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1. Introduction

In this work, we study the diophantine equation
f(X)=Y", (1.1)

wherem > 2isaninteger and f (X ) isapolynomial with coefficientsin anumber
field K. The first important result on this topic is due to Siegel [19], who showed
thatif m = 2and f hasat least three smplerootsor if m > 3and f hasat least two
simpleroots, then (1.1) has only finitely many integral solutions. Three years|ater,
he proved [20] that if the algebraic curve defined by (1.1) is of positive genus, then
(1.2) hasonly finitely many integral solutions. The p-adic anal ogue of thistheorem
was established independently by Lang [9] and LeVeque [12], who showed that,
under the same conditions, (1.1) has only finitely many S-integral solutions. After
that, LeVegue[13] gave anecessary and sufficient condition for the algebraic curve
defined by (1.1) to have positive genus. However, all these results are based on
Thue's method, and hence are ineffective.

Using hiswork on linear formsin logarithms, Baker [1] gavethefirst effectively
computable bound on the size of rational integer solutions of (1.1) in the case
K = Q, under the same hypothesis as Siegel [19]. His results were improved
and extended to algebraic number fields by Sprindzuk [23] (see aso [24] and
the references given there), Brindza [4], Poulakis [16], Schmidt [17] and, more
recently, Voutier [26]. We also have to mention an unpublished paper of Bilu [3].
Further, using the p-adic theory of linear forms in logarithms, due to Van der
Poorten, generalizations to the case of S-integral solutions were established by
Trelina [25], Kotov and Trelina [8] and Brindza [4], among others (see [18] for
more references).

The purpose of the present work is to improve and generalize to the p-adic
case Voutier'sresults. We will more or lessfollow his proofs, however, using some
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new ideas, we give effective upper boundsfor the size of S-integral solutions with
a better dependence on m and show that the dependence on the height of the
polynomial f istrivia if onetakes also its discriminant into account (thiswas first
noticed by Trelina). Our main tools are the new results due to the author and Gyory
[5], [6], concerning the size of the solutions of S-unit and Thue-Mahler equations.

2. Statement of theresults

Let K be a number field of degree d. Denote by Dy its discriminant, by hk its
class number and by Ok thering of integersin K. Let S be afinite set of placeson
K, including the set of infinite places S.,. Denote by p1, ..., p; the t primeideals
corresponding to thefinite placesof S. Further, denoteby Og thering of S-integers
inK. Let n > 2 bean integer. We consider amonic polynomial

f(X)=X"+anaX" 1+ +ag € Ok[X].
Leta € Ok \ {0} andm > 2 be an integer, we study the equation
f(x)=ay™ in (z,y) € Og x K. (2.1

Denoteby aj,. .., «a, ther distinct roots of f and, respectively, by ey, .. ., e, their
order of multiplicity. For: = 1,...,r, we define the positive integer
m

mg; .— (ei’m)7

and we reorder therootssuchthat mq > --- > m,..
We assume that the m;’s satisfy the so-called ‘ LeVeque's condition’, i.e. that

(ma,...,my) #(2,2,1,...,1),
and

(ma,...,my) # (t,1,...,1)

where t denotes any integer.

Under this condition, it follows from LeVeque [13] that (1) has only finitely
many solutions. The purpose of thiswork isto give anew upper bound for the size
of these solutions. We pay particular attention to the dependence on the parameters
of the field K and especially on the height of the polynomial f (for the definition,
see Section 3). Asin [5] and [6], we denote by h(«) the absolute multiplicative
height of the algebraic number «.

Before stating our theorems, we have to introduce some more notations. We
define the polynomial

9(X) = (X —a1)--- (X = ar) € Ok[X],
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and denote by A =TI, (a; — ) its discriminant. Let P be the largest of the
rational primes lying below the finite places of .S, with the convention that P = 1
if S = Se. Further, supposethat [Ny /q(a)| isat most A (> e) and that the height
of the polynomial f isbounded by H (> e¢).

Throughout this paper, we stand the notation log*z for max{logx, 1}.

THEOREM 1. If m; < 2 for each 7 and there are at least three roots for which
m; = 2, then all the solutions of (2.1) satisfy

h(z) < H? exp{ c1(d, n,t) P*°¢ (log* P)4n’dt
><|DK|15n2/2 A3n2 |NK/Q(Ag)|12n
x (log] A Dk N o(A,))) ¥ loglog H}
and
h(z) < H? exp{ ca(d, n, t) P* (log* P)%"*| Dy |16n°
x [N (Ag) [221* A3 (log| A Dy Ny jo(,))*" ),
where c1(d, n, t) and cz(d, n, t) are effectively computable constants.

Remark. The purpose of thefirst inequality isto give a better estimate in terms
of | Dk | than the second one. Further, it is based on Lemma 4, which may be of
independent interest.

THEOREM 2. Supposem > 3andthereexist 1 < i # j < rsuchthat (m;,m;) >
3.1f (mm;, m;) isnot a power of 2, let m' be the smallest odd prime number dividing
it, otherwise put m’ = 4. Then all the solutions of (1) satisfy

h(z) < H™+1 exp{ cs(d, n,m, t) P1°m® (log* P)in“m' | Dy [5n°m' /2
Nk o (Ag)[5m" An*m
n2m’
(log|A Dk NK/Q(AQ)DZd 1

where c3(d, n, m, t) is an effectively computable constant.

In the particular case S = S, Theorem 2 improves Theorem 2 of [26] in terms
of | Dk |: weremoveafactor mm/'. Thisismainly dueto the following two reasons.
On the one hand, we use a case by case analysis which allows us to work in a
field M of degreeless than n?m/’ over K and to derive either S-unit equations, or a
Thue-Mahler equation. On the other hand, Lemma 9 (see Section 4), suggested by
the referee, provides us a sharp upper bound for the discriminant of the field M.

From Theorem 2 we deduce the following result.
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THEOREM 3. Under LeVeque's condition, suppose that the hypotheses of Theo-
rems1 and 2 are not fulfilled. Thenthereexist 1 < i # j < r suchthat m; > 3and
m; > 2, and all the solutions of (1) satisfy

h(z) < H™ exp{ ca(d, n,m, t) P +H4m2)/2| Dy |m°/8 N o (A,)| ™/
m3
A5"*/8 (log| A Dk N jo(A))) ™ 1,

where c4(d, n, m, t) is an effectively computable constant.

It is interesting to note that the dependence on n appears only in the constant
C4.

Thesethree theorems considerably improve and generalizetheresultsof Trelina
[25] intermsof ¢, H, A, Dk | and [Nk /q(Ag)]- In particular, the exponents of A,
| Dk | and [Nk /q(Ag)| do not depend on ¢; thisis essentially due to the new results
concerning the size of the solutions of S-unit and Thue-Mahler equations[5], [6].

Remarks. If (z,y) isasolution of (1), Theorems 1 to 3 give estimates only for
the size of z. A bound for the size of y immediately follows, but it also involves
the height of a.

If, more generally, the polynomia f has coefficientsin K, we easily deduce
from our theorems upper bounds for the size of the solutions of (2.1), but we have
to take into consideration the denominator and the leading coefficient of f.

Noticing that we can bound [Ny /o(A,)| by H?*" times a constant depending
ond andn (cf [26], Lemma7), our theorems also provide estimates involving only
the height of the polynomial f. However, we point out that the height of f can be
arbitrarily large compared with the discriminant of g.

3. Boundsfor S-units, S-regulatorsand linear formsin logarithms

Let K be an algebraic number field, denote by d its degree and by My the set of
places on K. Let S be afinite subset of My containing the set of infinite places
Ss. Throughout this paper, we will always use the notation Dk, Ok, Ok, Os,
0%, Rs and Ny for, respectively, the discriminant of K, the ring of integers in
K, the group of units in K, the ring of S-integers in K, the group of S-units in
K, the S-regulator and the S-norm (see definitions below). For every place v we
choose avaluation | . |, in the following way: if v isinfinite and correspondsto an
embedding o : K — C then we put, for every o € K,
jtfy = Jo(a)|™,

where d,, = 1 or 2 according aso(K) iscontained in R or not; if v isafinite place
corresponding to the primeideal p in K thenweput |0}, = 0and, for o € K \ {0},

jaly = N(p) ().
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The (absolute) height of an algebraic number «: contained in K is defined by
1/d
h(a) = ( T] max(L,lal,))"

’UGMK

This height is independent of the choice of K. Moreover,

> log|e,| = 2dlogh(c). (3.1

’UEMK

For apolynomial F(X) = X'+ b, 1 X" 1 +--- + by € K[X], wedefineits height
h(F’) by

h(E) = ( T max{L, lbolu, .. ralu}) "

’UGMK

It iswell-known (cf. [22], Chapter V111, Theorem 5.9) that

2t JI he)<hF) <2t [ hw. (3.2)

« rootof F «arootof F

Let now define the S-norm and the S-regulator. For « € K \ {0}, the ideal
(o) generated by « can be uniquely written in the form aja, where the ideal a3
(resp. a2) is composed of prime ideals outside (resp. inside) S. The S-norm of «,
denoted by Ng(«), is defined as N(a;1), and we put Ng(0) = 0. The S-norm is
multiplicative, and, for S = Sy, we have Ng(a) = [Nk q(a)|. Forany a € K,

wehaveNg () = Myes|al, andNg(a) < (h(e))®. Further, if o € Og \ {0}, then
Ng(«) isapositiveinteger.

Let s bethecardinality of S. Forv € S, denoteby |- |, the corresponding valua-
tion normalized asabove. Let vy, ..., vs_1 beasubsetof S, andlet {e1,...,e5-1}
be a fundamental system of S-units in K. Denote by Rg the absolute value of
a positive number which is independent of the choice of v4,...,v, 1 and of the
fundamental system of S-units{e1,...,es_1}. Rg iscalled the S-regulator of K.
If in particular S = S, thenwe have Rs = R, the regulator of K.

We refer to [5] for the proofs of Lemmas 1-3 (the first two of them go back
to Siegel’s well-known paper [21] ). We recall that there exists a constant 64 > 0,
depending only on d, such that logh(«) > d,4/d for any non-zero algebraic number
« with degree < d unless « isaroot of unity. Put

(s —11*

cs = cs(d,s) = (2 2-1)

ce = co(d, s) = cs5(04/d)* %, c7 = c7(d, s) = esd® 5,

https://doi.org/10.1023/A:1000130114331 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000130114331

192 YANN BUGEAUD

LEMMA 1. ThereexistsinK afundamental system{ey, ..., es_1} of S-unitswith
the following properties:

s—1
@) [] logh(e;) < csRs;
=1

(i) logh(e;) < ceRs, i1=1,...,5s—1;

(iii) the absolutevaluesof theentries of theinversematrix of (10g [e;o; )i j=1,...s—1
do not exceed c7.

Denote by Rk, hx and r = r¢ the regulator, class humber and unit rank
of K. Let pq,...,p; be the prime ideas corresponding to the ¢ finite places in
S, and denote by P the largest of the rational primes lying below them. Put

cg = cg(d,r) = 7“”15;“71)/2.

LEMMA 2. For everya € Og \ {0} and everyinteger n > 1thereexistsan S-unit
e such that

h(e") < Ng(a)Y? exp{n(cgRk + thk log* P)}.

LEMMA 3. If ¢ > 0, then we have

t
Rs < Rehi []10gN(p;) < Rihi (dlog*P)!
=1

and

t
Rs > R [[1ogN(p;) > co(log2)? (log" P),
=1

where cg = 0.2052.
Lemma 3 was obtained independently by Bilu ([2], Proposition 1.4.8) and
Bugeaud and Gyory [5] (see also Hajdu [7] and Pethd [15] for similar resullts).
Letas,...,a, (n > 2) benon-zero agebraic numbersand let K = Q(az, . . .,
ap). Let Ay, ..., A, bepositive real numbers such that

[log il 3}, —1....m, (33)

log 4; > max{logh(as), =", -

where log denotes the principal value of the logarithm. Let b4, ..., b, be rational
integersand put B = max{ |b1|, ..., |bn|, 3}. Further, set

A:agl,...,ab"—l.
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In Proposition 1, it will be convenient to add the following technical conditions
B >log A, exp{4(n + 1)(7 + 3log(n + 1))}, (3.4)
and
7+ 3log(n + 1) > logd. (3.5
Proposition 1 is a consequence of Corollary 10.1 of Waldschmidt [27].

PROPOSITION 1. (M. Waldschmidt [27]). If A # 0,b,, = 1and (3.4), (3.5) hold,
then

IA| > exp{—clo(n)d"”IogAl...IogAn Iog(ljgn—f)},

n

where c1p(n) = 1500 - 38" +1(n 4 1)3+9,

In Proposition 2, let v = v, be afinite place on K, corresponding to the prime
ideal p of Ok . Let p denote the rational prime lying below p, and denote by |-|, the
non-archimedian valuation normalized as above. Instead of (3.3), assume now that
Ay, ..., A, arepositive real numbers such that

log 4; > max{logh(«;),|log«;|/(10d),logp}, i=1,...,n.

Thefollowing proposition is asimple consequence of the main result of Kunrui
Yu[28].

PROPOSITION 2. (Kunrui Yu [28]). Let
® = c11(n)(d/\/logp ) (n+1),d log Az ...log A, log(10ndlog A),

where c11(n) = 22000(9.5(n + 1))2*D and A = max{As, ..., Ap,e}. If A #0
then

|Aly > exp{—d(logp)® log(dB)}.

Further, if b, = 1and A,, > A; fori =1 ... ,n — 1, then A can be replaced by
max{A1,...,An_1,e} andforany 6 with0 < § < 1, we have

Al, > exp{—d(logp) max{®log(s~*®/log A,), 5 B}}.

Thanks to the above lemmas and propositions, we are now able to state a
generalization of the second part of Lemmab5 of [26] to the case of S-unit equations,
which may be of independent interest.
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4, Somelemmas

LEMMA 4. Let K beanumber field of degreed andlet K, and K, betwo subfields
of K. Let S (resp. S1, S») afinite set of placeson K (resp. K1, K2) containing the
set of infinite places S,,. Denote by s (resp. s1, s2) the cardinality of S (resp. S,
S2) and by P the largest of the rational primes lying below the finite places of S,
withthe conventionthat P = 1if S = Sy. Assumethat Og, C Og and Og, C Oy
and, for ; = 1, 2, denote by R; the S;-regulator of K;. Let v1, v, 3 be non-zeros
elementsin K with height at most H (H > e) and consider the equation

v1€1 + voea + v3ez = 0, 4.0

inthe unknownse; € O% , 2 € Oy, and ez € Og. Then, for ¢ = 1, 2, we have the
upper bound

Pd
(log' P)?

x log H log* log* max{h(sl),h(sz)}}7

h(vies /vacs) < exp{clg(d, 5 RaRalog* max{ Ry, Ry}

where c12(d, s) is an effective constant.

Remark. Intheparticular case S = S, thisresult wasfirst obtained by Voutier
([26], Lemma5).

Proof. Using an idea of Voutier ([26], Lemma 5), we follow the proof of
the Theorem of [5]. The constants ci3,...,cos in the proof are al effectively
computable and depend only on d and s. We recall that there existsa §,; > 0 such
that logh(«) > d4/d for any non-zero « in K which is not a root of unity. Let
{1, .., ps,—1} (resp. {p1, ..., ps,—1}) beafundamental systemof S1-units (resp.
So-units) in Ky (resp. K ) satisfying the properties specified in Lemma 1. Then we
canwrite

e1 = Caust.. Msil Toand ep = G PSZSZ Py (4.2)
withrootsof unity {1, (> € K andwithrational integersbs, ..., bs,—1,d1,. .., ds,—1.

Put B = max{|b1|, ..., |bs,—1|,|d1],- .., |ds,—1|,3}, it follows from (4.2) that
foral v € S wehave

s1—1

log ey = > bilog |uilv,

=1

whence, by (iii) of Lemma 1l and (3.1), we get

|b | Clglogh(el).

l<z<51
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Inasimilar way we canbound d; fori = 1, ..., s» — 1 and hence we obtain
B < cialog’ max{h(e1), h(ez) }. (4.3)

Letv € S for which |e3/e1|, isminimal. It follows from the hypothesesthat ¢4
and e are S-unitsin K. Setting co = —(or2/(¢111) and b = 1, we deduce from

(4.1) and (4.2) that
V3€E3 — —bs, dsy—
E e |a0/.1:1 bl.__'uJSliJi 19?---,0522,11 — 1|’U (44)

We shall derive a lower bound for |e3/e1], in order to get an upper bound for

h(€3/€1).
First assumethat v isinfinite and put

logA; =4,  logh(u;), i=1,...,51—1,
logA; =46,  logh(p;), j=s1,...,851+ 52— 2,
logAg = 25,* logH.
Condition (3.3) isthen fulfilled. Indeed, let o # 0 bein K, we have to check that
logh(e) 6;* > |logal/(3.3d).
Write o = et with |b| < 7. Then we have
lloga| = (a? + b)Y/ < (a? 4 7?)1/?
< (log? o] +72)Y2 < (log? h(a) + w2)1/2.

Fromlogh(a) > d4/d, it follows that

d(1+7%)Y2,

22\Y2  |oagh
|loga| < logh(a) <1+ %) < ogé (@)
d d

sinced > d4. Now, it sufficesto note that (1 + 72)1/2 < 3.3.
Then, we apply Proposition 1 to (4.4) and, using inequality (i) of Lemma 1 as
in the proof of the Theorem of [5], we get the upper bound

h<Z3—§3> < expl{cisRiR, log H log BY. (4.5)
1€1
Next assume that v isfinite. To apply Proposition 2, we put now

logA; = d; logh(u;) +log*P, i=1,...,s1—1,
logA; = d;tlogh(p;) +10g*P,  j = s1,...,81+ 52— 2, (4.6)

log Ao = 26, log H + log* P.
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Exactly asin [5], it follows from (i) of Lemma 1 and the second inequality of
Lemma 3 that

log Ay, ...,109 Ay, s5,—2 < c1eR1(l0g* P)*1~2 Ry(log* P)®2~2
< cleRle(log*P)sl"'sZ_A'. 4.7

Let c17 = Ce( [Kl : Q],Sl) and ci1g = Ce( [Kz : Q],Sz). We distinguish two
cases. First assumethat log H < c17R1 + cigR». Then, by Lemmas 1 and 3, we
have

logA ;= max log A; < ciomax{Ri, R>}.
g oci X, 0 A; < cigmax{R1, R}

We apply now to (4.4) thefirst part of Proposition 2. Putting

d

¢ = WIOQAO log Ay, ..., 109 Ag 45,2

x 10g(10(s1 + s2 — 1)dlog A), (4.8)
we get, asin [5], the estimate
h(l/3€3/1/1€1) < e>(p{C20<I> |Og*P |OgB} (49)

Next assumethat log H > c17R1 + cigR2. Then, by Lemmas 1 and 3, we have
Apg> A;fori=1,...,81+sp—2and

logA = max log 4; < ciomax{Rq, R>}.
g e g A; < ciomax{R1, Ro}

Consider now the above defined ¢ with this value of log A.
If B < ®(log*P)/(c17R1 + c18R2) then (4.2) and (ii) of Lemma 1 imply that

() = (e )
< 2h(v1) h(v2) h(e1) h(ea)

< H2 eXp{021(R1 + Rz)B}

/N

exp{c2®log*P}. (4.10)

Assume now that B > ®(log*P)/(c17R1 + c1sR2). We apply the second part
of Proposition 2 to (4.4). Putting

B ¢ log* P
B(c17R1 + c1gR2)’
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we obtain

h(vzes/vie1) < exp{c%q)aogaxp) Iog<B(Cl7R1 + 018R2)> }

log* P log Ag
Recallingthat log H > c17R1 + c1gRp, we get from (4.6)
h(vses/vie1) < exp{cu® log" P log B}.

The definition (4.8) of ® and estimates (4.7), (4.6) and (4.3) yield
d

h(vses/11e1) < exp{ cos 5 R Ry log* max{ R1, R}

P
(log"P)

log H log* log* max{h(e1), h(sz)}}. (4.11)

Since we can bound h(vze3/1v2¢2) inasimilar way, the lemma follows from (4.5),
(4.9), (4.10) and (4.11). O

Further, we recall some results of [5] and [6].

Let K be a number field with the same parameters asiin Section 3. Let S be a
finite set of places on K containing the set of infinite places S.,. Denote by ¢ the
number of finite placesin S and by P thelargest of therational primes|lying below
the finite places of S, with the convention that P = 1if S = S,,. Consider the
following eguation

z1€1 + x2e2 + 2363 =0 in g € O% (4.12)
where z1, 22, z3 € K \ {0} withmax, ; sh(z;) < H (H >e).

PROPOSITION 3. For every solution €1, €2, €3 of (4.12) thereisan e € O such
that

max_h(ee;) < exp{cas(d, s) P* Rs (log* Rs)?

1<i<3
X (Rk + thk log*P +logH)},

where cs(d, s) is effectively computable.
Proof. Itisaparticular case of the Corollary of [5]. O

Let M be afinite extension of K with [M :K] = n > 3. Let Sy bethe set of all
extensionsto M of the placesin S. Denoteby hy, Ry and Rs,, the class number,
regulator and Sy -regulator of M, respectively. Let & € M such that M = K(«)
and h(a) < A, with A > e. Further, let 5 be anon-zero element of K with height
at most B and with S-norm not exceeding B* (> e). Consider the norm form
eguation

Nm/k(z +ya) =0 in z,y € Os. (4.13)
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PROPOSITION 4. All the solutions of (4.13) satisfy

max {h(z), h(y)}
< BYn exp{cz7(d,n, s) pin(n=1(n-2) Rg),
x(log”Rs,, )% (Rm + thm + log(AB*))},

where cp7(d, n, s) is an effectively computable constant.
Proof. Apply Theorem 2 of [6] withm = 2. O

We al so need several well-known lemmas, thefirst of them isdueto Minkowski.

LEMMA 5. In every ideal classC of K, there exists an integral ideal a € C such
that

N /q(a)] < [Dk[*2.
Proof. cf.[18], Theorem A.1. O

LEMMA 6. Let K and M as above. Let a be aninteger in M suchthat M = K (a)
and denote by P its minimal defining polynomial over K. Then we have

|Dm| < [Dx[" INm/o(P'(a))].

Proof. It followsfrom Narkiewicz (cf. [14], page 160) that the different diff ; /«
is generated by the F'(b), where b runs through the integral elements of M satis-
fying M = K(b) and F' is the minimal defining polynomial of b over K. Hence,
INm /g (diffm k)| < INm /(£ (a))], and the lemma follows from

[Dm| = |Dk|™ [Nm/q(diffym s )| O

LEMMA 7. Let K and M as above and put m = [M : Q]. Then there exists an
effectively computable constant cg(m) such that

Rk < ng(m) Rwm.

Proof. cf. [24], Chapter II, Lemma2.3. O

LEMMA 8. There exists an effective constant c9(d), which depends only on d,
such that
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Rk hk < ng(d)|DK |1/2 (|Og* |DK |)d_1.
Proof. Seefor example[11]. O

Finally, we state a very useful lemma, suggested by the referee.

LEMMA 9. LetK asaboveand a € K. Let o bearoot of the polynomial P(X) =
X" — a. Then we have

v—1
NK(a)/Q(diffK(a)/K)<C30(daV)NK/Q< 11 P) ;
ord, (a)#£0

where c3o(d, ) is effectively computable (the product being over the prime ideals
of K with the property ord, (a) # 0).

Proof. We write D for Nk )k (diffk(a) k). Let p be a prime ideal of K,
ramified in K(«), and p = p(p) the underlying rational prime. We know that
p divides D and, consequently, p divides N o)k (P'(c)). It follows that either
p <vorord,(a) #0.

Denote by Ok (o) the ring of integers of the field K(a) and let pOk () =
B ... P,* be the decomposition of p in Ok, into prime ideals. Denote by
f1,-- -, fr theresidue degrees of Py, ..., By, respectively, so that Ni (o /k (Bi) =
p/i for al i. Noticethat eg f1 + - - + e fr, = [K(a):K] < v.

By Proposition 6.3 of [14], wehave, fori=1,... k,

ordy, (diffk o)k ) < €i + €; 0rd, (e;) — 1,

whence
k
ord, (D) < ) (e; + e;ord,(e;) — 1) fi. (4.14)
i=1
If p > v, thenord,(e;) = Oforaliandord,(D) < (e1—1)f1+---+(ex — 1) fx
v — 1. Write D = D1 D>, where

Dy = H pordp(D)7 Dy = H pord,,(D)‘
p(p)v p(p)>v

It follows from (4.14) that ord, (D) < ca1(d,v), whence Ng o(D1) < ca2(d,v),
with ¢31(d, v) and e32(d, v) effectively computable. Finally, since all prime ideals
of K dividing D are ramified in K («), we have

IN

Nk /q(D2) < Nk/g (Hordp(a)yéo pord”(D)>

v—1

ord, (a)#0
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and the lemmaiis proved. O

5. Proofs of thetheorems

Firstwe havetointroduce somenew notations. For: = 1, . .., rlet f; betheminimal
defining polynomial of «; over K and denote by A,, its discriminant. Recalling
that g(X) = (X —a1) --- (X — ), we observe that its discriminant, denoted by
A, the resultant of the polynomials ¢’ and f;, denoted by Res(¢', f;), and A,
are algebraics integers in K. Further, we will often use (without mentioning it)
the fact that Nk /o (A,;) and N q(Res(¢’, fi)) divide Nk /o(4A,). The constants
c33,...,c5 are al effectively computable and depend only on d, n and ¢. The
constants csy, . . . , cgz are all effectively computable and depend only on d, n, m
andt.

Proof of Theorem 1.

It follows from the hypothesis of the theorem that f(X) = f1(X)™/?fo(X)™,
where the polynomia f; is monic and has at least three distinct roots with odd
multiplicity. If (z,y) € OgxK isasolutionof (2.1),thena = f1(x)™/2 fo(z)™y ™
must be an m /2-th power in K. Hence, there exists u € Ok such that a = u™/?
and (z,y/f2(z)) is asolution of the equation f1(X) = uY?2. Further, we have
Nk jq(u)| < [Nk /q(a)| and [Nk jq(Ag)| < [Nk /q(Ag)l.

Thus, weonly haveto provethetheoreminthecasewhenm = 2and f hasthree
distinct roots with odd multiplicity. Assuming this hypothesis, let (z,y) € Og x K
be asolution of (2.1).

First step. Theideal (x) splits uniquely under the form
(z) = ab 1,

where a and b are relatively prime integer ideals in Ok, such that the set of the
prime divisors of b is contained in S. By Lemma 5, there is an integer ideal b’ in

the same class as b1 satisfying [Nk /g (b")] < |DK|1/2. Thus we have
() = (ab") - ('0) %

Since the integer ideals b’ b and a b’ are principal, we can write z = X/z, where
X,z € Ok and

(X) =ab', (z) = bb'.

In particular, ((X), (z)) = b’

Clearly, if a power p’ of aprime ideal p exactly divides (z), then p! divides b’
or p isone of the p;’s. Defining the binary form f (X, z) := 2" f(X/z), Equation
(2.1) becomes

f(X,2z) = ay?2". (5.0
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Second step. It follows from the hypothesis that e1, e> and e3 are odd. Let 1 =
1,...,randput K; := K(«;). Working in F, the splitting field of f, we have for
eachroot 3 of f

(X = @iz), (X = B2))(B — i) (X)), (2))|g' () b

Letp beaprimeidea dividing X — «;z with an odd exponent. If p does not divide
g'(a;)b’, then it does not divide X — «;z for al j # 4, and we necessarily have
p|(a). Thus, primeidealsnot appearingin b’ (ag’(c;)) divide X — ;2 withan even
exponent, which is also true in the field K ;, and there exist two integer ideals qa;
and b; in K; with a; square-free satisfying

(X —aiz) = ;0% and  a; O|b’ (ag'(c;)) Of.
Let o, = aj,...,q;, be the roots of the polynomia f;. Since Ng/q(a;;) =
Ne/q(a;) forj = 1,...,k, we have

|NF/Q(az)|

NE/q (ab') HNF/Q g (e;) ‘

< INg/q(ab')* Nejg (Res(d', £:))],
and, noticing that Res(¢’, f;) € K, we get
Nk, /(@)] < [(ANk/(6)" Nk jq(Resld', )|

< A™| Dk |"?|Ng o (Resly’, £:)) - (5.2

By Lemmab5, thereisaninteger ideal b; intheclassof b; satisfying [N, /o (b7)] <
|D,|*2. Then we have (X — a;z) = (a; /2) - (b;/b})2 and, reasoning as above,
weobtain &} € Ok, and ¢ € K; such that

X — iz = K, '2.
Applying Lemma7 to theextensionK C K; = K(«;), we get

| D | < 1Dk]™ [Nk, q(fi (@i)] < |Dk|™ Nk /()] (5.3)
and it follows from (5.2) that

INk, /o(5)| < INk,/o(ai)] - INk, /q(6])?]

< A" |Dk "% Nk o (Res(g', f) Aay) . (5.4)
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Hence, applying Lemma 2 to the algebraic integer ; € K;, we obtain x; € Ok,
and¢; € K; suchthat [Nk, /o (#7)| = [Nk, /o ()],

X -z = Hzflz and

h(r;) < exp{cas (Rk; +10g|A Dk Nk /q(Ag))}- (5.5)

Third step. We follow very closely the argument of Voutier [26]. Fori = 1,2,3
we fix a square root |/r; of x;. For i, j € {1,2,3} with i # j, we define the
number fields K;; = K;(ay;) and L;; = K;j(\/AiR;). Those are subfields of
M = K(aq, ap, a3, \/k1 k2, /K1 K3), Which is a number field with degree less or
equal to 4n(n — 1)(n — 2)d over Q. We denote by R;; (resp. h;;) the regulator
(resp. the class number) of L ;;.

In order to deduce from (5.5) four unit-equations, we set

1 = Kk1é1, T2 = /k1k2&o and 713 = \/k1Kk3E3,
and, immediately, it follows that

k1(ap — )z = 78 — 72,

ki(az — a1)z = 712 - 73?, (5.6)
ki(ag — ag)z = 7'3? — 7'22.

Fori # 7, let S;; bethe set of all extensionsto L ;; of the placesin S. The algebraic
numbers 7, + belong to the field L1, and are algebraic integers (to see this,
consider 72 and 72). In the sameway, 71 + 73 (resp. \/k3/k1 (2 £ 73)) areagebraic
integersin L3 (resp L »3). It follows from (5.4) and (5.6) that

Ns,; (11 4 75) < exp{caa (10g]A Dk Nk /o(Ag))}, =23,
N, (V/ka/k1 (T2 £ 73)) < exp{ess (I0g|A Dk Ny jq(Ag)]) }-
Applying Lemma?2 in thefieldsL;;, we may write
T1+ T2 =bzez and 71— T2 = g3ds,
T1+T13="boer and 71— 13 = g20o, (5.7)
Vha/ki(r2+13) = ber and  /ka/ki(r2 — 73) = g1d1,

where, for each permutation (¢, j, k) of theindices (1,2, 3), ¢; and ¢; are S -units
inL ;. Moreover, setting by = \/fﬁl/fﬁg by and g1 = «/fﬁl/lig, g1, we have

T+ m=be and 7'2—7'329151 (5.8)

https://doi.org/10.1023/A:1000130114331 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000130114331

SOLUTIONS OF SUPERELLIPTIC EQUATIONS 203
with

max_{h(b;),h(g;)} < exp{css (R12 + R13 + Roz + (h12 + h1z + h23)

1<i<3
x 10g* P + log|A Dk Nk jo(Ag)]) }- (5.9

Theideal (z) admits the following decomposition into prime idealsin K
t u b
(2) = Hp?i : H qj]a
i=1 j=1

where H}-‘Zlq;’.f divides b’. We make the Euclidean division of a; by 2hk (recall that
hk is the class number of K) : there exist integers ¢; and r;, with 0 < r; < 2hk,
suchthat a; = 2hk ¢; + r;. L€t 21 be agenerator of the principal ideal nglpr &
and notice that z; * is a S-unit. We have z = 2225, where z; € Ok has anorm
(over Q) bounded above by [Nk /o (b')| P#k . Applying Lemma 2, with n. = 2,

to the algebraic integer z», we obtain aunit 7, € Ok and z3 € Ok such that
2 = 77%23 and
h(z3) < exp{ca7 (Rk + hx 10g*P +1og|Dx])}. (5.10)

Setting 7 = 75 27, wehave z = =223 and y isan S-unit.
Let Su be the set of al extensionsto M of the placesin S, we deduce from
(5.7) and (5.8) four Sy -unit equations, which we multiply by #:

bie1n — baean + g3dsn = O,
bie1n + g202m — bzesn = 0,
(5.11)
91011 + boeon — baezn = 0,
91611 — 92021 + g3dan = O.

Fourth step. Wenow provethefirst part of thetheorem. Before applying Lemma4to
the equations (5.11), we have to bound the size of the S;;-regulator of L ;;, denoted
by Rs,;. Theminimal defining polynomial of , /x; % over K; isX?—k; K4, hence,
by successive applications of Lemma 6 and inequalities (5.3) and (5.4), we get

DLl < Dk, [ INL, j0(2y/Fi R
2
< 224Dy P INk,, o (ki Kj)]

TL2 mn
< 227Dy, 7" Nk, /o (Aa;)[* Nk, jo (ki £j)]
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2

< 22n2d |DK|5n2 |NK/Q(Aai Aa]—)|2n A2n
x|Nk /o (Res(g’, fif;) Aa; Aa)|"

< 227 | Dy P AP INg s ()P (5.12)
whence
|Og|‘DLij| < C38 (Iog|ADK NK/Q(AQ)D
and, by Lemma 8,

hij Rij < cao | Dy |72 A™ INK /o (Ag)| ™

n2d—
x (log|A Dk Ni jq(A,))) 2. (5.13)

Since the number of finite placesin S;; is bounded by 2dn(n — 1)t, Lemma3
and (5.13) lead to the estimate

Max{Rs,,; Rs3, Ryt < C40|DK|5n2/2 A™ |NK/Q(A9)|4n
20_
x (log | A Dy N g (&))"

x (log* P)2dn(n=1)t, (5.14)

Applying Lemma 4 to the equations (5.11), we obtain from (5.9) and (5.14) the
upper bound

bie; gi0; bie; gi0;
maxaaf (G ) () s M)
1’2{ bzes bzes 9303 9303

< exp{ea Ty E}, (5.19)

where
T < P4n3d(|og*P)4dn2t—l|DK|l':'m2/2 A3? |NK/Q(Ag)|12n
24—
x (log|A D Ni jq(4))* 72,

E = log" log” max{h(e1n), h(e2n), h(d1n), h(62n)}.
In order to bound E, we notice that, using (5.7), (5.6) and (5.10), we have

bie bie
2 _ (1%L (711
(bren)” = <b363> <9353> (b3esn) (g303n)
_ (bie1) (baea
B <b3€3> <9353>n1(a2 a1)z3. (5.16)
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From (3.2), (5.5), (5.10) and Lemma 7, we get

h(k1(a1 — a2)z3)

< H exp{caz (R, + hk 1og” P +10g| A Dx Ny /q(Ay)) },
and we deduce from (5.15), (5.16) and Lemma 7 that
h(€177) < h(bl)h(blé‘ln) <H exp{C43 T E}

This bound is still true, with cas instead of ca3, for h(ezn), h(é1n) and h(dzn).
Consequently, E < log*(cas T1 E) + loglog H, and

E < cg5 10g|A P D Ng jo(Ay)| + loglog H. (5.17)

We can now deduce an upper bound for h(z). Namely, setting v = bsez/g303,
we obtain from (5.7) that

21 = (11— 72) + b3ez = (11 — m2) (1 + ),
and, similarly,
2m = (m+72)(L+77Y).
Hence, we get the equality
arf = (rf = )L+ 7)1+,
which, using (5.6) and (5.5), we may write as
AX — o12) = (a2 — az)z(L+7)(L+~7H).
Dividing this equality by z, weinfer that
z=a1+ z(1+ 7)1 +7H (a2 - a). (5.18)

Noticing that v = (b3es/g101)(9101/93d3), we immediately get from (3.2), (5.15),
(5.17) and (5.18) the upper bound

h(z) < H? exp{cas P*"* (log" P)™“"
x| Dy |197°/2 A% INk /o (A) 2"

x (log|A Dk NK/Q(AQ)DG”Zd loglog H'}. (5.19)
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Fifth step. We now prove the second part of the theorem. The aim of Lemma 4,
used in the proof of Theorem 1, is to obtain a good dependencein terms of | D |.
Unfortunately, the dependenceon H isnot very satisfactory and it can beimproved
by using Proposition 3 instead of Lemma4. Therefore, the dependenceon |Dk | is
worse.

We exactly follow the first three steps of the proof and we apply Proposition 3
to the four equations (5.11). Recall that M = K (a1, az, as, \/k1kz, /F1k3) has
degreelessor equal than 4n(n — 1)(n — 2)d. Using Lemmas, (5.4) and (5.12), we
can bound its discriminant

2
IDw| < DLy Nk jo(Ag)|*" Nw/(2y/F1rk3)]
Tl3 3 Tl3 le
< 27 Dy 11 A% INK /0 (Ag) [P N /o (2/F1R3))|

TL3 3 TL3 TL2
< 2574 D |19 A% Nk jo(Ag) [P

2

2
x|Nk /@ (K1) ™™ [Nkyq(k3)[*"
< 287 | Dy |1 A3 N (D)2 (5.20)
As before, denote by Sy the set of al extensionsto M of the placesin S and

by Rs,, the Su-regulator of M. Applying Proposition 3 to the first two Sy -unit
equations (5.11), we get, by (5.9) and Lemma 7,

max{h(bl€1> , h(bm)} < explear To}, (5.21)

bzes 9303

where

T < P4"3dR5M (log* Ry, )2 (Rm + (h12 + haz + hoz + hw ) log* P
+log|4 Dk Ny jo(Ay)).

Recall that we have put v = bses/g3ds. It follows from (5.21) that h(y) <
exp{cag To} and from (5.18) that h(z) < H? exp{cao T>}. Finally, we use Lemma
8, (5.12) and (5.20) to bound the quantity T> and, after some computations, we get

h(z) < H2 {CSO pinid (Iog*P)4t”3 | D |16n3 |NK/Q(Ag)|28n2
3
A (1og |4 Dk Nk jq(Ag))*") 1,
as claimed. O

https://doi.org/10.1023/A:1000130114331 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000130114331

SOLUTIONS OF SUPERELLIPTIC EQUATIONS 207

Proof of Theorem?2

We keep the same notations as in the proof of Theorem 1. By the same reasoning
asin thefirst step of the above proof, letting (X, z) := 2" f(X/z), equation (2.1)
becomes

f(X,2) = ay™2",

intheunknowns X, z € Ok and y € K. Further, thereis an integral idea b, with
Nk /o (8")] < | Dk Y2, suchthat ((X), (2)) = b'.
Wereorder therootssuchthat (11, m2) > 3. Arguing asinthe proof of Theorem
1, we claim that, for ¢ = 1, 2, there exist two integer ideals a; and b; in Ok, with
a; free of m;-th powers, satisfying
(X —jz) = a; )"

and

Nk, /q(ai)] < A™ [Nk, /q(b') Nk o (Res(g’, £))[™ . (5.22)

Further, by (5.22), Lemma5 and Lemma2, weobtain x; € Ok, anideal b in Ok,
with [N, /o (b})] < | Dk, [Y2 and ¢; € K; suchthat k; Ok, = a; b;™,

X —ajz = Higz?ni?
h(r;) < exp{cs1 (R, +10g|A Dk Nk ;o(Ag)])}, and

Nk jo(Ri)| < A™ [ D "™ [Nic g (Ag) P/, (5.23)

Recall that if (m1,my) is not a power of 2, then '’ is the smallest odd prime
dividing (ma, m2), otherwise m’ = 4. Further, put m} = m1/m’, m,, = map/m/.
Working inthefield L = K (a1, a2), we deduce from (5.23) the equation

(02 — r)z = K™ (kaly™)™ — k™ (kpeh'2)™ (5.23)

i i
In the sequel, we will put for convenience 1 = k1€, and 2 = k€, 2.

Usually, one works in the field L(ni/ m’,n%/ m,) of degree m'? (in general)

over L. Voutier [26] prefers the field L ((rk1/r2)Y™ , (), Where ¢, denotes a
primitive m/-th root of unity, but, however, it doesnot help him to makeanumerical
improvement. Here, we work either in L ((nl//@z)l/m') orinL({,), and, thus, we
remove a factor m/. This idea goes back to Bilu [2]. Further, Lemma 9 provides
sharp upper boundsfor differents of certain extensions of number fields and allows
us to remove afactor m.

Suppose first that m' # 4. By Theorem 9.1 of Chapter VIII of [10], there are
two possible cases:
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(i) The polynomial 7™ — (k1/k2)™ ~Lisirreducible over L.
(i) Thereexistsanu € L suchthat (k1/k2)™ ~* = u™ .

Case (i). Let v € C bearoot of T™ — (k1/k2)™ ~* and consider the field
M = L(v), it follows from (5.24) that

Nm /L (11— v2) = ﬁ’l"’*l (a2 — aq)z. (5.25)

Recall that there exist non-negative integers as, ..., a; and an idea b” which
dividesb’ suchthat zOx = b"p7*...pft. Let 7y, ..., m € Ok begeneratorsof the

principal ideals p}fK,...,pr, respectively. Using Euclidean divisions, it is easy
to see that we can write z = 2"(x0* ... 7)™, where the b;’s are non-negative
integers and 2" € Ok satisfies [Nk /o(2")] < |Dg |Y/? ptahk™' By |emma 2,
there existsaunit € € Ox suchthat 2" = z'e™,

Ns(2') < |Dk|Y? and
h(z') < exp{cs2 (Rk + hk log* P + log® | Dk |)}. (5.26)
Equation (5.25) now becomes

’

T T2 ! —
NM/L< b b U b Wft> =7 oz — an)?. (5.27)

671-1 ---7rt €7Tl LR

Let S. (resp. Su) be the set of all extensionsto L (resp. M) of the placesin
S and denote by Ryg,, the Sy-regulator of M. Further, observe that the number of

finite places in S, is not greater than tn?. In order to apply Proposition 4 to the
Thue-Mahler equation

NM/L (Xo—vYo) = /ﬁ;Tlfl (g — al)z' in Xo,Yp € OSL’

we need the following upper bounds, which can be deduced from (3.2), (5.23) and
(5.26)

h(s7 Moz — a1)2')

< H exp{css (Rk, + hk 10g]|A P D Nk q(Ay)])},

, (5.28)
NSL (RT 71(@2 — al)z') < exp{C54 log |A Dyg NK/Q(AQ)|},
h(v) < exp{css (Rk,; + Rk, +10g|A Dk Nk /q(Ag)|) }-

By Lemma 3, we have
Rs,, < Bw hw(m/'ndlog* )™ (5.29)
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Apply Proposition 4 to the equation (5.27). Using Lemma 7, (5.28) and (5.29), we
obtain

h(ri/(en® ... 7)) < H exp{css T3}, i=1,2, (5.30)
where
Ts < pdn?m’ (m/ —1) (log* P)thm' (Rwm hM)2
(log" (Rm/m))? 1og| ADk N jq(Ay)-
We deduce from Lemma 7 and (5.26) that
h(z/(emgt...m")™) = h(z') < expfesy Ta},
and, since X — a1z = k1™ 77, weinfer from (5.30) that
h(X/(eri ... x)™) < H™ ™ exp{csg T3}
Thus, we get the upper bound
h(z) = h(X/2) < H™ ™ exp{ese T3}, (5.31)
Now, we have to bound the quantity Ry hwm ; for this, in view of Lemmaas, it is

sufficient to bound | Dy |. Recall that v € C isaroot of T™ — (r1/k2)™ ~* and
that M = L (v). In order to apply Lemma 9, which leadsto

m'—1
|Dm| < ceo | D™ NL/Q( 1T p) , (5.32)
Ol’dp(ﬁllﬁz)#o

observe that the prime ideals in O dividing x1x2 belong to one of the following
two groups

(@) thosedividingajaz O ;
(b) those dividing b} b, O .

Leti = 1,2 and recall that a; Ok, dividesa (b’ ¢ ()™ " Ok, . Denoting by F
the splitting field of f, it follows from

INE/o (9 () [N ™) < INg o (Res(d!, £:))
that

Nk /Q(9'(20)] < Nk /Q(Ay)].
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Consequently, we have

NL/Q( 11 P)

plr1k2
< INLjo(ab’) - Nk, /o(69)™ - Ni,/q(b5)" - Nk jo(Ag)™"|
<A™ (D [/2 D, |2 | D, |2 [Nk s (Ag) 2, (5.33)
and, by (5.32) and
|DKz| <|DK|R|NK/Q(Ag)|’ Z:1,2,
) ) (5.34)
|Dil < [Dx|™ [Nk /q(Ag)7",
we obtain

|DM| < C6l|DL|m, Anzm’ |DK|n2m’/2|DK1|nm’/2 |DK2|nm’/2

’

Nk jQ(Ag)[>"
< g | D [T 12 AW N 1o (D) [P (5.35)
Finaly, (5.31), (5.35) and Lemma 8 lead to the bound
h(z) < H™ T exp{ ce P°™" (log* P)*m' | Dy |n*m' /2
x|N o (Ag)[>™ A

x (log| A Dk Ni jo(Ag))) %™}, (5.36)

Case(ii). Let¢ beaprimitiven/-th root of unity and consider thefieldM 1 = L (),
which is of degree < m’ — 1 over L. Equation (5.24) now becomes

m/

fi’l"’*l(az —a1)z = H (1 — Ckm'z).
k=1

Let S1 bethe set of all extensionsto thefield M of the placesin S and Rg, be the
Sy-regulator of M ;. Observe that the number of finite placesin S7 is not greater
than m/n?t. Clearly, it follows from (5.23) that

N, (55" 5" Yoz — a1)2) < expf{ces 10g|A Dk N jq(Ag)]},
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and the same upper bound is also valid for Ng, (k2(11 — (Fum)), k = 1,...,m/

Thus, noticing that s2(m1 — (*ur) isan algebraic integer and applying Lemma 2,
we can write

ka(r1 — (Furs) = ey, (5.37)
where e, isan Sp-unitin M1 and b, € M satisfies

h(bk) < exp{cea (Rm, + hm, 10g" P +10g|A Dx Nk /q(Ay)]) }- (5.38)
Using (5.37), we get the following S1-unit equationsin M:

((¢" = Pbr)er + ((¢ = ¢Mba)ea + ((¢2 = )br)ex = O, (5:39)
fork = 3,...,m'. Theheight of thealgebraicnumbers¢® —¢*' 1 < k < k' < m/
isbounded by an absol ute constant depending only on m'. So, applying Proposition

3 to the equations (5.39) and using (5.38), there exist S1-unitsns, ..., n, iN My
suchthat, fork =3,...,m'andi € {1,2,k},

h(ei/nK) < exp{ces Ta}, Where
Ty = PnZd(m’_l) R51 (IOg* RSl)z (RMl + hMl IOg*P

+log|ADk NK/Q(AQ)D. (5.40)

It follows from (3.2), (5.40) and

k3" kM ag — aa) - m = b1 % bz% kl_[sb
that

h(z/(13na, - -1t )) < H exp{ces Ta}. (5.41)
Further, by eliminating ur, from the two equalities

ko(T1 4 Curp) = brer and  ko(71 + C2urs) = boey,
and using again (5.40), we infer that

h(r1/nk) < expleer Tu}, k=3,...,m/,

1-m/

whence, from X — a1z = k1 ™ 7%, we get
h(X/(n3na, - - 1)) < H? exp{ces Ta}. (5.42)
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In order to bound the quantity 7, we use the estimate Rs, < Rm, hm, (m'n?d
log* P)™' "t given by Lemma 3, the bound | Dy, | < | Dy |™ ~* (see[26], Equation
(28)) and (5.34). Hence, from Lemma 8, (5.40), (5.41) and (5.42), it easily follows
that

h(z) = h(X/z) < H® exp{ cgo P (log* P)™' "t | Dy |**™

x|N jo(Ag)|2m™
2dn2m/’
x (log|A Dk Nk /q(Ag)]) }- (5.43)

Now we dea with the case when (mq, mp) = 22, where [ > 0. Equation
(5.24) becomes
K3(ap — o)z = (/11571”1)4 — (Iﬁ?l/liz)s (/125?2)4. (5.44)
By Theorem 9.1 of Chapter VIIT of [10], there are three possible cases:

(iii) The polynomial 7% — (k1/k2)3 isirreducible over L.
(iv) Thereexistsu € L such that —4(k1/k2)° = u®.
(v) Thereexistsu € L suchthat (k1/k2)% = u?.

Case (iii). We exactly follow the argument of Case (i) and we get the same bound,
namely

h(z) < H™** exp{ cro P (log* Py’ | Dy [3°m' /2
XN () P A
2.,/
x (log|A Dic Ny jq(Ag))*" ™ }. (5.45)

Case (iv). Wework inthefield M, = L (i, /2). Equation (5.44) can be rewritten
as

4
k(o — o)z = H (11 — Fura/V2).

k=1

Noticing that v/2k (11 — i*ura//2), where 1 < i < 4, are algebraic integers, we
proceed asin the proof of Case (ii). By estimates (5.34) and | D, | < c71| Dy |*, we
get

h(z) < H3 exp{ c72 padn? (|og*P)4tn2+3 | Dk |4n2|NK/Q(Ag)|8n
n2
x (log |A Dk Ni jq(A,)]) ¥ %}, (5.46)
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Case (v). Letv € C suchthat v? = u, inthefield M3 = L (4, v), Equation (5.44)
becomes

4
H%(Oéz —ay)z = H (11— ivaz).
k=1

We have to estimate the discriminant of the field M 3. For this, observe that there
existssomew’ € L such that rpr3 = w2 and, if v/ € C satisfiesv'? = v, we have
L (v) = L(v"). Noticing that «" and x1x2 have exactly the same prime divisors, we
apply Lemma9in order to bound | Dy ()|, and, using (5.33), we get
2 gn? n?/2 n/2
|D(wny| < ez |DL|” A" [Dk|™ /| Dk, |
x| Dic, "% Nk o (A )7, (5.47)
whence, by (5.34),
D)) < €73 Dic |72 A [N g (A) ™
Thus, we obtain the estimate
|Duia| < e7a | D™ AP N s (A,
Repeating the same reasoning asin the proof of Case (ii), we get the bound
h(z) < H3 explers padn® (Iog*P)"'t”Z | Dk |7n2 |NK/Q(Ag)|l4n
n2
x A% (log|A Dk Ni jq(A,)[) ¥ 3. (5.48)

Comparing the estimates (5.36), (5.43), (5.45), (5.46) and (5.48) obtained in the
cases (i) to (v), we see that the bound

h(a;) _ h(X/z) < Hm’-i—l exp{ 76 Pdnzm’3 (log*P)tnzm’ |DK |5rnzm’/2
XN (L) " A
20/
x (log|A Dk Nk jo(Ag)))*™ ™} (5.49)
isaways valid, and the proof of Theorem 2 is complete. O

Preliminary to the proof of Theorem 3.

Inorder to prove Theorem 3, we need avariant of Theorem 2, inwhich [Nk /o (A,)|
doesnot appear. K eeping the same notations and the same arguments asin the proof
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of Theorem 2, we state a new estimate for h(z), using the parameters of the field
L = K(a1,a2).

Denote by d|_ the degree of L and by ¢, the number of finite placesin S, . We
do the same case by case analysis as in the proof of Theorem 2.

Cases (i) and (iii). Using the estimate Rs,, < Rwm hm(m'dL log*P)L ™ given
by Lemma 3, we proceed asin the proof of Theorem 2 to get, instead of (5.31),

h(z) < H™** exp{cz7 T3}, (5.50)
where
T} < P ' =12 (log* P)iL ™ (Ryhy )2
(log* (Rumhwm))? 10g| ADk N jq(Ag))-
Instead of (5.33), we use the estimate

NL/Q( 11 P)

Ol’dp (H]ﬁz)#o

<|NL/Q(ab'b'1["z)|'NL/Q< 11 p);
ord, (¢ (a1)g’ (a2)) #0

and, inview of | D, |- < | D | fori = 1,2, we get
NL/Q( 11 P)
Ordp(ﬁlﬁz)¢0
2 2 2
< A" D "2 D] TT (N o)™ (5.51)
plAyg

Finally, (5.32), (5.50), (5.51) and Lemma 8 lead to the bound
h(z) < H™+ exp{cve. Pl =2 (jog* p)iL ™

702

><|DL|2m’ |DK|m’n2/2 Am’n2 H (NK/Q(p))mn

P\Ag
((tog 10| TT Nejol9) ™"
P\Ag
+log |NK/Q(AQ)|>}. (5.52)
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Cases (i) and (iv). Using |Dy,| < |DL™ 1 and |Dy,| < c79|DL|*, we get in

both cases the estimate
h(z) < H® exp{c80 Pl (log* P)iL ™' +3| D ™

x((log A [DL|)2n ™43 +1og Nk jo(A,))) }.  (5.59)

Case (v). Instead of (5.47), we have

2 2 2
| Doyl < cen [DLPA™ | Dk ™2 1De] T (Nk o)™,
plAg
hence, after some computations,
h(z) < 1 exp{ces P (log* P)* | Dy [® | Di|"™ A%

< ]I (NK/Q(P))Z"Z((IogA D |)BéL+3
plAg

+10g Nk jo(A)]) }- (559)

Comparing the estimates (5.52), (5.53) and (5.54) obtained in the cases (i) to
(v), we see that the bound

h(z) < g™+t exp{c% pd m (m'—1)? (Iog*P)tL m/ |DL|2m’

12

X|l)K|777,’77,2/2Am’n2 H (NK/Q(p))mn

P|A9
2d|_ m'
x((logA|D|_| 11 NK/Q(P))
P|A9
+ IogINK/Q(Ag)I> } (5:55)
isawaysvalid.
Proof of Theorem3

We can suppose m1 > ma, Withmi > 3and my > 2 and we claim that «; € K.
Indeed, if f(X) hasaroot «; ¢ K for which m; > 3, then there exists j # 4 such
that «; isaconjugateof «; over K, hencewehavem,; = m; > 3andthehypothesis
of Theorem 2 is satisfied, in contradiction with our assumption. Similarly, if a;
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lies in an extension of degree > 3 over K, then there exist distinct < and j such
that « # 2,7 # 2 and both «; and «; are conjugate to a» over K, and we have
m; = mj = mp > 2. But this case is covered by Theorem 1 or Theorem 2, in
contradiction with our assumption. Hence we deduce [K (a2) : K] < 2 (@l thisis
dueto Voutier [26]).

Let (z,y) € Og x K beasolution of (2.1) and put L = K(«y). Keeping the
same notations and arguing as in the proofs of Theorems 1 and 2, we get the two
equations

X -z = k1"

(5.56)
X — a2z = ﬁ2§72ﬂ27
where
INL /o (r1)| < A% Dk [*™ [Nk o (Ag)[#™,
INL jo(k2)| < A?|Dk|?™2 [Nk jq(Ag)[*™2/2,  and (5.57)

h(r;) < exp{caa(RL +10g]|A Dk N /q(Ay)])} for i =1,2.
As before, we deduce from (5.56) the equation
(a1 — ap)z = k265" — k&)™, (5.58)

which can be viewed as a superelliptic equation with coefficientsin Oy .

More precisely, using Euclidean divisions as in the proof of Theorem 1 (see
after (5.9)), weinfer that there exist an S-unit n with =1 € Ok and 2’ € Ok such
that

2= Ny ()] < [ Dk | PR, and
(5.59)
h(z") < exp{css (Rk + hk l0g* P + log* | Dk |)}.

Together with (5.58), it yields
K2ty (En™2)™ = (k2€an™) ™ — K52 a1 — )7,
and, denoting by S| the set of al extensionsto the field L of the placesin S, we
remark that (k282n™,£11™2) € Os, x L isasolution to the superelliptic equation
X2 — k2 g — ap)? = Ky R Y, (5.60)

to which we may apply the estimate (5.55). The purpose of this estimate is to get
an upper bound with no Ak in the exponent of P. Indeed, if we apply Theorem 2
to (5.60), afactor Pk dueto |N, /o(Af,)| occur (see (5.62) and (5.63) after).

Let 3 be aroot of the polynomial fo(X) := X2 — k5?2 (o1 — az)7’ and ¢
be a primitive m-th root of unity. Herethefield L (resp. L' := L (3,¢)) playsthe
role of K (resp. L) occurringin (5.55).

https://doi.org/10.1023/A:1000130114331 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000130114331

SOLUTIONS OF SUPERELLIPTIC EQUATIONS 217

Fi rlst, observe that the primeidealsin O dividing the algebraic integer ™2 =
mp—

Ky (a2 — 1) 2’ belong to one of the following four groups

(8 thosedividing x2;

(b) thosedividing a1 — ap;
(c) those dividing b’;

(d) those belongingto S .

Arguing as in the proof of Theorem 2 and using the same notations, we get

N IT #) < INcolat o5 a0)| P2
ord, (8™2)£0

< A?|Dk| DL Y2 Ng s (B) 2 PP, (5.61)

By Lemma 9, (5.61), (5.34) and | Dy | < |Dk|[? [Nk o(4Ay)
discriminant | Dy (g | of thefield L (53)

, We can estimate the

1Dy (5] < cgs A%™ | Dy |2 [Nk jq(Ag)|2/% P22,
whence we get
ID,r| < cgr A2 | D |2 INK/Q(Ag)|7m5/2 padim}.

The polynomial fo(Xo) = Hﬁzo’l(Xo —(¢!p) issquarefree and its discriminant,
denoted by A 4, satisfies

INL/o(Ag)| < cas|NLjo(872) ™21 (5.62)

and, using (5.61), we have

IT (NLo() < ces J] (Nijo(p))

CIAYS p|B™2
< cg9 A2 | Dic| [ DL Y2 [Nk jq(Ag) 2 P,
Inview of (5.57) and (5.59), we infer that
INL/0(8™)] < INLjq(k2)|™ HINL/o(2")| INL jo(Ay)]
< exp{coo i 10g|A P Dx Nk /q(Ag)l}- (5.63)

Moreover, we have

h(8) < H exp{ca1 (RL + hk 10g" P + log|A Dk Nk jo(Ag)))},
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and

INLjo(k52 tk1)| < A?m2 | Dy [2mat2ma(mz=1)
(Ag)|Pratdmalme-1)/2,

X|NK/Q

Using the above estimates together with |Dy | < |Dk|? INk /Q(Ay)[, ma > 3 and
my > 2, we apply (5.55) to the equation (5.60) and we get after some calculation

h(/ﬁ;zfznml) < Hmtl exp{ng Ts}, (5.64)
where
TS — P2dm§mf+6dtm1m§ (log*P)Ztmlmg A':'rmlmg |DK |2m§m‘21
2
x| Nk jq(Ag) 2752 (log | A Dy Nicj(Ag)[) ™™,

Hence, using my < m/2 (otherwise, m1 = my = m and we could apply Theorem
2, in contradiction with our assumption), we get

Ts < Pd(m5+4tm3)/2 |DK |m6/8 |NK/Q(Ag)|m6/8

3

x A5™'/8 (log | A Dk Ni jo(A,))) ™™ . (5.65)

Finally, we infer from (5.56) and (5.59) that

X k5" (K2&an™)™m?
:E:—:—z-{—azzmz—_l—i-az,
z z Ko 2!

which, with (5.57), (5.59), (5.64), (5.65) and my < m/2, yields
h(z) < H™ exp{cgs PAH4m9/2 | Dy /8 Ny s (Ag) |78
x A5™'/8 (log| A Dk NK/Q(AQ)des}a

and the proof is complete. O
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