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DECAYING SOLUTIONS OF 2mth 

ORDER ELLIPTIC PROBLEMS 

W. ALLEGRETTO AND L. S. YU 

ABSTRACT. We consider a semilinear elliptic problem (—A)mu = f(x,u) in Rn, 
(n > 2m). Under suitable conditions on/ , we show the existence of a decaying posi­
tive solution. We do not employ radial arguments. Our main tools are weighted spaces, 
various applications of the Mountain Pass Theorem and LP regularity estimates of Ag-
mon. We answer an open question of Kusano, Naito and Swanson [Canad. J. Math. 
40(1988), 1281-13001 in the superlinear case: | / (* ,K) | < g{x)us (1 < s < *&%), and 
improve the results of Dalmasso [C. R. Acad. Sci. Paris 308(1989), 411-414] for the 
casem = 2J(x,u) = g(\x\)us(Ks< *%). 

1. Introduction. We are concerned in this paper with the existence of nontrivial 
positive decaying solutions to the 2rath order elliptic problem: 

(£u=f(x,u), xeRn 

(1) \ lim u(x) = 0 
[ |*|—>oo 

where t = (—À)m, À denotes the Laplacean and n > 2m. Of special interest to us is the 
case of f(x, t) purely superlinear with subcritical growth: 

\f(x,t)\ <g(x)f 

for 1 < s < (n + 2m) j (n — 2m) and some g(x) to be specified below. At the end of the 
paper, however, we indicate the simple changes needed to deal with purely sublinear or 
mixed sublinear-superlinear problems. 

Unlike the case m — 1 there are few studies of higher order problems such as (1). 
We mention, in particular, the results of Dalmasso, [6,7], Fukagai, [8], Kusano, Naito 
and Swanson, [10,11,12], Kusano and Swanson, [13], and Usami, [16] and the refer­
ences therein. Most of these results were obtained for radially symmetric cases: f(x, t) — 
f(\x\,t), whence approaches using ordinary differential equations were applicable. The 
most closely related paper to this work is [6], where the superlinear case is studied and 
the existence of a positive decaying solution is obtained for 

A2u = g(\x\)u\ xeRn 

with 1 < s < (n + A)I (n — 4), under the assumption JQ° Pgir) dr < oo. Motivation for 
our manuscript also came from [12] where sublinear and mixed sublinear-superlinear 
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problems were considered. Finally we mention that higher order elliptic problems in 
non-radial cases were studied in the paper of Allegretto and Huang, [3] and the paper 
of Bernis, [5]. In [3], however only the existence of solutions bounded above and below 
by positive constants was considered, and the approach used did not seem at all suited 
to the problem of decaying solutions, while in [5], different 2rath order problems were 
considered. 

We wish to establish general non-radial conditions under which (1) has a positive de­
caying solution. Our main tools are weighted spaces, various applications of the Moun­
tain Pass Theorem, LP existence and regularity estimates. The general philosophy follows 
the one given in [4] for second order problems although the details are quite different. 
After some preliminary discussions, we present our main results. In particular, we show 
that (1) has solutions in the subcritical case if |/(jt,f)| < g(*)M5 with g G LP0 H L°° 
for some po. We conclude the paper with some remarks, extensions and presentation of 
illustrative examples which explicitly compare our results to earlier work. For example, 
we show that the integration condition 

r 
Jo 

r*g(r)dr < oo 
'o 

given in [6] is much stronger than our condition even in some radial cases. Finally, we 
note that our examples answer an open question raised in [12, p. 1298] for the superlinear 
case. 

2. Notation and preliminary results. For any Banach space, we denote by Br(x) 

the ball of radius r centered at JC, with Br=Br(0). Let a{x) = (1 + | JC| 2 ) _ 1 . 

LEMMA 0. Let if e Cl(Rn). Then, for n > 2i > 2: 
(a) cSRna^2<JRna

l-l\V^\2, 
(b) c ^ a ^ V ^ ^ y c j ^ ^ W 

where c — c(n, i) is a constant independent of ip. 

PROOF. 

(a) By the Divergence Theorem: 

1 
al(px • V ip — ial- r-rw^ I a V 2 = — / * .V(<rV 2 )= — / 

JRn n JRn n JR' 

yielding: 

I\ 2/\ r , 9 ^ 2 r , i. M _ . \x\ 
1 - - / alif2<- a1"^ \ip \\V(f\ . ' ' 

V nJJR» r nJR" , r " l yjl + \x\
2 

<^iH^i)-(^|v^i). 

2 

l + U 

and the first inequality is immediate. 
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(b) Applying again the Divergence Theorem gives 

= jRn a'" V ( - A ^ ) + (/ - 0 E j k tyDjtpa'xj 

= JRn a'"1 ^ - A ? ) - (i - 1) j ^ <̂ 2 £D;(a '*;) 

= / ff'--V(-A^)-(i-l)/ (T'-r 2 ( | X | 

< 

l + | j t | 2 <p 

Inequality (b) now follows from Holder's Inequality and (a). 
With the aid of Lemma 0 and some elementary limit arguments we can set up weighted 

spaces suitable for the consideration of (1). Let Wk,p denote the Sobolev spaces of func­
tions with k weak derivatives in LP. The space W^. is defined in the usual way. In W™f 
we introduce 

\<P 

N+l r N r 

J2 ^ m " 2 iAV| 2 + E / ffm~(2'+1)|V(AV)|2 ifm = 2(JV+l) 
„-_n JRn ,_n JRn i=0 
N 

i=0 
N 

I 
z=0 

£ / am-2i ' |AV|2 + E / ^m" (2 /+1) |V(AV)|2 i f m = 2 t f + l 
I i=o jRn t=o jRn 

and let £ = {<p \ \\ip\\ < cx>}. We note that Ë is a Hilbert space (for completeness we 
need only recall the completeness of weighted L2 spaces and the fact that V and A are 
closed maps) with the obvious inner product. Let E be the closure of C™(Rn) in Ë with 
respect to || ||. To establish properties of E it is useful to recall: 

LEMMA 1. Letv e Wh2(Br) be a weak solution of-Av = f. Iff e WK2(Br) then for 
r1 < rwe have v G Wk+2,2(B^) and 

| | V I I K * ^ ^ ) < C{ \\v\\L2{Br) + ||/| |^(B r)} 

where C = C(n, k, r, r1). 

PROOF. In fact this lemma is [9, Theorem 8.10]. We need only observe that || v\\w\,i 
in [9, Theorem 8.10] may be replaced by ||v||L2. See, e.g., the remark after the proof of 
[9, Theorem 8.8]. 

We note the following properties of E: 

LEMMA 2. For any u G E, 
(a) AiueWlo

2
c(R

n),fori = 0,... 

(b) ||«|| ~ \\u\\it where \\u\\2 = 
j JRn \A

N+lu\2 m= 2(N+l) 
J ^ J V A ^ I 2 m = 2N+l 
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(c) u G Wm2(Br) and 

<C||w||, C = C(n,m,r) 

(d) u G L2nl^n-2m\Rn), and \\u\\L2ni{n^){Rn) < C\\u\\. 

PROOF. Part (a) is immediate by the definition of E. Applying Lemma 0 and a limit 
argument N times (for the case m = 2{N +1), the other case is similar) gives: 

\\u\\j=\[ \A™u\2 + \ l \^xu\2 
ii \\i 2JRn 2 JRn 

>- [ |A"+1
W|2 + - f G\VANU\2 

- 2 JRn 2 JRn 

a S è(f ) i ' |A'"1 + 5 Ï ( I ) I ' V(A'")I' 
whence ||u||i > C||w||. We conclude that (b) holds. To prove (c), choose r0 > r, and 
note that u G Wm>2(Br) by construction. If m = 2(N + 1), then let v = ANu,f = AN+lu. 
Observing that/ G L2(Rn) and applying Lemma 1, we obtain ANu G W22(Bn) (r < 
r\ < r0) and 

K«|| W | ) < C{ \\ANu\\LHBro) + ||Aw+1«|k2(Bro)}. 
Iterating this process yields u G W2<<N+l^2(Br) and 

7V+1 

IMIw 2 ^ 2 ^) < CY1 \\Alu\\L2(Bro) 
i—0 

N+\ 

<CEI|A^| |L2 (Rn) 

<c||«|| 

where C = C(n, m, r). If m = 2AT+1, we start with v = AN~lu,f = Aww and/ G H^(/?") 
by Part (a). It follows from Lemma 1 that AN~lu <E W3>2(firi) (r < n < r0) and 

HA^-'wII^^) < C{ llA^-'iilly^, + ||A^iiHi^) + || V^iOlU*, , , )} • 
The rest of the proof is the same as above, and (c) holds. Finally to prove (d), note 

that by Sobolev's Inequality, for u G C™(Rn): 

r , \cf \AN+lu\2 

W - - -> £Ci,£1D""l£(c/>(A,l= 
<C|M|2 

for some constant C independent of u. 
We note that Lemma 2 implies that: 
(i) || u\\ £ is an equivalent norm on E\ 

(ii) E can be imbedded into W£2{Rn) H L2n/(n-2m\Rn). 
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3. Results. We now state our hypotheses off: 
(1°) / G Cfoc(R

n x R),f(x, 0) = 0, 0 < f(x, 0 in fil x /P" for some open set Q Ç /T1; 
0<f(xj)inRn x / T . 

(2°) \f(xj)\ <fo(x)+Mx)\t\\ Ks< ^ , / o G L°°nLl-m{Rn)jx G L°° H Z/° (/?"), 
„ 2« 
po 2n-(j+l)(n-2m)' 

(3°) Either/0 = 0 in (2) or lim,_+0+ ^ ^ = 0 uniformly w.r.t. x in Rn. 
(4°) There exists // > 2 such that 

/iF(x, 0 < tfix, t) for (*, t)eRn x R+, 

whereF(*s0 = JS/(*,O<*É. 
Let G(w) = JRn Fix, u) and 7(w) = | | | w||| — G(w) for u G £. Under our assumptions 

o n / and by Lemma 2(d) G and 7 are well-defined. 

LEMMA 3. 

(a) G and J are weakly lower semicontinuous on E with G'{u){^p) — SRnfix, u)(f. 
(b) G1 is continuous and compact from E to E. 

PROOF. Since the proof follows the lines of the one given in [4] for m = 1, we only 
sketch the basic ideas. 

(a) Let Uk —> u weakly in E. Then { u^} is bounded in E and we observe: 

I G(uk) — G(u)\ < / |Fix, u^ — Fix, u)\ 
JBr 

+ C{||/o||L2m(R„VBr)(||«t||,+||M||,) 

+ ii/iiu(nBr)(ii^nri+iiM|ir1)}-
The weak lower semicontinuity of G now follows by the boundedness of {^|^} in 
Wm>2(Br) (see Lemma 2) and the compactness of Wm2(Br) ^ Lp(Br) for 1 < p < ^ , 
(see, e.g. [1, Theorem 6.2]). The semicontinuity of J is then obvious. 

For differentiability of G, we show that: given any e > 0, there exists a 8 = 8 {e, u) > 
0 such that 

/ F(x,u + (p)- F(x,u)- f(x,u)(p\ < e\\(p\\e 
I JRn JRn JRn I 

for all if G E with || if \\e < S. Observe that/0 e L°° H L2
a-m(Rnlfi G Z/°(/?") and 

J F{x, u + (f)- Fix, u) -fix, u)(f\ 

< [ 2f0\if\ + / I ( |M| + M ) 5 M +fi\u\s\f\ 
J Rn \Br 

for sufficiently large r and || <p \\i < 1. To estimate the integral on the bounded domain: 

/ Fix, u + if) — Fix, u) —fix, u)if\ 
I JBr I 

<flMI/. 
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we need only follow the arguments in [15, Prop. BIO], since they are the same in nature. 
(b)Letw = G'iu), that is: (w, ip) — JRnfix,u)(p, where (•, •) denotes the inner product 

induced by || • \\z. For continuity, it suffices to show that for any sequence Uk —> u 
in E there exists a subsequence {u^} such that u^ —> u in E. Note that {uk} has a 
subsequence u^ —> u pointwise in Rn and 

||"it - "|U ^ C ( \\f('>Uk) -f('^)\\L2nf^2m)(Br) 

+ ll/0|| 

The continuity of G' follows from \f(x,t)\2n/(n+2m) < C\ + c2M2 'u/(r t+2m) in £ r with 
1 < ^—^ < -~^ and the continuity properties of the Nemytskii operator. To show 
compactness, note: 

(a,ip) = [ fix,u)<p+ f fix,u)(p. 
JBr JR \Br 

The first term defines a map from E to E : G'r(w)((^) = Jgr/(x, M)< .̂ G'r(-) is obviously 
compact. Indeed, we again note that any bounded sequence { uk} in E has a Cauchy sub­
sequence in LpiBr) with 1 < p < ^ ^ , say { uk} itself. The compactness immediately 
follows from the estimate below: 

\\G'riUk) - G'riUj)\\l < C\\fi-,Uk) -fi-,Uj)\\L2n/{n+2m)(Bry 

We estimate the second term by 

l/^/(x'"H-c(||/o||z--
m(R*\Br) + \\fi\\ifo(Rn\Br) • INOlMI*-

Therefore, G'iu) is a limit map of a sequence of compact maps under the norm || • ||^, 
whence G'iu) is also compact. 

The critical points of 7, i.e., u G E such that 

fiu)i(p) = (u,(p) - J fix,u)ip = 0 

are the weak solutions of I u — fix, u). We state our main result. 

THEOREM 4. Under conditions ( 1 °)-(4°) onf, ( 1 ) has a positive classical solution u 
withDau —• 0 as \x\ —• 00for \a\ < 2m — 1. 

PROOF. In view of Lemma 3 we can apply Mountain Pass Theorem arguments by 
suitably modifying the procedure given in [15]. Without loss of generality, we set 
fix, 0 = 0 if f < 0. If/o = 0, then: 

m > \\\u\\] - - L . jRjx\u\s+x > \\H] -ciLfill^lklir1-

If limf_ )̂+ ^ = 0 uniformly w.r.t. x <E Rn, then \fix,t)\ < eamix)\t\ + Cie)\t\^, 
C(e) independent of x. It follows that: 

J(u) > {\-eC(n))\\u\\2
t - C{e,n)\\u\\]"l{n-2m). 
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Hence the conditions (2°) and (3°) yield J(u) > a for all u G dBp(0), some p, a > 0. 
From assumptions (1°) and (4°) we have: 0 < //F(;t, t) < tf(x, t) for all JC G Q and t > 0. 
We may assume £1 is bounded. Integrating shows that there exist a\,a2 > 0 such that 
F(x, t) > axt» - a2 forx G Q, t > 0. Let w G Cg°(Q) with w(x) > 0, ^ 0, and let (3 be a 
positive number. We observe that 

^ v v ) < ^ 2 | | H I ? - / ^ / aiw»+a2\£l\ 

yields /(/3vv) < 0 for /? large. Finally, to verify the PS condition, let { w&} Ç £ with 
./("*) < C and J'(uk){-) —> 0. We observe that: 

2 Juk(x)>0 

1 1 f 

2 jl Juk(x)>0 

= ( ^ - - ) II «til? --/(«*)(«*) 

It follows that { Uk} is bounded. Note that Uk = Gf(uk)+f(uk). The PS condition is now 
immediate from the compactness of G'. We conclude that /(•) has a nontrivial critical 
point, say u. Lemma 5 below shows that u G C2m(Rn) and Dau —-> 0 as |JC| —* oo for 
| a | < 2m — 1. To see that w is positive, we observe that/(x, u) > 0 and (—A)m_1 w is a 
solution of the following problem: 

(-A)v = /(*, u) 
lim v = 0. 

|JC|—+00 

If we choose xo and apply the Maximum Principle on Bn r large, we conclude: V(JCO) > 
inf|x|^r v(x). Letting r —-> oo, we obtain: (—A)m_1w > 0. Similarly, we can show that 
(—A)m~2u > 0 , . . . , —Aw > 0 and u > 0. Since « is nontrivial, by the Mountain Pass 
Theorem, then u > 0 by [9, Th. 8.18]. 

LEMMA 5. Let u be any critical point ofJ(-). 
(a) u is a classical solution of(—A)mu = f(x, u) and furthermore, for some p — p(q), 

| | M | U , ( B I W ) - " ( iMU^i f ew) ' ll/o|U(B2W)J 

where q > ^z§^, H is a continuous function, dependent on n, m, q and \\f\ ||/«>, 
withH(0,0) = 0. 

(b) Dau —+0as\x\ —> oo/<9r | a \ < 2m — 1. 

PROOF. Let u be a critical point of 7: 

(u,(f) — / /(x,w)(/? = 0, <p €E. 
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Supposed = !^n-s < 1 (the case 8 > 1 will be discussed below) and u G Lqo(Bn(x)) 
with qo — In/ [(n — 2m)(l — 8)*] for some integer / and 1 < n < 2. Note that this is 
true for / = 0 by construction. Observe that for any cp G CQ° (#r/(*)), 

| ( M , ( - A » ) | = |<M,^)| =\LfJ(',*)<p\ 
1 v ' ' I JBr.(x) I 

< L ,M<p\+fM'\<p\ 
JBr (x) 

<c{\\M\ ( \ + \W ( JIMI A \ 

where p > q,tf : \ + ^ = 1, q = J, and C = C(rc,ra, ||/I||L«>)- We obtain by the 
regularity theorem [2, Th. 6.1] that: 

ueW2m«(Bn+l(x)), 1 < rM <rh 

ll/oll / \ + INI5 / \ + INI ( \ 
UJUULf[Br.(x)) " "L«o[Bri(x)) " ML« (*,,.(*) J J 

ll/oll / \ + ||M||5 / \ + INI / \ I 
, , 7 U , , t f (*,.(*)) " "L«o{Bri{x)) " UL%[Bri(x))\ 

Ml „ ( \<c 

<c 

Consequently, it follows from Sobolev's Embedding Theorem [1, Th. 5.4] that u G 
L^(Bn+[(x)) with: 

In 

{n-2m)(\-8)^0^-8]-Am 

unless the denominator is nonpositive, in which case clearly u G Lq for q large. Note that 
this must occur for / > /Q, some i"o = io(n,m,8). If 8 > 1 , then /o = 0. However, we 
find in any case: 

<7i > 

> 

2« 

(/!--2m)( l --«y n+2m 
n—2m -s - 4m (/!--2m)( l --«y n+2m 
n—2m -s - (n-2m)(\-6y\ 

In 
(n-2m)(l -8)i+r 

We conclude that for any large chosen q we can show by iterating a finite number of 
times (depending on q) that u G W2m,q. It follows that u G C2m_1 and, consequently, 
f(x,u(xj) G C£c. Setting v = (-A)m-lu and employing [9, Th. 9.19] we conclude 
v G C1 and, consequently, u G C2m. The function H consists of sums and products and 
is constructed merely by keeping track of the bound on || w|| ^2^ in each of the iteration 
steps. 

It follows from (a) that 

DaueW2m-\a\«(Bx(x)\ \a\ < 2 m - l , 

Infill ̂
y/lm-\a\,q B . W ) - " ! 1 1 " 1 1 ^ / ^ . ^ ^ ' ^ ^ ^ ^ ) -
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(b) is an immediate consequence of Sobolev's Embedding Theorems on B\(x) and the 
observation that 

lim ||u|| „, / \ = lim ||/bll / \ — 0, 
\X —KX) 

"L2»/(»-2mHB2(x)) |jc|-*x> "Lf[B2(x)) 

for any large p. 

4. Examples and comparison. We conclude with illustrative examples showing 
the connection with earlier work. For simplicity we assume all coefficients are in C°° 
unless otherwise mentioned. 

EXAMPLE 1. Consider the superlinear biharmonic problem 

iA2u = g(\x\)us, xeRn 

(!') \ lim u = 0 
I |jc|—KX) 

where n > 5, 1 < s < ^,geL°°,0< g(\x\) = 0(\x\ ~a) at oo. The conditions (1°), 
(3°) and (4°) are satisfied. We conclude that (1') has a positive solution by our theorem 
i f : 2n-(s+T)(tt-4) > n i e - a > ^ r [f=| ~~ s] := a*(s)- T h e g raPh of a*(j) is a straight line 
with 4 = a*(l) > a*(s) > fl*(^) = Ofor 1 < s < ^ . 

As mentioned before, to the best of our knowledge only Dalmasso studied in [6] the 
superlinear biharmonic problem. The existence of a positive solution to (1;) is obtained 
there by the assumption: 

—> ,. 
rg(r) dr < oo. f 

Jo If g(|jc|) = 0(\x\ a), the integration condition implies a > 4, which is much stronger 
than our condition in this case: a > ^ [ ^ — si. 

EXAMPLE 2. Consider the general superlinear pluriharmonic problem 

[ (-A)mu = g(x)us, x<ERn 

(2) \ lim Dau = 0, 0 < | a | < 2 m - l 
I |jc|—KX) 

where n > 2m, 1 < s < 0^, 0 < g(x) e L°° H Z/° = 2n_(5+^(w_2m). In this case, the 
conditions of our theorem are satisfied, thus (2) has a classical positive solution. We note 
in passing that if we replace us by u\ u\ s~l in (2), since J in this case is an even functional, 
then the corresponding problem has infinitely many solutions, of which at least one is 
positive, as a consequence of results in [15, Theorem 9.12]. Observe that this example 
answers the open question posed in [12, p. 1298]. 

EXAMPLE 3. In [ 12] various other problems were considered. One such was the sub-
linear problem: 

(3) (-A)mu = g(\x\)u1 
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for—1 < 7 < 1, w > 2m + 1. With some modifications, we can consider problems 
similar to (3) in case 0 < 7 < 1. Specifically, consider 

(4) \ lim u = 0. 
I |*| —KX> 

Assume/ is nonnegative, smooth and 
(i) fix, t) > gi(x)f> as t -> 0+,/(JC, 0 < g2(x)f2 for t > 0 with 0 < 7i, 72 < 1. 

(ii) gl(x) > 0, ^ 0, and g2(x) e L™ H lf\ p0 = 2n_(l2^)(n_2my 
While Mountain Pass arguments do not apply (since we cannot guarantee that /((/?) > a 
for (f G dBp, some p > 0, a > 0), we note that / is bounded below. Indeed, 

J(u)>\\\42l-fle,^-y82(x)\u\'1^ 

- 5 l | H | l ' _ ^ T T l | g 2 l u l | M | i r l 

\r glMir-^IWU). 
where/(x, 0 = 0 for t < 0 is assumed. Also J and G are weakly lower semicontinuous, 
and G' is compact by (ii) and the proof of Lemma 3. (Note that in this case, the estimates 
in the proof of Lemma 3 are even simpler. For instance, | G(uk) — G(u)\ < JBr | F(x, Uk) — 
F(x,u)\ + C\\g2\\LP0{Rn\Br) (\\uk\\J

2+l + ||u||J2+1).) We observe that: 

^^)<Çikii,2-^/^^iwi^r'+i<o 
for some (p G C™(Rn) if (3 is small enough. Therefore (4) has a positive solution u such 
that J(u) — inf { 7(v) | v G E} < 0. The case 7 < 0 does not seem accessible to our 
methods. 

EXAMPLE 4. Another situation considered in [ 12] was a mixed sublinear-superlinear 
problem. We can also consider these problems as follows. Let: 

(-A)mu = f(x, u) = gix)ua + hix)u^ 

with0< a< l<(3 < ^0<geL™nL<i,q= 2n^){n_2mV 0<heV»nU>, 

P ~ 2n-(3+\)(n-2my anc^ ^ ^ 0- We are still able to employ the Mountain Pass Theorem 

to obtain the existence of a decaying positive solution. In this case J is weakly lower 

semicontinuous and differentiable, while G' is compact in the same way as mentioned in 

Example 3. Observe that for some (0 <) w G C^iRn\ 

Jitw) < t-WwWJ - - P - / hw?+l < 0 
V / _ 2 || | |£ „ + 1 JRn 

for large t > 0, and that the iPS) condition follows from the estimate 
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But the step J(<p) > a for ip £ dBp, some p > 0, a > 0 no longer follows as before. 
Observe, however, that for some C\, C2, 

j(<p)>\\w\\i-cMuy\\rl-c2\\h\\P\\ip\\f+i 

_ 1 
~ V 
>a, 

9\\j{l-2Cl\\g\\t!\\<p\\rl-2C2 \\P\W\V) 

for all (p G dBp(0), if for some p > 0: 

1 - 2C1 | |g||,p"-1 -2C2\\h\\y-1 =H(p) > 0. 

Elementary differentiation shows that the maximum for H(p) is attained at po = 

( (ff-'ncâ f l ) " • ̂ e ° b t a m t n e existence of u by Mountain Pass arguments if H(p0) > 
0, i.e., 

WHU)e(CaMU,B[(f£i)'"+(i^)C] < 1. 

In order to apply this result, we need estimates on C\, C2. Such estimates are known and 
essentially given explicitly in [14, p. 56]: 

Ci = 
1 

c2 

a + 1 

1 

0 + U 

-(m+1)/ 

-(m+1)/: 

2(n— \\m T(n/ 2 — m) 
T(n/2) 

2( n— \\m T{nj 2 — m) 
~W) T(n/2) 

where vn is the volume of B\ (0). This result does not seem easily comparable to [12, Th. 5] 
since they are different. We observe that for this example some embedding estimates are 
important in general. Note, however, that if g = 0 then we recover the superlinear result 
of Theorem 4. 

REFERENCES 

1. R. A. Adams, Sobolev spaces. Academic Press, New York, 1975. 
2. S. Agmon, The Lp approach to the Dirichlet problem, Ann. Scuola Norm. Sup. Pisa 13(1959), 405-448. 
3. W. Allegretto and Y. X. Huang, On positive solutions of a class of fourth order elliptic systems, Funk. 

Ekvac. 32(1989), 57-65. 
4. W. Allegretto and L. S. Yu, Positive If solutions of subcritical nonlinear problems, J. Diff. Equations, to 

appear. 
5. F. Bernis, Elliptic and parabolic semilinear problems without conditions at infinity, Arch. Rat. Mech. Anal. 

106(1989), 217-241. 
6.R. Dalmasso, Solutions positives globales d'une equation biharmonique sur-linéaire, C. R. Acad. Sci. Paris 

308(1989), 411-̂ 4-14. 
7 , Solutions d'équations elliptiques semilinearies d'ordre 2m, Funkcial Ekvac, to appear. 
8. N. Fukagai, Positive entire solutions of higher order semilinear elliptic equations, Hiroshima Math. J. 

17(1987), 561-590. 
9. D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order. 2nd edition, Springer-

Verlag, Berlin-Heidelberg-New York-Tokyo, 1983. 

https://doi.org/10.4153/CJM-1991-027-8 Published online by Cambridge University Press

file:////p/w/V
https://doi.org/10.4153/CJM-1991-027-8


460 W. ALLEGRETTO AND L. S. YU 

10. T. Kusano, M. Naito and C. A. Swanson, Radial entire solutions to even order semilinear elliptic equations 
in the plane, Proc. Roy. Soc. Edinburgh 105A(1987), 275-287. 

11. , Entire solutions of a class of even order quasilinear elliptic equations, Math. Z. 195(1987), 151-
163. 

12 , Radial entire solutions of even order semilinear elliptic equations, Can. J. Math. XL(1988), 1281-
1300. 

13. T. Kusano and C. A. Swanson, Positive entire solutions of semilinear biharmonic equations, Hiroshima 
Math. J. 17(1987), 13-28. 

14. V. G. Maz'ja, Sobolev Spaces. Springer-Verlag, Berlin-Heildelberg-New York-Tokyo, 1985. 
15. P. H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations. 

Amer. Math. Soc, Providence, R.I., 1986. 
16. H. Usami, On strongly increasing entire solutions of even order semilinear elliptic equations, Hiroshima 

Math. J. 17(1987), 175-217. 

Department of Mathematics 

University of Alberta 

Edmonton, Alberta T6G 2G1 

https://doi.org/10.4153/CJM-1991-027-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1991-027-8

