. Since R(z) is a rational function, there is also no nonconstant
entire function Q(z) solving it, a contradiction.

We have considered Cases I-IV, thus Lemma 3.1 is proved. •

3.2. In this subsection, we prove a sequence of lemmas and propositions from
which Theorem 1.2 will follow.

PROPOSITION 3.1. Suppose that the equation (3.4)possesses a transcendental mero-
morphic solution. Then n = 1, or n = 2 and 5 = 1, that is to say, (3.4) must be an
equation of the form (3.1) or (3.3) (or (1.10)).

PROOF. First we consider the case when / (z) has infinitely many poles. Let zo be
a pole of order \i, which is not a zero of q(z). By Lemma 3.2, we have fisn =
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which gives n — 1, s = 2 or « = 2, s = 1. Secondly we consider the case that/(z)
has only finitely many poles.

By Lemma 3.4, almost all ri points are of multiplicity n. This implies that

(3.36) N (r, -r-^—) = -N(r, y^—) + S(rJ).

By the Nevanlinna first fundamental theorem and the theorem on the logarithmic
derivatives,

r ( r > / ) _

< m (r, j - \ + S(r,f) = T(r,f) - N (r, j-) + S(r,f),

that is,

V̂ (r, j-)<" U -~^j + T(r,f) - T(r,f) + S(r,f).

From the assumption N(r,f) = S(r, / ) , and hence N (r, / ' ) = S(r, f ) . Thus, by the
theorem on the logarithmic derivatives, we get T(r,f) — T(r,f) < S(r,f). Hence
we see that

On the other hand, by (3.4),

Hence we obtain

(3.37) N (r, -±-) < —N (r, y^
\ f -zj ns \ f -

Then by Lemma 1.4, (3.36) and (3.37),

T(rJ) <7^(rJ) + N (r, ——) + N (r, - ^ - \ + S(r,f)

! '
+ ,

ns) \ f -

We conclude that 5 + 1 > ns, which implies n = 1, or n = 2 and s = 1. D
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PROPOSITION 3.2. Suppose that the equation (3.7) possesses a transcendental
meromorphic solution. Then s = 1, that is to say, (3.7) must be an equation of
the form (1.11).

PROOF. If/ (z) has infinitely many poles, then by Lemma 3.2 we get 5 = 1.
Now suppose that / (z) has only finitely many poles. It follows from Lemma 3.4

that almost all tj -points of/ (z) are of multiplicity 2 for j = 1,2, which implies

(3.38) 77 (r, J 3 ^ ) = IN (V, JZ-^J + S(r,f), j =1,2.

Similarly as in the proof of Proposition 3.1, we have

,„,„_* (,._!_) _„(,,_!_)

that is,

N (r, i ^ < N (r, -^-) + « (r, —1—') + T(r,/') - 2T(r,f) + S(r,f).

Using 7-(r, / ' ) - 7"(r, / ) < S(r, / ) , we get

On the other hand, from (3.7),

Hence we obtain

H (r. ̂  < 1 (N ( ,
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This implies that N(r, l/(f — z)) — S(r,f). Applying Lemma 1.4 to zu oo and z,
we get

T(rJ) < N(r,f) + N(r, -±--\ +N (r, -±-\ + S(r,f)

which is absurd. Hence this case does not occur. This completes the proof. D

PROPOSITION 3.3. (i) Suppose that the equation (3.3)possesses a transcenden-
tal meromorphic solution. Then n < 2, that is to say, (3.3) must be an equation of the
form (1.9) or (1.10).

(ii) Suppose that the equation (3.6) possesses a transcendental meromorphic so-
lution. Then n < 2, that is to say, (3.6) must be an equation of the form (1.10)
or (1.11).

To prove Proposition 3.3, we need the lemma below.

LEMMA 3.5. Let a(z) be a nonconstant rational function. Suppose that the differ-
ential equation

(3.39) (/•')" = q(z)ep'(z)(f - T , ) ( / - a(z))n,

possesses a transcendental meromorphic solution f (z). Then n < 2.

PROOF. At the beginning of the proof we remark that Lemma 3.2-Lemma 3.4 still
hold for the equation in which we put a(z) in place of z in (1.2). Assume that n > 3.
By Lemma 3.4, / (z) has only finitely many t\ points, and hence

T(r, f) = m(r, —!— ) + S(r, f).
\ J — ri /

(3.40)

In view of the Nevanlinna second fundamental theorem,

(3.41) m(r,f) + N(r,f) -~N{rJ)+m (r, y-^r) + N (r, j-

<2T(r,f) + S(r,f).

Combining (3.41) and (3.40), we get

(r, j - \ < N(r,(3.42) N (r, j - \ < N(r,f) + S(r,f).
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From (3.39),

= nN(r,~-\+S(r,f),

that is,

(3.43)

Here we consider the order of poles of / (z). By Lemma 3.2, if / (z) has infinitely
many poles, then almost all poles are of order n. It gives that

(3.44) 'N(rJ) = -N(r,f) + S(r,f).
n

It follows from (3.42), (3.43) and (3.44) that

(3.45) / -a

In view of Lemma 1.4, we have

(3.46) m (r, -^—]+m (r, T^—)+N(r,f)-N(r,f)<2T(r,f) + S(r,f).
\ f-a/ \ f-*ij

Using (3.46) and (3.40), we obtain

r,

and hence by (3.44) and (3.45),

This implies that N(r,f) = S(r,f) since n > 3. Applying Lemma 1.4 again to oo,
Ti and a(z), and using (3.45), we obtain

('•7^)+*(-,-yT(r,f) < N(r,f) + N (r, —|— ) + N [ r, -^—_ ) + S(r,f)

<-N(r,f) + S(r,f).
n

This gives a contradiction. Thus we have proved Lemma 3.5. •

https://doi.org/10.1017/S1446788700002305 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700002305


[26] Non-linear differential equations 113

PROOF OF PROPOSITION 3.3. We see that (i) is confirmed directly by Lemma 3.5.
For the proof of (ii), we set g = \/(f — x{) in (3.6). Then we have

(g'r = ( - I ) - ( T , - T2)(r, - z)q{z)e™ (g —) (g

By Lemma 3.5, we obtain n < 2. We have thus proved Proposition 3.3. •

PROPOSITION 3.4. (i) Suppose that the equation (3.2)possesses a transcenden-
tal meromorphic solution. Then n = 1, that is to say, (3.2) must be an equation of the
form (1.8).

(ii) Suppose that the equation (3.5) possesses a transcendental meromorphic so-
lution. Then n = I, that is to say, (3.5) must be an equation of the form (1.8).

PROOF. We first prove (ii). Suppose n > 2 and that (3.5) possesses a transcendental
meromorphic solution/ (z). We put/ = Ti + \/g in (3.5). Then we see that g satisfies

(3.47) (g'T = q(z)ep'(z)(g - a(z))n+l,

where q(z) = ( - 1 ) " ( T , - z)n+lq(z), a(z) = l/(z - T,). Write G(z) = g(z) - a(z).
Since n > 2, we have that N(r, \/G) = N(r, l/(g - a)) = S(r, g) by Lemma 3.3,
(which holds when we consider a(z) in place of z) and from (3.47),

By Lemma 1.5,

T(r, G) < SN (r, ^

This yields a contradiction. For the proof of (i), we remark that (3.2) is a special case
of (3.47). We have thus proved Proposition 3.4. •

PROPOSITION 3.5. The equations (3.8) and (3.9) have no transcendental meromor-
phic solutions.

To prove Proposition 3.5, we need the lemma below.

LEMMA 3.6. Let k(z) ^ 0 be a rational function and let ai(z), 02(2). #3(2) denote
distinct rational functions. Suppose that a differential equation

(3.48) (-# ' + k(z)g2)2 = q(z)ep'U)(g - a^zMg - a2(z))(g - fl3(z)),

possesses a transcendental meromorphic solution g(z). Then g(z) has infinitely many
poles.
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PROOF. We assume that g(z) has only finitely many poles and we shall find a
contradiction. We differentiate both sides of (3.48). Combining this and (3.48) to
eliminate ePiiz), we get

(3.49) H(z, g, g')g4 + Q4(z, g, g', g") = 0,

with

H(z, g, g') = (q(z)k(z)P'l(z) + q'(z)k(z) - 2q(z)k'(z))g - q(z)k(z)g',

where £24 (z, g, g', g") is a differential polynomial in g of total degree at most 4
whose coefficients are rational functions. In view of the Clunie theorem we have
m(r, h) = S(r, g), where h(z) = H(z, g(z), g'iz))- Hence h(z) is a small function
with respect to g(z) since we assume that g(z) has only finitely many poles. For
the simplicity, we write g' = a(z)g + )3(z) with small functions a(z) and )3(z).
Substituting this into (3.48), we get

(3.50) q(z)ep'iz) = —
(g-'

This implies that there exist at least two distinct small functions y\{z) and y2(z) with
respect to g(z) such that

= S(r,g), 7 = 1 , 2 .
g-YjK'

We apply Lemma 1.4 to oo, y{(z) and y2(z) to obtain

(r, ——) + N (r, —^
\ g-Yi/ \ g -

T(r, g) < 7?(r, g)+W (r, — — ) + N (r, —^—) + S(r, g) < S(r, g),
\ g-Yi/ \ g-Yi)

a contradiction. In fact, if the fraction in the right-hand side of (3.50) is irreducible,
then aj (z) j = 1, 2, 3 can be chosen for y; 's. This can be showed as follows: we
fix j among j = 1, 2, 3 and suppose that g — as (z) has infinitely many zeros more
than small order, that is, N(r, l/(g — ay(z))) ^ S(r, g). Write the numerator of the
right-hand side of (3.50), Q(z, g), as a polynomial in g — aj (z):

Q(z, g) = AjA(z)(g - aj (z))4 + • • • + AjA(z)(g - aj (z)) + Aj<0(z),

where Ajik,k — 1 , . . . , 4 are small functions. Let zo be a zero of g — aj (z). By (3.50),
Zo must be a zero of Aj_0(z) otherwise a pole of one of the other coefficients. Since
AjJc(z) are small functions, Ajfi{z) must vanish, which means that Q(z) is divided by
g — aj(z). This argument implies that N(r, \/(g — aj)) = S(r, g), or that Q(z, g) is
divided by g - a, (z).

The right-hand side does not reduce to a polynomial, even though the right-hand
side is reducible since a, (z) are distinct from each other. Thus we find y, 's among
aj (z),j = 1 , 2 , 3 . D
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PROOF OF PROPOSITION 3.5. Suppose that the equation (3.8) has a transcendental
meromorphic solution / (z). By means of Lemma 3.3, / (z) has only finitely many
fixed points. Put g — I/if — z) in (3.8). Then we see that g(z) satisfies a differential
equation of the form (3.48). However, by Lemma 3.6, giz) must have infinitely many
poles, namely, / (z) has infinitely many fixed points, a contradiction. Similarly we
can show that (3.9) does not have any transcendental meromorphic solutions. •

PROPOSITION 3.6. Suppose that equation (3.1) has a transcendental meromorphic
solution / (z). Then s < 2.

PROOF. We assume that s > 3 in (3.1), and show that this leads to a contradiction.
Put <p = I/if - z) in (3.1) to obtain

(3.51) (-<p' + <p2)<p5-2 = q(z)ep'iz).

We consider zeros and poles of <p(z). By Lemma 3.2, / (z) has only finitely many
poles since s > 3. This implies that (p(z) has only finitely many zeros. We divide the
proof into two cases (I) when (p(z) possesses only finitely many poles, and (II) when
<p(z) possesses infinitely many poles.

(I). In this case, we see that F(z) := f(z) — z has only finitely many zeros. It
follows from this and (3.1) that F'(z) + 1 has only finitely many zeros. We make use
of Lemma 1.5 to get

T(r, F) < 8N (r, j) + 8N (r, J^j) + Sin F) < Sir, F),

a contradiction.
(II). Let zo denote a pole of <p(z) satisfying q(zo) ^ 0, oo. It follows from (3.51)

that <t>(z) := — <p'(z) + <p(z)2 must have a zero at zo, which implies that <p(z) has a
simple pole with residue —1. We write <p(z) in a neighbourhood of Zo as

<p{z) = + c0 + ci(z - zo) + O(z - zo)2.
z -Zo

This gives that in a neighbourhood of zo

= ~ ( 7 ^ 1
(z-zo)2

Cl + Oiz ~

+ (—1—2 - — + cl - 2c, + 0{z - zo))
\(z-zo)2 z-zo )

=^- + 4 - 3c, + 0{z - zo).
z Z
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Since 4>(z) admits zero at zo, we see that c0 = c\ = 0. Namely,

(3.52) <p(z) = - ^ - + O(z - zo)2.
z - z o

Using this, we have that

(3.53) ^ ZL
Z-ZQ

It follows from (3.53) that a meromorphic function

( 3 , 4 )

has a zero at Zo- Then we have

(3.55) N(r,b)= O(logr),

and if fc(z) # 0, then

(3.56) N(r, <p)<N (r, i ) + 5(r, <p) < T{r, b) + O(log r).

By the theorem on the logarithmic derivatives, we get

(3.57) m(r, b) < 3m (r, ^ ) + O(log r) < S(r, <p).

Combining (3.55) and (3.57), we see that T(r, b) = S(r, <p). From (3.56) we have

(3.58) N (r, —^-A = N(r, <p) = S(r, <p) = S(r,f).

By (3.1) we have

(3.59) N(r,j-\=sN (r, - ± - \ + O(logr) = S{r,f).

Again applying Lemma 1.5 to F(z) = f (z) — z, we obtain

T(r, F) < SN (r, j \ + SN (r, J ^ ) + S(r, F) < S(r, F),

a contradiction. Hence b{z) must vanish. However, by (3.54), <p(z) = 0, or
is a linear polynomial or a constant, a contradiction. Thus we have proved Proposi-
tion 3.6. •

PROOF OF THEOREM 1.2. In view of Lemma 3.1, we may treat the equations (3.1)-
(3.9) separately. By Proposition 3.5, the equations (3.8) and (3.9) have no transcen-
dental meromorphic solutions. By Proposition 3.2, the equation (3.7) must be of the
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form (1.11). By Proposition 3.3 (i), the equation (3.3) must be of the form (1.9) or
(1.10). By Proposition 3.3 (ii), the equation (3.6) must be of the form (1.10) or (1.11).
By Proposition 3.4 (i)-(ii), the equations (3.2) and (3.5) should be of the form (1.8).
By Proposition 3.6, the equation (3.1) must be an equation of the form (1.7) or (1.8).
We finally consider the equation (3.4). By Proposition 3.1, it must be an equation
of the form (3.1) or (3.3). Hence we conclude that the equation (3.4) must be one
of the equations of the form (1.7), (1.8), (1.9) or (1.10). Therefore, we have proved
Theorem 1.2. •
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