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Polar Loci.

By D. G. TAYLOR, M.A.

This paper contains two parts :—
I. An endeavour to remove the present confusion in polar

diagrams.
II. On the curves derived from a given curve by increasing or

diminishing the vectorial angle in a constant ratio.

I.

1. In order to cover the whole plane of xy, x and y must both
vary from - oo to + °o; but the same plane is covered while r varies
from - oo to + * , and 6 through any range jr. Hence when
we allow 0 any larger amplitude than this, we create confusion.
The curve r = ad appears to give an infinite number of values of r

for each value of 6, and the curve — = 1 + ecosfl seems to give two,

while the equation in each case gives only one; while for the curve

r2 = a2cos30, the region between — and IT appears, on considering

- 5 -<0<TT, to be unoccupied, and on considering - — < 0 < O , to be
o b

occupied.
We can remove the confusion by two simple suggestions.
(i) Confining ourselves for the moment to positive values of r,

conceive an infinite number of planes, one above another, and each
slit up from 0 to oo along the initial line. Let the under lip of each
slit be joined along its length to the upper lip on the sheet just
above; this produces a surface on which 6 can vary from indefinitely
large negative values on the lowest planes, to indefinitely large positive
values on the highest.

(ii) Now considering any single plane, conceive that the radius
vector, in passing through the origin, passes to the under side of the
plane, and so is drawn on the back of the paper. Thus the two
sides of each sheet are utilised (the upper for positive, the under
for negative, values of r), and we have a unifacial surface (see
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Forsyth T. F., § 165) as a proper field for the representation of the
locus/(r, 0) = O.

2. Now each plane (both sides included) corresponds to variation
of 6 through a range 2ir. Hence if f(r, d) admits the period 2JT
with respect to 6, the curves on the different planes will be identical.
This will be the case, not only for all curves algebraic in x and y,
but also for many types of transcendental curves.

Or f(r, 0) may admit some period 2mv, where m is an integer
greater than unity. In this case the curve will begin to repeat
itself after having described m planes of the surface.

Again, the period oif(r, ff) may be an irrational multiple of lit;
in which case the curve will repeat itself, but identical portions will
not come under one another.

Lastly, f(r, 0) may not be periodic in 6 at all.
3. In general, there will be portions of the locus on both sides

of each plane; those on the upper side being described by positive,
and those on the under side by negative, radii vectores. Thus in

I
the hyperbola —=l+ecos#, the more remote branch is described

altogether by negative radii vectores, and is therefore to be conceived
as drawn on the back of our paper. We may draw it in as a dotted
line to remind ourselves of this fact.

Again, the circle r = asin6 is described twice while 9 varies
through a range 2ir; once with positive, and once with negative,
radii vectores. It thus appears identically on both sides of the
paper, and we may represent this by a dotted circle immediately
inside a continuous one (Fig. 33). In each case when a curve passes
through the origin, it changes to the other side of the paper, so that
dotted and continuous lines are described alternately.

This mode of connection between the two sides of fi plane is
exactly what we would obtain from an hyperboloid of one sheet, with
its generators drawn, if we were to flatten it into the plane of its
principal elliptic section, and at the same time to contract that
section into a pinhole. The surface would then consist of the two
sides of the plane, and each generator would change to the other
face of the plane in passing through the pinhole.

4. The. curves r = ad, rd = a, appear in the ordinary diagram to
have an indefinite number of double points. But our new convention
enables us to discriminate.

https://doi.org/10.1017/S001309150003306X Published online by Cambridge University Press

https://doi.org/10.1017/S001309150003306X


63

(a) A bona fide double point, i.e., one in which two branches of
the locus actually meet on our surface, must satisfy the equations

/(r , 0) = O,

(/?) But a point which satisfies the equations
f(r,0) = 0,
f(r, 0 + 2rw) = O,

or the equations
f(r, 6) =0,

/ ( - r , 0 + 2n+l7r) = O,
where n is a positive or negative integer,
will in ordinary diagrams be mistaken for a double point. In the
former case, the branches are on different planes of the surface; in
the latter, they may be on the same or different planes, but are on
opposite sides of the surface. We may call them pseudo-double
points of the first and second kinds respectively. The apparent
double points on the two spirals mentioned are pseudo-double points
of the second kind.

II.
1. Consider the straight line rsin0 = a. If we diminish the

vectorial angle of each point in the ratio 1: m, we obtain a Cotes'
Spiral r&\nmO = a; and if we increase the vectorial angles in the

n
ratio TO : 1, we obtain the curve rsin— = «e. The same two processes

applied to the circle r = asin#, the parabola r = —— , the conic
sin (7

J i / w i * i- i! T% j. 3asin0cos0 Al , . ,
— = 1 + ecosp, the folium of Descartes r = . — the cubical
r sms0 + cos30

, , „ a2cos0 ,, . , . . acos20
parabola r2 = . , the semicubical r = . , or any other knownr sin3P sin3^ J

curve, will likewise produce in each case two families of curves, each
family with notable characteristics. Curves of the first family in
each case will consist of repetitions, symmetrically placed about the
origin, of a narrow (open or closed) loop. The second family will be
marked by wide overlapping loops, with an abundance of pseudo-
double points.

Conversely, by altering the vectorial angles in a constant ratio,
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we are able to reduce many types of polar loci to simple algebraic
curves.

2. An algebraic curve is, from the polar point of view, a locus
with period 2TT in 0. I t will in general (applying the foregoing
theory) require both sides of a plane for its representation, and,
when put upon our surface, will be identically repeated on each of
our infinite number of sheets. When we alter the vectorial angles
in a given ratio, we are simply opening or closing our surface like a
fan, and the various layers of our locus become separated. When
the ratio in whicli the angles have been altered can be expressed as
the ratio of one whole number to another, the curve will repeat
itself after a definite number of sheets.

Below are some of the simplest of the curves thus derived from
the circle r = asinO.

A branch drawn in a continuous line is one which occupies the
upper side of its sheet, and corresponds to positive radii vectores;
while a dotted line denotes a branch on the under side of its sheet,
and corresponding to negative radii vectores. When a branch is
described in both of these ways, the continuous and dotted lines are
drawn alongside one another.

It will be noticed that a curve, on passing through the origin,
always changes sides on its sheet.

3. First, consider those produced by what we may call " contrac-
tion " of the surface. Their general equation is

r = asinmd
and we shall take m an integer. In all cases there are m loops
above and m below; but since, when m is odd,

sinmO = - &mm(6 + In + 1 TT)
for all values of 9, each point on the curve satisfies the condition for
a pseudo-double point of the second kind, so that each under loop
will be covered by an upper; while, for m even, they will be found
in separate regions. The enveloping circle r = a is drawn in each
case, and the loops are numbered in the order of their description.

Figures are drawn for m= 1, 2, 3, 4. (Figures 34, 35, 36, 37.)
4. The general equation of curves derived from the circle

by what we may call " extension " of the surface is
. 6

m
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As before, we consider m integral. The complete variation of r
takes place while 6 goes from 0 to 2mir; there will thus be m sheets
before the curve begins to repeat.

Figures are drawn for m = 2, 3, 4. (Figures 38, 39, 40.) The
following short notes indicate the order in which the different
branches are described; and each branch is numbered in the figures
according to the sheet in which it lies.

(i) r = asin— (Fig. 38).

0< 9< lit: continuous line OAO, upper surface of first sheet;
2x<6<4ir : dotted line OBO, under surface of second sheet.

(ii) r = asiny (Fig. 39).

0< 0< 2it : OAB continuous, first sheet;
2ir<9<3ir: BCO continuous, second sheet;
3ir<0<47r: OCA dotted, second sheet;
4JT < 0 < 6JT : ABO dotted, third sheet.

n
(iii) r = asin— (Fig. 40).

0< 0< 2JT : OAC continuous, first sheet;
2r<6<47r: CAO continuous, second sheet;
4TT < 6 < 6TT : OBD dotted, third sheet;
6TT< 6< 8TT : DBO dotted, fourth sheet.

Similarly for higher values of m.

It is useful to note that
, , rdO 6
tan* = —^ = mtan—.

dr m

o. , J J • 0 • 6 + 2n + lTr TO-1
Since, for m odd, sin—= - sin for n = —-— and all

m m 2
values of 6, the same curve, just as in §3, will be described by
negative radii vectores as by positive; but not so for m even. This
is illustrated by the examples drawn.

The point to note is, that those curves, becoming more and more
involved as m increases, are simple " extensions " of the circle; and,
finally, that without the conception of a many-sheeted surface, their
diagrams would be a mass of confusion.
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