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Abstract

We introduce a comprehensive data-driven framework aimed at enhancing the modeling of physical systems,
employing inference techniques and machine-learning enhancements. As a demonstrative application, we pursue
the modeling of cathodic electrophoretic deposition, commonly known as e-coating. Our approach illustrates a
systematic procedure for enhancing physical models by identifying their limitations through inference on experi-
mental data and introducing adaptable model enhancements to address these shortcomings. We begin by tackling the
issue of model parameter identifiability, which reveals aspects of the model that require improvement. To address
generalizability, we introduce modifications, which also enhance identifiability. However, these modifications do not
fully capture essential experimental behaviors. To overcome this limitation, we incorporate interpretable yet flexible
augmentations into the baseline model. These augmentations are parameterized by simple fully-connected neural
networks, and we leverage machine-learning tools, particularly neural ordinary differential equations, to learn these
augmentations. Our simulations demonstrate that the machine-learning-augmented model more accurately captures
observed behaviors and improves predictive accuracy. Nevertheless, we contend that while the model updates offer
superior performance and capture the relevant physics, we can reduce off-line computational costs by eliminating
certain dynamics without compromising accuracy or interpretability in downstream predictions of quantities of
interest, particularly film thickness predictions. The entire process outlined here provides a structured approach to
leverage data-driven methods by helping us comprehend the root causes of model inaccuracies and by offering a
principled method for enhancing model performance.

Impact Statement

We present an approach to enhancing the modeling of physical systems through a data-driven framework that
integrates inference techniques and machine-learning enhancements along with baseline physical models. By
focusing on cathodic electrophoretic deposition (e-coating) as a case study, this work systematically identifies
limitations in existing physical models using experimental data. The approach presented addresses these
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limitations by incorporating adaptable model enhancements, significantly improving model parameter identifia-
bility and generalizability. A key contribution of this work is the introduction of interpretable and flexible
augmentations to baseline models, parameterized by simple, fully-connected neural networks. Leveraging
machine-learning tools, particularly neural ordinary differential equations, the framework effectively learns
these augmentations, resulting in simulations that more accurately capture observed behaviors and enhance
predictive accuracy. Despite these improvements, the study highlights the potential to reduce off-line compu-
tational costs by eliminating certain dynamics without compromising accuracy or interpretability in downstream
predictions, particularly for film thickness. This structured approach not only elucidates the root causes of model
inaccuracies but also offers a principled method for enhancing model performance.

1. Introduction

Cathodic electrophoretic deposition (EPD), commonly known as e-coating, is a pivotal technique used in
industries, such as automotive and manufacturing, to apply protective coatings to various surfaces,
preventing corrosion and ensuring durability. Achieving optimal coating properties and process efficiency
requires accurate modeling of EPD dynamics, which presents significant challenges due to the complex
electrochemical interactions involved.

The primary challenges in modeling the e-coat process are the uncertainty surrounding the physical
properties of the coating film during the deposition and a limited understanding of the underlying physics.
Various models proposed in the literature have attempted to address these issues (Boyd and Zwack, 1996;
Pierce et al., 1981; Rastegar, et al., 2008; Mišković-Stanković, 2002; Ellwood et al., 2009), but they often
require empirical calibration based on measurements for film initiation and growth or fail to capture
experimental behaviors. In addition, the deposition onset of the coating film, characterized by threshold
parameters, remains an open question, leading to discontinuities in model outputs and rendering
parameter inference difficult. An extensive study on the modeling of the e-coat process and chemistry
involved for constant current and constant voltage can be found in Beck (1976); Pierce, 1981.

E-coating in the automotive industry typically involves employing (Sand, 1899) Eq. (25) to compute
the induction time under constant current (CC) conditions. However, the application of a linearly
increasing voltage in time is also common in automotive practices to ensure good throw power and
prevent defects associated with high voltage (Marlar et al., 2020). To address non-CC and voltage
scenarios, an equivalent to Sand’s equation is derived using the Laplace transform, assuming a constant
diffusion coefficient of the bath solution.

To enhance the modeling of EPD dynamics, specifically in the context of e-coating, this study aims to
modify a baseline model to improve model performance with respect to experimentally obtained data.
There exist twomajor types of uncertainty in the baselinemodel: parametric andmodel form uncertainties.
Parametric uncertainties refer to the uncertainty or lack of precise knowledge about the values of certain
parameters in a computational model while model form uncertainty refers to the uncertainty associated
with the choice of computational model itself. Parametric uncertainty is often addressed by leveraging
experimental data to perform parameter estimation (maximum likelihood estimation, Bayesian inference,
etc.), and model form is typically addressed through physical insight and intuition along with data-driven
modeling techniques, the latter of which is highlighted in this work. Experimental uncertainties can also
significantly affect both the reliability and interpretability of machine-learning methods and models. With
increasing levels of noise or error, the learned model parameters may become less accurate, leading to
unreliable predictions. However, in this work, we assume that experimental uncertainties are not the
primary cause of inaccuracy in our models but rather the model form itself.

Variational inference methods are employed to estimate the parameters of this model in an effort to
address the parametric uncertainty associated with the model. However, inherent unidentifiability issues
in the model hinder accurate parameter estimation. To overcome these challenges, modifications are
introduced to the baseline model to ensure that all parameters are identifiable and more generalizable
across experimental conditions, attempting to address model form uncertainty. Nonetheless, the model’s
inability to capture observed behaviors in experimental data prompts the use of machine-learning
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(ML) tools, particularly neural ordinary differential equation (neural ODE) (Chen et al., 2018), to
introduce and learn physically relevant and interpretable modifications.

By leveraging neural ODE and carefully crafting learnable augmentations using physical insights, the
model’s capability to match experimental data is improved while preserving physical interpretability. We
use data to enhance an existing full-order dynamical system, effectively creating a surrogate model in the
form of model augmentations rather than entirely discovering the physical dynamics (Brunton et al., 2016;
Rudy et al., 2017). Our aim is that of improving predictive accuracy while maintaining an interpretable
model. As the baseline model is computationally efficient, reduced order modeling techniques (Ahmed
et al., 2021; Pawar et al., 2019; San and Maulik, 2018; Hasegawa et al., 2020) are not addressed in this
work. To this end, simulations and comparisons with experimental results demonstrate the effectiveness of
the improvedmodel in capturing observed behaviors and enhancing the predictive accuracy of the baseline
e-coat dynamicsmodel, notably for film thickness prediction,while augmentation forms remain physically
interpretable and flexible.

Recent advancements in hybrid machine-learning and data assimilation (DA) techniques have dem-
onstrated the potential to model complex dynamical systems, especially when integrating simulation and
observational data. These methods, while showing promise in representing high-dimensional and noisy
systems, often prioritize predictive power over interpretability. Our approach aims to maintain a balance
between interpretability and accuracy. By leveraging variational inference and neural ODE to designmodel
augmentations, we preserve physical insights while introducing flexibility to model modifications. Hybrid
approaches such as those discussed by Cheng et al. (2023). offer complementary strengths, particularly in
terms of uncertainty quantification and real-time adaptability. However, our focus on augmenting the
physical model with learnable components allows for better adherence to known physical principles,
making it suitable for applications where both interpretability and predictive accuracy are critical. This
approach aligns with our goal of improving the e-coatingmodel without compromising the transparency of
its inner workings. Accurately predicting the polymer film thickness over time is of utmost interest for time
and cost savings in industrial applications, and this study argues that not all behaviors present in
experimental data are necessary for accurate film thickness predictions. Removing unnecessary complex
physical behavior from the model leads to a more efficient formulation of the e-coat process, striking a
balance between interpretability, predictive accuracy, and efficiency.

A contribution of this work is to illustrate a principled process of clearly understanding and evaluating
the root cause of model shortcomings followed by improving model performance using these insights
along with experimental data. Together, our methods can be useful for addressing both parametric and
model form uncertainties in computational models where experimental data are available.

The prominent aspects of our approach include the use of variational inference techniques to
estimate model parameters from data, an in depth identifiability analysis of parameters in the baseline
e-coat model, identifiability and generalizability improvements to the baseline model based on
experiment type, and the introduction of learnable ML augmentations to improve model accuracy
while retaining interpretability. Interpretability in this work refers to the ability of a model to provide
insights into its decision-making process in a way that is understandable to humans, specifically by
aligning its operations and outputs with known physical laws and principles. This concept goes
beyond mere prediction accuracy, aiming to make the internal workings of the model transparent, so
that its predictions can be directly related to physical phenomena and understood in terms of physical
concepts.

We first illustrate issues with the baseline e-coat dynamics model during inference and prediction
which inform the introduction of physically relevant augmentations to improve predictive accuracy. In
particular, through variational Bayesian inference, we attempt to infer the parameters of the baseline
model and show that identifiability issues hinder the process. Slightly altering the model results in an
identifiable model which is more generalizable, but important physically relevant behavior is found to be
entirely absent from the model. Finally, we introduce interpretable ML augmentations to improve the
accuracy of the baseline model on experimental data. The final model is assessed for both CC and voltage
ramp (VR) cases concerning experimental data while trained only on VR cases.
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The organization of this manuscript is as follows. Section 2 introduces the baseline model for electro-
deposition. Section 3 presents the Bayesian inference methods for estimating the parameters of the
baseline model with quantified uncertainty and illustrates the issue of parameter unidentifiability.
Section 4 introduces a new model based on a variation of Sand’s equation, valid for any CC/VR
experiment, but we show that this model fails to capture all relevant physical behavior observed in
experimental data. We then introduce an interpretable ML-based augmentations to the model later in
Section 4 to better capture experimental data dynamics and show that removing some of themost complex
physical behavior can greatly improve model efficiency without negatively impacting film thickness
growth predictions much. Finally, the study concludes in Section 5, highlighting the contributions to
e-coating modeling and offering insights into potential applications in diverse fields.

2. Mathematical formulation

In this section, we present the mathematical formulation of the baseline deposition model (Ellwood et al.,
2009), a computational framework for solving the baseline model, and the corresponding measurement
data acquired from experiments.

2.1. Baseline model

The baseline model is one-dimensional in space, consisting of a cathode and anode placed length L apart
and filled with a solution of suspended colloidal particles in between (see Figure 1). After a voltage is
applied and prior to film deposition, an electrochemical reaction takes place at the cathodewith 2H+ + 2e�

! H2 or 2H2O + 2e� ! 2OH� + H2 (Ellwood et al., 2009). As the reaction proceeds, the bath solution
basicity increases until a critical pH value is reached and film deposition starts. Film deposition is defined
by suspended colloidal particles being deposited on the anode, increasing the circuit resistance.

The film deposition process is separated into three components. First, the electric field within the bath
is computed using the conservation of current density given by

∇ � j= 0 (1)

j= �σbath∇ϕ (2)

ϕjΓ =Rfilm jn at the interface film‐bath, (3)

where j is the current density, σbath is the bath conductivity, jn = j �n is the normal component of the current
density, ϕ is the electrical potential, Rfilm is the film resistance, and Γ represents the interface between the
film and the bath. Second, once film deposition begins, deposition rate is defined as

dh
dt

=Cvjn, (4)

where h is the film thickness andCv is the Coulombic efficiency. Third and finally, the film thickness and
film resistance are related through

dRfilm

dt
= ρ jnð Þdh

dt
, (5)

Figure 1. Initial setup for the 1D case.
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where ρ jð Þ is the film resistivity. In particular, ρ jð Þ is a decreasing function of the current density, and we
adopt an empirical estimate from (Liu and Kevin Ellwood, 2017) of

ρ= max 8× 105 exp �0:1jð Þ,2 × 106� �
: (6)

Before deposition begins, the right-hand sides of Eqs. (4) and (5) are both equal to 0. Themodel defines
the deposition onset event according to two criteria: the minimum current density and minimum charge
conditions. The onset criteria are critical for accurately predicting the film thickness growth in time. If
both of the conditions are met, film deposition begins in the baseline model.

The first condition which determines deposition onset is a minimum current density condition. Once
the current density at the cathode reaches a threshold value jmin, the film thickness begins to increase. The
onset condition parameter jmin is unknown and estimated or inferred from experimental data. The second
onset condition is a minimum charge condition. The minimum charge criterion assumes that the
deposition does not start until the accumulated charge on the cathode reaches a threshold value Qmin,
with the electric charge Q defined by

Q tð Þ=
Z
t
jndt: (7)

The deposition onset thresholdQmin is also unknown and estimated or inferred from experimental data.
Once both the minimum charge and minimum current conditions are met, film thickness increase as

dh
dt

=Cvjn forQ >Qmin and j > jmin: (8)

Additional model parameters have already been estimated from previous experimental data. We thus
fix those parameters to values presented in Table 1 and focus only on estimating the key unknown
parameters Cv, jmin and Qmin in the baseline model.

2.2. Computational formulation

We consider twomain types of experiments in our computational setup: VR and CC. In VR, the voltage is
increased linearly with time at a rate of VR such that ϕ t,x= Lð Þ=V t,x = Lð Þ=VRt. Electric potential is
denoted ϕ or V interchangeably in this work. In CC, the current density at the anode is held constant.
Experimentally, the current can only be held constant until somemaximumvoltageVmax determined by the
available equipment. Numerically, once themaximumvoltage is reached inCC,Vmax is enforced instead of
constant current.

Eqs. (1) through (3) are the Poisson equationwith Robin boundary condition on the film/bath interface.
This model is imposed for both experiments, but the boundary condition at the anode is different for each.
Both experiment types are modeled by

σbath
∂
2ϕ
∂x2

= 0 in the bath (9)

ϕ�Rfilmσbath
∂ϕ
∂x

= 0 at the interface film‐bath, (10)

additionally with VR having an anode boundary condition

Table 1. Summary of baseline model parameters

Name Symbol Value Unit

Bath conductivity σbath 0.14 S=m
Initial resistance at cathode R0 0.5 Ωm2
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ϕanode tð Þ= ϕt = 0 + ϕramp tð Þ, (11)

and CC having an anode boundary condition

σbath
∂ϕ
∂x

= j0: (12)

These equations offer an analytic relationship between film resistance and current in 1D for VR:

j tð Þ= σV t,x= Lð Þ
σRfilm tð Þ+ L : (13)

AsV t,x= Lð Þ is set as the boundary condition, we can solve only the resistance dynamics in Eq. (5) and
compute j tð Þ from V and Rfilm. For CC, the current is set by the experimental conditions as j0, and the
voltage at the anode can be computed by

∂V
∂t

=
∂Rfilm

∂t
j0 forV <Vmax, (14)

where Vmax is the maximum experimental voltage. If V ≥Vmax in CC, the relationship between voltage,
current, and resistance is given by Eq. (13).

To simulate the baseline dynamics, any black box ODE solver can be implemented to solve Eq. (5)
forward in time, computing the time evolution of film resistance. Current, voltage, and charge are given as
boundary conditions, computed analytically from Eq. (13), or solved along with resistance dynamics
using Eq. (14).

2.3. Experimental setup and data

Experimental data are acquired from a laboratory setup that approximates the computational setting. In the
experiment, a 16.0 cm2 square anode and cathode are placed at the ends of a long e-coat bath and
connected to a power source. Avoltage is applied across the anode and the cathode according to either the
VR or CC setup. During the course of each experiment, the voltage, current, and film resistance are all
measured at a frequency of 10Hz. For some experiments, thickness measurements are obtained by setting
the voltage to zero at some time and measuring the thickness of the film at that time. Note that measuring
the thickness terminates the experiment. A depiction of the experimental setup is given in Figure 2

Experiments are performed for both VR and CC at different experimental conditions, for a total of six
configurations (see Table 2 for an overview). Multiple trials are repeated for each configuration, where
each trial is performed to a different final time in obtaining its thickness measurement. The experimental
data are collected in D = jf gi, Rf gi

� �6
i = 1, where jf gi, Rf gi respectively represent the sets of current and

resistance measurements for each of the six configurations. We do not use voltage data as they can be
computed analytically from resistance and current. The data used during inference and learning are
truncated for each experiment type i to time ti such that data have been gathered for at least 3 trials at all
times t≤ ti. This is done to provide more accurate estimates of the variance during likelihood

Figure 2. Experimental setup.
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computation. An example of current measurements jf g1 from the 13 trials under configuration VR,
VR = 1V is shown in Figure 3.

3. Parameter inference using experimental data

Under the standard Bayesian inference framework, the initial knowledge of parameters of interest
Θ :ω!ℝm is described by the prior p θð Þ. The observation of data Y :Ω!ℝn given by realizations y
are assumed to be related to the parameters through a likelihood p yjθð Þ. The posterior p θjyð Þ gives the
updated knowledge about parameters θ after observing data y, and is given by Bayes rule:

p θjyð Þ= p θð Þp yjθð Þ
p yð Þ , (15)

where p yð Þ is known as the evidence and is typically intractable to compute. However, the evidence is
constant for some data distribution as does not depend on the parameters θ. In our applications, we are
concerned with optimization techniques which require only the log-likelihood and log prior. Thus, the
evidence is neglected as a constant and not computed.

In the baseline e-coatmodel, our parameters of interest are θ = jmin,Cv,Qminf g. Our goal is to infer these
parameters given the experimental data described in Section 2.3. The truncated normal distributions are
used for the prior to ensure the positive support while still enables the specification of themode and spread

Table 2. Descriptions of the experimental data for each of the six experimental conditions

i Experiment ni (# trials) ti (s) Total data points (j,R,V )

1 VR, VR = 1:0 V/s 13 239 31,870
2 VR, VR = 0:5 V/s 13 477 63,620
3 VR, VR = 0:125 V/s 12 639 85,178
4 CC, j0 = 10:0 mA 10 80 10,420
5 CC, j0 = 7:5 mA 10 160 20,820
6 CC, j0 = 5:0 mA 10 240 31,216

Figure 3. Visualization of the jf g1 experimental data (all 13 trials) for configuration VR = 1.0. Each trial
ends at a different time, and data are sampled at a rate of 10 Hz.
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regarding the parameters. The data random variable Y consists of both current j and film resistance Rfilm.
We assume a measurement model of

y θ, t;ηð Þ=G θ, t;ηð Þ+ ϵ t,ηð Þ (16)

where G θ, t;ηð Þ= Rfilm θ, t,ηð Þ, j θ, t,ηð Þf g, computed by simulating the baseline model, and is a deter-
ministic function of θ, t, and the experimental configuration parameters η. The measurement noise
ϵ t,ηð Þ�N 0,Σ t,ηð Þð Þ is a function of time and experimental configuration parameters, and we estimate
the covariance matrix Σ t,ηð Þ from experimental data.

Considering our experimental data as D , the posterior we seek to approximate is given by

p θjDð Þ= p D jθð Þp θð Þ
p Dð Þ : (17)

The integration involved in directly computing p Dð Þ= Rθp D ,θð Þdθ (the “brute force" approach) is
expensive to evaluate, particularly in high dimensions. Therefore, numerical techniques have been widely
used to approximate the posterior. In addition, computing the posterior directly does not on its own
necessarily allow samples to be easily drawn from the posterior. We discuss various inference techniques
investigated to perform more efficient inference on the parameters of interest and easily sample from the
inferred distributions. The brute forcemethod of directly computing the posterior is referred to as the gridding
approachhereafter due to computing the posterior on a discretized grid in the parameter space. Othermethods
investigated are all forms of variational inference in which the inference problem is transformed to an
optimization problem (Duraisamy, 2021; Tran et al., 2021; Guo, 2017; Rezende and Mohamed, 2015.

3.1. Likelihood

Each of the inference methods described require the computation of the (log) likelihood. Given the
assumed measurement model in Eq. (16), the likelihood p D jθð Þ is a Gaussian distribution with mean
G θ, t;ηð Þ and covariance matrix Σ t,ηð Þ. We assume that all experiments, trials, and samples within each
trial are independent. While the later assumption may not be strictly true, it significantly decreases the
computational cost of computing the log likelihood due to a diagonal covariance matrix. The log-
likelihood is therefore given by

log p D jθð Þ= �1
2

X6
i = 1

Xni
l = 1

X10tl,i
r = 1

G θ,0:1r;ηið Þ�D i,l,rð ÞTΣ 0:1r,ηið Þ G θ,0:1r;ηið Þ�D i,l,rð Þ+ Z, (18)

where the time is given by 0:1r due to the constant sampling rate of 10Hz, andD i,l,r denotes the 2D vector

jf g lð Þ
i 0:1rð Þ, Rf g lð Þ

i 0:1rð Þ
h iT

, the resistance and current for experiment i in trial l at time 0:1r. In addition,

the matrix Σ 0:1r,ηið Þ is diagonal and is computed for experiment i at time 0:1r by computing the variance
of current and resistance data over all trials which contain data at time 0:1r. The time tl,i denotes the final
experiment time for trial l of experimental configuration i. Finally, Z is the negative log of the likelihood
normalization constant which does not depend on θ.

3.2. Gridding approach

Computing the Bayesian posterior is typically prohibitively expensive in practice. For our application,
simulating the baseline model is the dominant bottleneck in terms of time complexity. Evaluating the
forward model as little as possible will provide the greatest benefit for the efficiency of the inference
process.More efficientmethods of approximating the posterior are thus investigated to perform parameter
inference. Each of these results is compared to the Bayesian posterior using a gridding approach, which is
considered the “true” posterior.

We employ a simple gridding approach to compute the Bayesian posterior in which the parameter
space is discretized into a d-dimensional grid of uniform spacing. This grid is then sequentially refined
with higher resolution near the maximum a posteriori (MAP) and any modes of the Bayesian posterior.
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It is often computationally more stable to compute the log-distributions first, rather than the distribu-
tion directly. Considering a single grid point θi, we first compute the quantity

logp θijyð Þ+ logp yð Þ= logp θið Þ+ logp yjθið Þ (19)

at all grid points in the parameter space. Note that we ignore the evidence term p yð Þ in the gridding
approach until Eq. (19) is computed at each point. It is assumed that the grid bounds in parameter space are
sufficiently large to capture the most significant aspects of the distribution.

The final distribution is computed at each point in the grid by normalizing the quantity computed in
Eq. (19) using

p θijyð Þ= exp logp θið Þ+ logp yjθið Þð Þ=Z,
where the normalization constant is given by Z =

R
Θ exp logp θð Þ+ logp yjθð Þð Þdθ and approximated using

some numerical integration scheme based on the selected grid.
Wenote that the gridding approach can provide a reasonable approximation to the posterior, but it does

not provide a straightforward method of sampling from this posterior.

3.3. Variational inference

Variational inference methods (Rezende and Mohamed, 2015; Beck, 1976; Guo et al., 2017; Hoffman et al.,
2013; Blei et al., 2017) are a powerful and versatile class of techniques used in probabilistic and Bayesian
modeling. They have an advantage of being very efficient, in particular for high-dimensional problems,
compared to Markov chain Monte Carlo-based methods (Metropolis et al., 1953; Robert and Casella 2005;
Robert and Casella, 2011). By formulating the posterior inference as an optimization problem, variational
inferencemethods aim to approximate theBayesian posteriorwith a tractable parametric distribution.Only the
parameters of the parametric distribution are learned, rather than the typically intractable Bayesian posterior.
An optimization problem is formed such that the parameters of the distribution are optimized by minimizing
the Kullback–Leibler (KL) divergence (Cove and Thomas 2006) between the variational approximation and
the true posterior. This optimization problem is formulated as minimizing the evidence lower bound (ELBO).

Variational inference assumes a parametric distribution qϕ θjyð Þ which is used to approximate the true
posterior distribution p θjyð Þ. The goal of the variational inference is to minimize the discrepancy between
the true and approximate distributions by optimizing the distribution parameters. To achieve this, a
measure of discrepancy or distance between two distributions, called the KL divergence, is minimized
between the two distributions. The KL divergence is given by

KL qϕ θjyð Þ∥p θð jyÞ� �
=Eθ�qϕ θjyð Þ log

qϕ θjyð Þ
p θjyð Þ

� 	
 �
: (20)

Variational inference seeks to minimize this by solving the optimization problem

ϕ∗ = argmin
ϕ

KL qϕ θjyð Þ∥p θð jyÞ� �
: (21)

Using Bayes’ rule and defining the evidence lower bound (ELBO) L qð Þ as

L θ,ϕð Þ=EQ log
p θ,yð Þ
qϕ θjyð Þ

 !" #
=EQ logp θ,yð Þ½ ��EQ logqϕ θjyð Þ� �

, (22)

the KL divergence can be written as a function of the ELBO by

KL qϕ θjyð Þ∥p θð jyÞ� �
= �L θ,ϕð Þ+ log p yð Þð Þ: (23)

The optimization problem of Eq. (21) is therefore equivalent to minimizing the negative ELBO:

ϕ∗ = argmin
ϕ

�L θ,ϕð Þ
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3.3.1. Gaussian variational inference
Fixed-form variational inference uses simple parametric distributions as the variational posterior. In our

experiments, we choose an independent Gaussian distribution qϕ θjyð Þ=N μϕ,Σϕ

� 

for the fixed form

such that the parameters ϕ= μϕ,Σϕ

h i
to be optimized consist of the mean μϕ ∈ℝm and covariance

Σϕ ∈ℝm×m matrix. Note that the assumption of independence limits the covariance matrix to m trainable
parameters and 2m total trainable parameters.

Gradient-free optimization techniques such as the Nelder–Mead algorithm (Nelder. and Mead 1965)
scale poorly in high-dimensional problems and are often far less efficient than gradient-based optimiza-
tion algorithms. This technique, therefore, requires the use of gradients to be effective, and gradients can
be computed for the baseline model following the discussion in Section 3.4. We note that gradient-based
algorithms are often trapped in local minima due to the often non-convex nature of general objective
functions. However, we believe that the efficiency gains of gradient-based algorithms far outweigh the
potential of finding suboptimal local minimum solutions.

3.4. Gradients through ODE solve

Our subsequent analysis will employ inference and ML methods that require gradient information.
Therefore, ensuring that the ODE solve is differentiable and having an efficient method of computing
gradients is critical. To obtain gradients of the ODE forward solve with respect to model parameters, we
employ an adjoint-based method known as neural ODE (Böttcher and Asikis, 2022; Chen et al., 2018;
Linot et al., 2023) using any black-box ODE solver. This method computes gradients through the ODE
forward solve efficiently. It is also available as part of existingML libraries such as Pytorch (Paszke et al.,
2019), which allows its integration with other ML tools.

Propagating gradients through the deposition onset criteria requires extra care. Before film deposition
begins, the resistance and film thickness do not increase. Therefore, the following dynamical system is
solved:

dh
dt

= 0,
dRfilm

dt
= 0, (24)

withV , j, andQ computed analytically according to the experiment type.When both j > jmin andQ>Qmin,
deposition begins and the model dynamics instantaneously switch to

dh
dt

=Cvj,
dRfilm

dt
= ρ jð Þdh

dt
: (25)

As predicting the time of deposition onset is critical for predicting film growth, gradients of the output
with respect to the onset condition parameters jmin and Qmin must be computed. However, the instant-
aneous change in model constitutes an in-place operation (Paszke et al., 2019) and must be treated
separately. We use ideas from an extension to neural ODE, which adds the ability the compute gradients
through instantaneous event handling (Chen et al., 2021). Adding an additional switch state ξ to our
model, we computationally solve the following equations instead of Eqs. (24) and (25):

dh
dt

= ξCvj,
dRfilm

dt
= ξρ jð Þdh

dt
: (26)

The initial switch state ξ t = 0ð Þ= 0 is switched to ξ t = teð Þ= 1 at the event time, defined as the time te
such that either of the deposition onset criteria are met. This implementation detail allows computing the
gradient of the forward solve with respect to the event time, and in turn with respect to the onset criteria
parameters jmin and Qmin, using the framework from Chen et al. (2021).

3.5. Parameter identifiability of baseline model

The process of parameter inference on the baseline model provides some insight into the shortcomings of
the model and results in proposed updates to the baseline model to address some of these shortcomings.
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One of such shortcomings is parameter unidentifiability of the deposition onset criteria parameters,
Qmin and jmin. The nature of this double criteria for the onset of deposition creates situations in which one
parameter or the other may not be identifiable. For example, consider the case in which the time tj at which
j > jmin is smaller than the time tQ at whichQ>Qmin, such that tj < tQ. Changing jmin over some range will
thus not have any effect on the baseline model output because both conditions j > jmin and Q >Qmin must
be satisfied for deposition to begin. In this case, onlyQmin controls the deposition onset time and data may
be uninformative about jmin. However, the opposite can occur and there also exist cases in which data may
be uninformative about Qmin.

To illustrate this identifiability issue more clearly, we generate artificial data from the baseline forward
model by taking the “true” parameters to be � logCv,Qmin, jmin½ �= 7:0,150:0,1:0½ �. Other experimental
parameters are given in Table 1. A total of 10 samples are obtained by simulating a VR experiment with a
small amount of noise added. Figure 4 illustrates the negative log-likelihood of this data for each
parameter to be inferred assuming that the other two parameters are fixed to their “true” values. For
the first two parameters, a minimum exists at the “true” values, indicating that these parameters can be
accurately inferred from the simulated data. However, the negative log-likelihood of theminimum current
threshold parameter jmin is flat over some region, indicating that the model is not effected by changes in
jmin over this region. If the “true” parameter value lies anywhere in the region inwhich the derivative of the
log-likelihood is zero, that parameter is unidentifiable on that region. We use the term “unidentifiable” to
mean that the first derivative of the likelihood is zero over some region in parameter space.

For VR experiments, there exists a set of boundaries in parameter space for which either jmin or Qmin

will be unidentifiable, or both will be identifiable in baseline model. These boundaries change with the
conditions of the VR experiment; gathering data from additional experiments could provide information
on a parameter that is not informed by data from a different experiment.

Consider a case in which data exists such that tQ < tj. This means that tj will control the deposition onset
time. As j tð Þ> 0∀t > 0, thenQ t > tj

� �
>Q tj
� �

>Qmin. Thus changingQmin on a range 0≤Qmin <Q tj
� �

will
have no effect on the output of the baseline model and the data will be uninformative about Qmin on this
range. Next consider a case in which data exists such that tj < tQ. Now tQ will control the deposition onset
time. However, j t > tQð Þ> j tQð Þ is not guaranteed, which can be easily seen by taking the time derivative
of Eq. (13). If the VR VR < ρ jð ÞCvj, then dj=dt < 0 and it is not guaranteed that j t > tQð Þ> j tQð Þ.
If j t > tQð Þ< j tQð Þ, then it is possible for j t > tQð Þ< jmin and deposition stops, followed by an increase in
current, restarting deposition, and the cycle repeats. Ultimately, this indicates that the parameter jmin will
have an influence on the baselinemodel output, and datawill be informative about jmin. Thus, if tj < tQ, data
may or may not be informative about the parameter jmin, depending on the experimental conditions.

Two identifiability regions corresponding to different experiments are computed empirically and
illustrated in Figure 5. This regions are computed by simulating the baseline model according to the
experimental conditions for a set of discretized points in the jmin,Qmin space. For each simulation,

Figure 4. Negative log-likelihoods computed from simulated data on a VR experiment using the baseline
model with experimental conditions VR = 0:125, σ = 0:14, � logCv = 8:5, Qmin = 100:0, and jmin = 1:5.
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identifiability is checked by checking tQ and tj. Purple regions indicate that data from the experiment are
not informative about jmin if the true value of jmin andQmin lie in the region. In other words, ∂L =∂jmin = 0
on the purple region. Cyan regions indicate that data from the experiment is not informative aboutQmin if
the true values of jmin and Qmin lie in the region, or ∂L =∂jmin = 0. Yellow regions indicate that the
experiment can inform both jmin andQmin. The boundary of the cyan region can be computed analytically,
but the other is nontrivial and computed empirically. The times at which the deposition onset criteria are
met in the VR experiment for the baseline model are given by

tj =
2Qmin

σVR
σR0 + Lð Þ, tQ =

2jmin

σVR
σR0 + Lð Þ


 �1=2
: (27)

Setting Eq. (27) equal, we obtain a closed form solution to the Qmin identifiability boundary as

jmin =
2QminσVR

σR0 + L


 �1=2
, (28)

which has been validated against the empirically computed boundaries shown in Figure 5. We note that
the log-likelihoods in Figures. 4b and 7c correspond to the identifiability plane in Figure 5a. The log-
likelihoods of Qmin and jmin have first derivative zero over some region as predicted by the identifiability
boundaries. The true values of jmin and Qmin are such that jmin is not informed by the simulated
experimental data.

If the experimental data does not inform one of the parameters, then that parameter does not influence
the output of our baseline model, and it cannot be accurately inferred. However, as shown by Figure 5, the
identifiability boundaries change with the type of experiment. This behavior could cause very poor
prediction results. Suppose none of the experimental data is informative about jmin, and inference is
performed on the model parameters. Using the model in prediction could result in poor performance,
especially if predictions are made for an experimental condition in which jmin does influence the output of
the model.

It is also necessary to infer robust posteriors in this case. Suppose Gaussian variational inference is
selected as the inference method. A Gaussian variational posterior will be computed for each of the
parameters to be inferred, providing a unimodal distribution for each. This can be misleading about the

Figure 5. Identifiability regions of the baseline model for two different experimental conditions. The log-
likelihood on the simulated experimental data will be constant in the purple and cyan regions, indicating
that little information is gained about jmin if the true value lies in the purple region orQmin if the true value
lies in the cyan region. Note: the “stepping” behaviorobserved in the identifiability boundaries here are a

product of discretizing the jmin and Qmin domains, but the boundaries are in fact smooth.
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Bayesian posterior distribution of the parameter and result in poor uncertainty quantification during
prediction.

We explore two approaches toward the aim of improving model predictions by improving the form of
the baseline model. First, we update the model based on insight from the shortcomings observed during
inference, as described in Section 4.1.We then pursue a different approach in whichmodel augmentations
are learning using machine-learning tools to augment the baseline model with previously unmodeled
dynamics, as discussed in Section 4.2.

3.6. Inference on baseline model

In this section, we demonstrate inference results using Gaussian variational inference on the baseline
model. The purpose of this experiment is to illustrate the shortcomings of the model form itself, not the
selected method of inference. Inference is performed using simulated data from the baseline model, and
we demonstrate that the posterior predictive results in good prediction performance for some experimental
conditions, but poor performance on others.

Data are generated by simulating the baseline model 10 times up to a final time T = 250s for a VR
experiment with VR = 1:0, logCv = �8, jmin = 1:5, σ = 0:14, and Qmin = 100, and add Gaussian random
noise ϵ�N 0,η2ð Þ, where η= 0:01, at each time step to simulate measurement noise. Only data from
current measurements are considered in the inference process. We then perform Gaussian VI for
parameters logCv, jmin, and Qmin on the baseline model.

After learning the variational posterior qϕ, samples are drawn and used to simulate the baseline model
to obtain samples from the posterior predictive. Ten of these samples along with the mean are shown in
Figure 6a. For the experimental configuration on which the data are generated, accurate and low variance
prediction is observed. However, we then use the variational posterior distribution to predict on a VR
experiment in which all parameters are the same except the voltage rampVR = 0:125. Figure 6b shows that
prediction performance is very poor for this experiment.

The reason for this stems from the identifiability issues previously discussed in Section 3.5. In our
experiment, we assume that the ‘true’ value of jmin is 1.5. However, in the experiment which we gather
data from, jmin is unidentifiable in the baseline model. Thus, the inference results in a variational posterior
distribution for jmin of q jminjDð Þ=N 2:66,0:01ð Þ, which is a low variance but poor estimate of the true
parameter value. This posterior distribution is then used for prediction in an experiment in which jmin does
have an effect on model output, and because the posterior is not accurate, prediction is also inaccurate.

On top of identifiability issues potentially resulting in poor prediction performance, the parameterQmin

is inconsistent accross different experiment types. To illustrate this issue, Gaussian VI is performed on the

Figure 6. Posterior predictive results after performing Gaussian VI on data from a simulated VR
experiment. The posterior predictive results in accurate simulations on the data (a), but poor predictions

for other experiments (b). This is caused by unidentifiable jmin in the data.
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parametersCv, jmin, andQmin twice—first using real experimental data from only the VR experiments and
again using only data from the CC experiments. TheMAP of the variational posterior for each distribution
are very different—in particular for Qmin. Using only VR experimental data, the MAP of the variational
posterior is Qmin ≈ 261; however, using only CC experimental data, the MAP is located at Qmin ≈ 101.
This is indicative of Qmin being problematic in allowing the baseline model to accurately predict
experimental data with different boundary conditions. Our natural conclusion is that the model is
incorrect, and a root cause may lie in a constant Qmin. Rather, Qmin may be a function of the type of
experiment being performed rather than a constant to be inferred. In Section 4.1, physically intuitive
model updates are introduced with the aim of alleviating the identifiability concerns of the baseline model
and improving the modeling of the minimum charge criterion.

4. Model updates

The baselinemodel was shown to exhibit identifiability as well as generalization deficiencies in Section 3.
In this section, we aim to improve the prediction accuracy and generalizability of the baselinemodel. First,
modifications are made based on the inference results of the baseline model to aid in improving parameter
identifiability and minimum charge criterion modeling.

An alternative approach to improving the baseline model is also investigated in which machine-
learning augmentations are introduced to model system dynamics which are absent from the baseline
model. These augmentations are introduced with an emphasis on interpretability of the augmented model
while allowing for greater flexibility in model expressiveness.

4.1. Inference-informed modifications

Based on the inference experiments of Section 3, model updates are proposed to alleviate the observed
inadequacies during prediction. The issue of identifiability arises in the baseline model due to the double
conditional statement that film deposition begins only if j > jmin andQ >Qmin. This conditional statement,
in particular j > jmin, creates non-physical, discontinuous behavior of the model. The film growth rate
given by Eq. (24) is exactly zero until the conditional statement is true. Assuming that jmin > 0, the film
growth rate will instantaneously increase, and a sharp discontinuity in the film thickness growth occurs.
The model also does not accurately model the cases in which both onset criteria are met, but the minimum
current condition is no longer met at a later time. This behavior is one of the reasons that prediction is
observed to be inaccurate in Figure 6b. We therefore propose a model update to create a model in which
the dynamics are continuous which also allows for film dissolution by replacing the film thickness
dynamics in Eq. (25) with

dh
dt

=Cv jn� jminð Þ forQ >Qmin,s:t:h⩾0: (29)

This also gives the benefit of jmin being identifiable for all experimental configurations.
With jmin now identifiable, the expressiveness of the parameter is investigated to improve generaliz-

ability. Assuming that the minimum charge criterion is related to the concentration of OH� present in the
bath, C illustrates that Qmin is not constant accross experiment types, but depends on a different constant
K. It is shown in C thatQmin is a function of this constant, and the function differs between the VR and CC
experiments. For VR (Eq. (30)) and CC (Eq. (31)) experiments, this function is given by

Qmin =
81

128β

� 	1=3

K4=3 (30)

Qmin =
K2

j0
, (31)

where β = σVR= σR0 + Lð Þ.
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The updated film thickness dynamics of Eq. (29) along with introducing the parameter K used to
compute the minimum charge criterion constitute an updated model which we dub the “inference-
informed” model.

Performing the same exercise to visualize the negative log-likelihood as in Figure 4, we visualize the
negative log-likelihood of the inference-informed model on artificial data to illustrate that all parameters
are now identifiable. In this case, we simulate the data from the same experimental configuration as
Figure 4, which is a VR experiment withVR = 0:125, σ = 0:14,� logCv = 8:5,Qmin = 100:0, and jmin = 1:0.
However, the parameter K is used instead of Qmin; thus, the value of K is found using the relationship in
Eq. (30), obtaining K = 23:2. The negative log-likelihoods of � logCv, K, and jmin are illustrated in
Figure 7, and all parameters exhibit a global minimum at the true parameter values, indicating that all are
now identifiable.

4.1.1. Model comparisons
The baseline model and the inference-informed model are directly compared by performing Bayesian
inference using the gridding approach discussed in Section 3.2. We then predict for each model based on
the maximum a posteriori and compute the negative log-likelihood of the data. Lower values of the
negative log-likelihood at the MAP correspond to a model which better fits the experimental data.

TheMAPof the approximated posterior using the gridding approach assuming the baselinemodel is located
at θMAP = � logCv,Qmin, jmin½ �= 7:58,173:5,0:0½ � with a negative log-likelihood at the MAP of 3:35× 107.
Assuming the updated model, the MAP is located at θMAP = � logCv,K, jmin½ �= 7:32,44:2,0:63½ � while the
negative log-likelihood is 2:65× 107. This suggests that the inference-informedmodel performs better than the
baseline model by having the potential to represent the experimental data more accurately.

Each model prediction at the map is compared to the experimental data in Figure 8. The current
predictions are shown for two experiments: VR with VR = 1:0V=s and CC with j0 = 7:5mA. Predictions
for all experiments on current, resistance, and thickness data are included inD. Prediction of the inference-
informedmodel for CC experiments exhibits significant improvement over the baseline model, likely due
to the improved parameterization of the minimum charge criterion Qmin. However, there is clearly some
physical behavior which exists in the VR experiments which is not present in our model. For instance,
there are two current “peaks” in experimental data for VR experiments, but only one is possible in model
predictions. In addition, although the thickness prediction of the inference-informed model is closer to the
experimental data than the baseline model, Figure 9 illustrates that neither are particularly accurate.
Ultimately, thickness prediction is the most important quantity of interest. We thus turn toward improving
the model through augmenting the model forming and learning the augmentations via a machine-learning
based framework.

Figure 7. Negative log-likelihoods computed from simulated data on a VR experiment using the
inference-informed model with experimental conditions VR = 0:125, σ = 0:14, � logCv = 8:5,

Qmin = 100:0 (K = 23:2), and jmin = 1:5.
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4.2. Machine-learning augmentations

Modifying the model using insights from the inference process aids in understanding some shortcomings
due to model form but results in limited improvement to predictive performance. Additional physical
behavior is missing from themodel itself, which results in poor performance evenwhen the optimalmodel
parameters are identified. There are twomain features absent from the baselinemodel: the presence of two
peaks in the current dynamics for the VR experiments and smooth behavior of those peaks. Unstable
behavior in data for CC experiments observed just before the drop in current is due to the current controller
in the experiments, which we do not account for in our model.

To incorporate the two missing physical features in our model, we turn to machine learning with an
emphasis on interpretability. In particular, we augment the right hand side of the dynamics model with
parameterized neural networks and train the augmentations using NeuralODE (Chen et al., 2018 This can
be used effectively to utilize adjoint-based gradient computation alongside standard machine-learning
pipelines to learn flexible augmentations in the right hand side of a dynamical system.

We first attempt to characterize the underlying physics of each of the two peaks present in the
experimental current data for VR experiments. The second peak corresponds to the onset of deposition,
which is previously modeled in the baseline and inference-informed models. As film deposition begins,

Figure 8. Comparisons between current prediction on the baseline model and inference-informed model
at the MAP for each on (a) VR experiment with VR = 1:0V=s and (b) CC experiment with j0 = 7:5mA.

Figure 9. Comparisons between film thickness prediction on the baseline model and inference-informed
model at the MAP for each.
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resistance increases and current decreases. However, the baseline model assumes an instantaneous onset
of film deposition which results in a discontinuous and physically impossible film growth rate. Experi-
mental data illustrate smooth transitions to film growth in current data, further supporting the need for
additional modeling. This smooth transition is likely the result of portions of the surface being coated in a
non-uniformmanner, resulting in only a fraction of the material surface being coated for a small time. We
propose an augmentation to the baseline model, which has the additional benefit of modeling the
deposition onset time without the need of threshold parameters. We propose multiplying the right hand
side of Eq. (25) by a learnable term gϕ V ,Qð Þ which varies smoothly between zero and one. This term is
dubbed the “coverage fraction model,” and it is a function of voltage and charge only, representing the
coverage fraction of the film on the material. It is found empirically that using both voltage and charge as
inputs to the model results in the best predictive performance. It is a function of charge due to the
dependence of the deposition onset time of the baselinemodel on charge, and it is a function of voltage due
to a change in the time derivative of voltage across experiment types.

The first peak present in the current data for VR experiments is caused by a phenomenon ignored by the
baseline model altogether. This peak may be caused by an oxygen-reduction reaction (Nagai et al., 2012),
which occurs at the anode as the voltage increases. The relationship between electric potential and current
in redox reactions is described by the (Dickinson and Wain, 2020) Eq. (11) of the form

j = j0 exp aVð Þ� exp bVð Þ½ �, (32)

where the parameters a and b depend on many physically relevant parameters. However, the particular
form is not relevant to the discussion here as we aim to learn this component of the model while keeping
the general form to ensure that the model is physically interpretable. We assume that the combined effect
of this redox reaction results in a resistance “source” such that j = c1 exp c2Vð Þ, based on the form of
Eq. (32).

After some critical point is reached (which we do not explicitly model, but likely corresponds to some
minimum charge criterion), we assume that theOH� starts being diffused at some rate (Nagai et al., 2012),
which decreases the OH� concentration. As the redox reaction continues, we assume that the combined
effect of these two reactions results in a different exponent such that j = c3 exp c4Vð Þ, where c4 < 0.

To augment theVR experimentmodelwith this behavior of switching between two different exponents
resulting from a combination of reactions, we use an exponential function in which the argument includes
a hyperbolic tangent function which can vary smoothly between two different values. We thus assume an
augmented model of the form

j =
σV

σRfilm + L
+ c1 exp c2Vf θ V ,Qð Þð Þ, f θ V ,Qð Þ= tanh �bf θ V ,Qð Þ

� 

, (33)

The augmented model is finally expressed by

f θ V ,Qð Þ= tanh �bf θ V ,Qð Þ
� 


, gϕ V ,Qð Þ= 1

1+ c3 exp �c4bgϕ V ,Qð Þ� � (34)

dRfilm

dt
= gϕ Vð Þρ jð ÞjCv, j = c1 exp c2Vf θ Vð Þð Þð Þ+ σV

σRfilm + L
, (35)

for VR experiments and

gϕ V ,Qð Þ= 1

1 + c3 exp �c4bgϕ V ,Qð Þ� � , dRfilm

dt
= gϕ Vð Þρ jð ÞjCv, (36)

for CC experiments. Note that the relationship between voltage, current, and resistance are unchanged
from the baselinemodel in the CC experiments evenwith themachine-learning augmentations introduced
to the model. The model augmentation functions bgϕ and bf θ are parameterized by FNNs with four layers,
eight nodes per layer, and ReLU activation functions. These are learned along with the constants c1,c2,c3
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and c4 using the NeuralODE framework using only current data from the three VR experiments. Thus,
applying themodel on the CC experiments is purely prediction, as none of the data is seen during training.
We learn the parameters θ,ϕ,Cv, σ,c1,c2,c3, and c4 in our experiments and show prediction results.
Figure 10 illustrates the results of the final trained model, better capturing the “double-peaked” nature of
the current in experimental data for VR experiments. Here, we show current predictions for only two
experimental configurations, but current and resistance predictions for all other experimental configur-
ations are provided in E.

Furthermore, thickness predictions for all experimental configurations are illustrated in Figure 11
along with predictions from the baseline and inference-informed models for comparison. Film thickness

Figure 10. Current prediction on the machine-learning augmented model trained with the first peak
model.

Figure 11. Comparisons between film thickness prediction on the baseline model, inference-informed
model, and ML-augmented model with first peak.
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predictions show an improvement over the baseline model in all cases except for a single experimental
configuration: VR experiments with VR = 0:125. We expect that this is due to some unmodeled behavior
in the low-voltage regime which is difficult to capture. However, in CC experiments and larger voltage
values in VR experiments, our augmentations provide significant improvement to model predictions.

Learning the first peakmodel function f θ in the neural ODE framework is significantlymore expensive
computationally than training only the coverage fraction model gϕ due to the large gradient change
requiring a finely discretized time step to adequately resolve. In addition, the first peak model performs
notably poorly for the VR experiment in the low-voltage ramp regime. We thus remove the “first peak”
model and retrain only the augmentation function gϕ V ,Qð Þ by masking out the experimental data

Figure 13. Comparisons between film thickness prediction on the baseline model, inference-informed
model, and ML-augmented model without first peak.

Figure 12. Current prediction on the machine-learning augmented model trained without the first peak
model, shown for (a) VR experiment with VR = 1:0V=s and (b) CC experiment with j0 = 7:5mA.
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corresponding to the first peak in current for VR experiments. This results in more efficient training and
thickness prediction while providing quite similar predictions when the first peak model is included.
These results show that modeling the dynamics of the first peak may unnecessarily decrease computa-
tional efficiency while still providing more accurate thickness prediction, which is ultimately the goal.
Current predictions for two experiments (one VR and one CC) are shown in Figure 12, and thickness
predictions are shown and compared to all other models presented in Figure 13. These results again
illustrate a significant improvement in thickness prediction without the need for including the more
expensive first peak model, indicating that modeling such behavior may be largely unnecessary for
predicting thickness. However, prediction in the low voltage ramp regime is actually worse than with the
first peak model included, further supporting our hypothesis that there exist additional unmodeled
dynamics in such cases. Again, all other predictions for current and resistance using our model
augmentations without the first peak model included are provided in F.

5. Conclusions

We presented a comprehensive framework to introduce adaptable yet interpretable machine-learning-
based model augmentations. Our initial objective of parameter inference unveiled significant limitations
in the existing baseline model, necessitating the integration of diverse model refinements aimed at
rectifying these deficiencies.

Evenwith such enhancements, however, certain physical behaviors inherent in experimental data were
not fully replicated by the models. Notably, instances such as the emergence of two peaks in current data
during VR experiments and the smooth evolution of current data remained elusive. To address these
disparities, we devised physically meaningful augmentations, seamlessly integrated them into the model,
and harnessed a neural ODE framework for implementing learnability. This approach to augmentation
construction maintains interpretability while harnessing the expressive power of neural networks to allow
enhanced adaptability.

The integration of these augmentations yields models that demonstrate improved predictive accuracy
when compared against empirical data. Nonetheless, limitations persist. One key challenge lies in the
computational costs associated with modeling the “first peak.” While we found that accurate film
thickness predictions could still be achieved without modeling this first peak, its omission leads to a
reduction in computational burdens. Despite the reduced offline computational cost, especially when the
first peak model is omitted, there remain areas for improvement in balancing accuracy and efficiency,
particularly for real-time applications or online model improvement.

Future work could explore alternative augmentation methods or hybrid modeling techniques to better
capture unmodeled phenomena without increasing computational demands. Although the ML-enhanced
models required some offline computational cost, the online prediction cost remains nearly identical to the
baseline model due to the simple and efficient FNN-based model augmentations. Offline optimization
converged within a few hours on a single GPU with the first peak model and within an hour without
it. Future efforts might focus on reducing this offline burden further while preserving the same degree of
accuracy.

Integral to our methodology is an in-depth procedure of evaluating the model’s behavior prior to
augmentation. This diagnostic analysis is pivotal, as it grants insights into the limitations of the model. By
first grasping these limitations, we gather information on how to design augmentations that retain physical
interpretability, while simultaneously fostering flexibility and removing the necessity for manual crafting
and fine tuning of model structures. This practice holds immense significance for machine-learning-
driven dynamical system understanding and for broader applications in physics-based domains. It
facilitates augmentation strategies that preserve interpretability, thereby opening avenues for model
improvements.

Future research should focus on extending this methodology to more complex or transient/chaotic
dynamic systems where interpretability could become a trade-off with predictive power. In addition,
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future studies might investigate how well the proposed framework generalizes to additional unseen
conditions and environments, ensuring its robustness across varied applications.

We acknowledge that other problem settings may introduce different intricacies; nevertheless, the
systematic process outlined in this study can guide future applications in different problems. This study
offers a variety of insights, equipping researchers with tools to assess and elevate the forms of model
representations for diverse dynamical systems. Ultimately, our work fosters a bridge between machine
learning and physics, improving the modeling process while revealing the underlying system dynamics,
and setting the stage for future exploration into even more efficient and adaptable approaches.
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A. Voltage ramp
For the electric field, we solve a Poisson equation with Robin boundary condition on the interface bath/film and Dirichlet condition
at the anode.

σbath
∂
2ϕ
∂x2

= 0 in the bath (37)

ϕ�Rfilmσbath
∂ϕ
∂x

= 0 at the interface film‐bath (38)

ϕanode tð Þ= ϕt = 0 + ϕramp tð Þ at the anode (39)

where σbath is the bath conductivity, j is the normal component of the current density, ϕ is the electrical potential, Rfilm is the film
resistance, and h is the film thickness.

B. Constant current
For the electric field, we solve a Poisson equation with Robin boundary condition on the interface bath/film and Neumann condition
at the anode.

σbath
∂
2ϕ
∂x2

= 0  in the bath (40)

ϕ�Rfilmσbath
∂ϕ
∂x

= 0 at the interface film‐bath (41)

σbath
∂ϕ
∂x

= j0 at the anode (42)
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C. Evolution of the concentration of OH�

C.1. Solution of the diffusion equation
We consider the diffusion equation in the domain [0;L]

∂u
∂t

=D
∂
2u
∂x

(43)

with the following boundary conditions:

∂u
∂x

����
x = 0

= � j tð Þ
DF

= g tð Þ and u x =L, tð Þ= h tð Þ (44)

where u is the OH� concentration, F is the Faraday constant, D is the diffusion coefficient, h, and g are time-dependent functions.
The initial condition is defined by u x,0ð Þ= u0, u0 being the initial concentration.

Applying the Laplace transform

L
∂u
∂t

�D
∂
2u
∂x

� �
=L

∂u
∂t

� �
�D

∂
2u
∂x

� �
= su�u0�Duxx = 0 (45)

The solution of the homogeneous equation su�Duxx = 0 is given by

uh x,sð Þ =C1 exp r1xð Þ+C2 exp r2xð Þ (46)

where r1 =
ffiffiffiffiffiffiffiffi
s=D

p
and r2 = � ffiffiffiffiffiffiffiffi

s=D
p

The specific solution, assuming a constant usp: =A, is given by usp: = u0=s. Therefore, the solution has the following form

u x,sð Þ =C1 exp r1xð Þ+C2 exp r2xð Þ+ u0
s

(47)

where C1 and C2 are functions derived using the boundary and initial conditions.

Using the Neumann boundary condition at x = 0 and the definition L g tð Þf g =G sð Þ, then
ux x = 0,sð Þ=G sð Þ =C1r1 +C2r2: (48)

Therefore, C1 =
G sð Þ�C2r2

r1
= G sð Þ

r1
+C2.

Hence,

u x,sð Þ = G sð Þ
r1

+C2

� 	
exp r1xð Þ+C2 exp r2xð Þ+ u0

s
(49)

Using the Dirichlet boundary condition at x = L:

u x =L,sð Þ=H sð Þ= G sð Þ
r1

+C2

� 	
exp r1Lð Þ +C2 exp r2Lð Þ + u0

s
, (50)

the solution is given by

u x,sð Þ = G sð Þ
r1

+
H sð Þ� u0

s �G sð Þ
r1

exp r1Lð Þ
exp r1Lð Þ+ exp r2Lð Þ

" #
exp r1xð Þ + H sð Þ� u0

s �G sð Þ
r1

exp r1Lð Þ
exp r1Lð Þ+ exp r2Lð Þ

" #
exp r2xð Þ + u0

s
(51)

If L!∞ and h tð Þ= u0 (i.e. H sð Þ = u0=s), the solution simplifies to

u x,sð Þ = G sð Þ
r1

�G sð Þ
r1


 �
exp r1xð Þ + �G sð Þ

r1


 �
exp r2xð Þ + u0

s
(52)

= �G sð Þ
r1

exp r2xð Þ + u0
s

(53)

Using the inverse Laplace transform yields

L �1 u x,sð Þf g=L �1 �G sð Þ
ffiffiffiffi
D
s

r
exp �

ffiffiffiffi
s
D

r
x

� 	
+
u0
s

( )
(54)

= �
ffiffiffiffi
D

p
L �1 G sð Þ 1ffiffi

s
p exp � xffiffiffiffi

D
p ffiffi

s
p� 	� �

+ u0: (55)

Knowing that

L �1 1ffiffi
s

p exp � xffiffiffiffi
D

p ffiffi
s

p� 	� �
=

1ffiffiffiffiffi
πt

p exp � x2

4Dt

� 	
(56)

and
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L �1 G sð ÞK sð Þf g=
Z t

0
g τð Þk t� τð Þdτ, (57)

the concentration as a function of space and time is given by

u x, tð Þ = u0 + 1

F
ffiffiffiffiffiffiffi
πD

p
Z t

0
j τð Þ 1ffiffiffiffiffiffiffiffiffi

t� τ
p exp � x2

4D t� τð Þ
� 	

dτ: (58)

The concentration at the cathode (x = 0) is given by

u 0, tð Þ = u0 + 1

F
ffiffiffiffiffiffiffi
πD

p
Z t

0
j τð Þ 1ffiffiffiffiffiffiffiffiffi

t� τ
p dτ: (59)

Let umin be the minimum concentration required to start deposition, and ξ be the time when the minimum concentration is
reached. Therefore,

umin = u0 +
1

F
ffiffiffiffiffiffiffi
πD

p
Z ξ

0
j τð Þ 1ffiffiffiffiffiffiffiffiffiffi

ξ� τ
p dτ: (60)

Let K = 1
2 umin�u0ð ÞF ffiffiffiffiffiffiffi

πD
p

be a constant characterizing the deposition onset.

C.1.1. Constant current density
For a constant current density j, the concentration is defined as

u 0, tð Þ = u0 + 2j0
F
ffiffiffiffiffiffiffi
πD

p ffiffi
t

p
(61)

and the electric charge is defined as

Q tð Þ =
Z t

0
jdt = j0t: (62)

At the deposition onset, this yields the well-known Sand’s equation (25):

1
2
umin�u0ð ÞF

ffiffiffiffiffiffiffi
πD

p
= j0

ffiffiffi
ξ

p
: (63)

The minimum charge can be derived accordingly:

Qmin = j0ξ =
K2

j0
(64)

C.1.2. Linear voltage ramp
If the voltage ramp is a linear function of time. Before the deposition, due to the Ohm’s law, the current density is a linear function of
time j = βt + j0, and the concentration is expressed as

u 0, tð Þ = u0 + 1

F
ffiffiffiffiffiffiffi
πD

p
Z t

0
j τð Þ 1ffiffiffiffiffiffiffiffiffi

t� τ
p dτ (65)

= u0 +
1

F
ffiffiffiffiffiffiffi
πD

p 2j0
ffiffi
t

p
+ 2
Z t

0

∂j
∂τ

ffiffiffiffiffiffiffiffiffi
t� τ

p
dτ


 �
(66)

= u0 +
1

F
ffiffiffiffiffiffiffi
πD

p 2j0
ffiffi
t

p
+
4
3
βt3=2


 �
: (67)

At the deposition onset, the induction time is the solution of the following equation

βξ3=2 +
3
2
j0ξ

1=2 =
3
2
K: (68)

Assuming that the voltage at the anode is initially 0, we can derive the following expression for the induction time

ξ = β�2=3 3
2
K


 �2=3
(69)

Finally, the minimum electric charge for the linear voltage ramp is

Qmin =
81

128β

� 	1=3

K4=3: (70)
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D. Baseline/Inference-informed model comparisons
We include here in Figures 14–15, all comparisons between the baseline and inference-informed models. This includes current and
resistance comparisons for all six experiments. The inference-informed model performs better than the baseline model in all
experiments, but the notably greater improvement on predictions for CC experiments. However, thickness prediction is still
inaccurate in many cases.

Figure 14.Comparisons between current prediction on the baselinemodel and inference-informedmodel
at the MAP for each.

Figure 15. Comparisons between resistance prediction on the baseline model and inference-informed
model at the MAP for each.
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E. ML-augmented model with first peak
We present all prediction results on the ML-augmented model with first peak. Noteably, predictions are poor for VR experiments in
the low VR regime but accurate for all other experimental configurations. In particular, thickness prediction is much more accurate
compared to the baseline and inference-informed models. Predictions for current and resistance are included in Figures 16–17, but
the ML model is trained with current data for the three voltage ramp experiments only.

Figure 17. ML-augmented model with first peak resistance predictions compared to experimental data.

Figure 16. ML-augmented model with first peak current predictions compared to experimental data.
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F. ML-augmented model without first peak
We present all prediction results on theML-augmented model without the first peakmodel included. Removing the first peakmodel
greatly improvesmodel efficiency during prediction time (and training time). Predictions are still poor for VR experiments in the low
VR regime but improved over the baseline and inference-informedmodels. Again, thickness predictions aremore accurate compared
to previous models. Predictions for current, resistance, and thickness are included for all six experimental configurations in
Figures 16–19, but the ML model is trained with current data for the 3 voltage ramp experiments only.

Figure 18.ML-augmented model without first peak current predictions compared to experimental data.
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Figure 19. ML-augmented model without first peak resistance predictions compared to
experimental data.
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