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Introduction. 1. This paper gives another construction of (0, p)-forms on a complex
analytic space and of the d operator. This construction is independent of the one in [1]
and apart from the general result of Section 1 of [1], it can be read independently. As in
[1], the hypotheses on S are the following: S has normal singularities, its singular locus
X is smooth, the exceptional divisor X in a desingularization of S is irreducible. But now,
we do not assume that S is a relatively compact open set of a complex space or is itself
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compact. The price to pay is that we have to impose on the forms an infinite number of
conditions on the exceptional divisor.

2. As aresult of our construction, the functions or forms that we construct define flat
modules over the sheaf of holomorphic functions. We could not obtain such results in
[1]. As a consequence, it seems that this resolution is more canonical than that of [1],
although it is also more complicated.

3. In Section 1, we define infinite jet of forms along the exceptional divisor. We also
prove that, in some sense, we can define infinite jet of forms along the singular locus X in
S. In Section 2, we define the complex of (0, p)-forms on S, together with the 9 operator
and we prove that it is a resolution of Os. However, the proof is more complicated than
in [1], because we cannot compare this resolution directly to the Dolbeault resolution of
the desingularization S. We have to construct a special resolution of Og which can be
compared to the resolution of Os. Sections 3 and 4 prove that these sheaves of forms on
S are flat Os-modules. This is rather technical and can be skipped at first: our method is
to reduce the situation to the global theorems of Malgrange about ideals of differentiable
functions ([5]).

1. Jets of forms along an irreducible exceptional divisor.
1.1 The formal neighborhood of an exceptional divisor.

a) Notation: We shall assume the properties of Section 2.1 of [1]. Namely, S is a
complex analytic space, X is its singular locus, which is supposed to be smooth and the
singularities of S are normal. We call : S — S a desingularizationof S and X = o~ (X)
the exceptional divisor lying above X and we assume that X is irreductible.

b) The formal neighborhood of X: Og is the sheaf of holomorphic functions on S and
we shall denote Oj the formal completion of Og along X, so that if I; is the ideal of
definition of X, we have

0; = lim proj Os/ I3

¢) The formal neighborhood of X in S: Let Os be the sheaf of holomorphic functions
onS, (/); the formal completion of Oy along X. It is known that for all i > 0, the natural
morphisms
(1-1) [R'p.(09)]" — R'p.(0y)
are isomorphisms (see [3] p. 21, without the “this is the relative form of the comparison
theorem of Grothendieck [2]).

1.2 Jets of C* functions along X. We shall adopt conventions different from [1] con-
cerning jets of functions and forms along X.

a) Coordinates along X: Let V be an open set in § with VN X nonempty. We can cover
V by a finite number of coordinates charts (V;);e; such that X N V; has a local equation
¢ = 0, and such that we have local coordinates ((”,z)) on V; where the z( define
holomorphic coordinates along X N V;. The change of coordinates in V; NV; is given by

(1-2) 2 = (")
CU) — C(i)wij(z(i)’c(i)).
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b) Jet of a function along X: Let f be a C> function in V. We can take at any point
m € XM V;, the complete Taylor expansion of f with respect to ¢ and we call it
00 3k+lf C(i)ké(i)(’,

1-3 Sy = / .
- v 0 k,[zzo ACORICDL | g kIO

Moreover, we define the purely holomorphic part j(°°) (f) of the total jet J}O‘”(f ) to be

akf C(i)k
1-4 () 2,
( ) ‘]X (f) Z ac(l)k ((i):() k'
In [1], we had defined the holomorphic jet of order r to be
o Ok
+(r) >
= 2 5 ACOk |y kI

and we had proved that j;’) (f) can be identified to a C* section of a vector bundle E}’) — X
and is thus intrinsically defined.

Then, ](°°)(f) is intrinsically defined on X as an element of lim, proj C*(V N X, E{X” )
where C*(X NV, E(i')) is the space of C* sections of E}’) over XNV.

In particular, the equality

) _ +(00) —1: 2 ()
(1-5) T = iV (f) = limproj /()
has an intrinsic meaning.

DEFINITION.  We shall say that the jet J°(f) is purely holomorphic along X if the
equation (1-5) holds. In this case we say that f has a purely holomorphic jet along X.

1.3 Jets of (0, p)-forms along X.
a) Splitting of (0, p)-form along X: Let m be a C>(0, p) form on V. In the coordinate
chart V;, we have a natural splitting of 7

(1-6) T = Z 7T(z) d7i 4 Z W(I?é dzOKA dé(i)
Mi=p |K|=p—1
in components containing d(” and components which do not contain d(”. Here the sets
J (resp. K) are multi-indices of length p (resp. p — 1).
b) Jet of 7 along X: In V;, we can take the formal Taylor expansion in ¢” and (¥ of
the components of the form 7

. [} ak+( 7,r(i) g(i)ké(i)(
1-7 J(~OO) (y — ji
(1-7) v () kjéo ORI |y kI LY
k+¢ (t) .
foony 2T qoor
X K¢ k(=0 aé(i)kaC(”Z =0 k! 2!

When we change coordinates according to formulas (1-2) between V; and V;, all these
jets get mixed up a priori. Nevertheless, we have the following lemma.
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LEMMA 1.1. The fact that all foo)(w(') ) = O for all multi-indices K of lengthp — 1,
does not depend on the coordinate chart V chosen Moreover, if this condition is fulfilled,
the fact that all the jets J(OO) (7r§’)) are equal to their purely holomorphic part j(oo)(vr,')) for
all multi-indices I of length p, does not depend on the coordinate chart V; chosen.

PROOF. When we do the coordinate change (1-2), we see that
-(1)1 — f({dZ(')J})
where /£ is a linear function and that
dZ% NdEO = ' ({dZ™} ) {dZ NP} 12 n)

where (' is a linear function. It is clear that if the 7rK : vanish to infinite order on X, the
W& vanish also to infinite order on X, because they are combinations of the W(I?E with
C™ coefficients. If this condition is fulfilled, the jet of the w}i) along X becomes linear
combinations of the jets of the w%) along X with coefficients which are antiholomorphic
of the variables z”. This means that if the J(Xm)(w(,? ) depend only on ¢? (and not on ¥),

the same happens with the J§?°°)(7r(L’)).

DEFINITION.  We shall say that a (0, p) form 7, C* in V has a purely holomorphic jet

on X, if
JOTD )y =0 forall |[K|=p—L,allie [
(1-8) J{o@( 554) (00) (.~ (i) = -
) =7 () forall Ll =p,alliel
NOTATIONS. Let 7 be a (0, p)-form on V, which has a purely holomorphic jet on X:
we define
(00) (00) (DY g5(i).J
(1-9) P =3 i@ ad invn v

[l=p
This is clearly an element in lim, proj C*(V N X, EY @c AY).
¢) Action of 55:

LEMMA 1.2. Let wbe a C*°(0,p)-form on V in S which has a purely holomorphic jet
in X. Then oz is a (0, p)-form on V which has also a purely holomorphic jet on X and
we have

(1-10) J2(@sm) = lim proj dg (' (m))

where j(x,')(ﬂ) is the usual jet of order r of 7 (defined as in formula (2-4) of [1]) and 5,(
denotes the usual d with respect to X acting on C* section of holomorphic vector bundles
over X.

PROOE.  We fix a chart V; and compute 557r using the splitting (1-6) of 7. Then the dC
part of Bsﬂ comes from a(—w(’) and the jets of these terms X are 0 because 7 has a purely
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holomorphic jet on X. The pure dz”-terms of 957 comes from i 2 70 only and the jet of
these terms on X are obviously purely holomorphic. We thus see that

<°°>(a ) _j<oo>( (Z ﬂu)d%:v))
[J|=p
Z 7r(t)d—(z)l))

= hm prou(’)( (

V=p
ro ¢k oknd .
= lim proj —a-( J dz““)
r 1;) k' ¢ |J|Z:!’ 8@“”‘ sz()
= lim proj é,z(jgp(w)).

1.4 The sheaf O3 @0, Aﬁ-?"”-

a) O; is a Og-module: We know that Og/ 1%, are all Og-modules (as sheaf of holo-
morphic sections of the bundle E(X’) (see [1] Section 2.3). Moreover the natural mappings
05/1)’2+l — Og /I, are morphisms of Og-modules, so that Os is an Og-module.

In particular, we can define the tensor product over Oy, Og ®oy, A(}.?"’ ),

b) Identification of Og ®o, A}?’” ) as jet of forms: Let us consider an element w €
(v, 05 o, Aﬁ?"’ ). Around any point m € X NV, we can say that

N
(1-11) w=23.6; ®o; ¢
j=1
where 6; are a finite number of elements of O and «; are in Ag’"’ ). We consider the
mapping
N
(1-12) w— > bj.q;
j=1
which has as image a (0, p) form with coefficient in Og and can be identified to
N

C(')k ®
Z Z 0 &j

where we have written .
9 {2 ¢ PG
= {RCh
LEMMA 1.3. The mapping (1-12) is injective.

PROOF. Because A‘;"’ ) is a direct sum of the A(f?’o), it is sufficient to prove the lemma
forp = 0.
The first fact we need is that the natural map

(1-13) 05/ ®oy, CF, — (05/13").C
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is injective, which is obvious because Og / I;{' is the sheaf of holomorphic sections of a
vector bundle over X. Moreover it is an isomorphism.
Let us now consider
Og = lim proj(Og/ 1)z

and in OS- ¢ let us denote by 05 -+ the submodule of the projective systems (f,)>0 €
lim, proj(Os / I)’Z)f such that f, = f;, for all r > rg for a certain ry. Then 05 j is dense
for I3-adic topology in OS  and from the injectivity of the mapping (1-13) we deduce
the injectivity of

(1-14) O3 ®o,, 3z — 05:C%

and in fact it is an isomorphism.
) From the injectivity of Os”,f — Ojj, we deduce the injectivity of Oij;’Z"j —
[O¢.C%.1" which is the space of formal series in ¢ with coefficient in C‘i‘; and because

SV X%
C%; is flat over Oy ;, we deduce also the injectivity of
X X

(1-15) 05 ®o,, Cyr = Os; @0y, 3

Now, we have the following diagram (where the dotted arrows will be constructed below)
and where ®0)2 is the completion of the tensor product.

The arrow (2) exists because of the universal property of the tensor product.

The arrow (D) exists because [O5C3]" is the completion of ()SC;O because OsR0, cy
is complete and because of the universal property of the completion [()S-C;o]/\.

The arrow (3) exists because (2) exists and because of the universal property of the
completions &o_ . These arrows (D) and (3) are then reciprocal isomorphisms, and ) is
injective. But (2) is the natural mapping (1-12) (for p = 0).

1.5 The sheaf/\g))‘?).
a) Definition: For ¥ € X — §, we define simply
0p _ AOp
Asks = Ase
For x € X, we call Ag”}u the space of germs of C*°(0, p)-forms 7 in a neighborhood V of
% which have a purely holomorphic jet on X such that
o o A 0,
(1-16) J}om(n) eT(VNX, 05 ®o, A} 2

This last definition has a meaning because of the injectivity of the mapping (1-12).
b) The d;:

https://doi.org/10.4153/CJM-1992-043-7 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1992-043-7

734 V. ANCONA AND B. GAVEAU

LEMMA 1.4. Let % € X, and an element ofA Then 5§7r is in A% _and moreover

Sxx SX %

if we constderj(xoo)(ﬂ) as an element in 05,; ®oy, A).(g then
(1-17) S @5m) = 9/ (m)

where 0y, is the d defined naturally as

A

s A 0, 1@0 0,p+1
(1-18) 9z 05 ®og, A" — O3 @o,, A

PROOF. By Lemma 1.2 we know that 3§7r has a purely holomorphic jet on
(°°)(857r) and we know how to compute it. More precisely, in our case

N
m = 0
=
where 0 € Os ., o € A%g, and then

(oo)(asﬂ) ZlHjé,-(aj.

But because of the injectivity of the mapping (1-12) (now for forms of type (0,p + 1)),
we see that up to an identification

<°°’(as7r) 29 ®0, 03

which is exactly what we want.

1.6 The sheaf cp*(ég) ®oy Ag"’.

a) Lp*(ég) is an Ox-module: This statement is obvious because 05 is an Og-module
(see Section 1.4). In particular, we can take the tensor product over Ox with AO”

b) Identification of cp*(OS) Roy, A x as jet of form along X: Take a point m € X, an
open neighborhood U of x in S and w € F(U ¢:(05) ®o, A ”) We have

N
w= )0 @oy &
=

where 6; are in (¢~ (U), Og) and oj are inT(UNX, Ag’(”’). We can consider the mapping

(1-19) w— (plpw
where
(1-20) (olp)'w= ZB(solx) ;.

j—

This is a (0, p) form with coefficient in Ox.
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THEOREM 1.1.  The mapping w — (|y)*w defined by (1-19) and (1-20) is injective.

¢) Proof of Theorem 1.1: We shall refer mainly to the proof and notations of the ana-
logue Theorem 2.2 given in [1] Section 2.4. We fix a point x € X, and X € ¢~ (x) such
that we can choose around X the coordinate (z - - - Zp—m+1, Wi, - - . , Wm) Where the w’s are
coordinates on X around x. We also denote by j: Og — O / I} the natural projection.
We have seen that for all r, the mappings

(1-21) (Og/l}“)x ®oy, Cxx— (05'/1}“)} ®oy, Cis ™ (05/1,’;”))?- C3e
are both injective (see Lemma 2.3 of [1]) and we can identify

(1-22) (OS‘/I;(H))? oy, C)O(O,x = (05/1;?+l)f' CK’O.X'

We have

LEMMA 1.4. The mapping
(1-23) 05 ®oy, €% — 05 CF;
is injective.
End of proof of Theorem 1.1: The mapping,
(09 — 05, (¥€¢7'(0)

is injective (Zariski’s main theorem on normal singularities). Because Cy’, is a flat Oy .-
module
90*(05))( ®0X,X C?(o_x - OS,E ®0va C)O((jJr

is injective. The composition with the injection mapping of Lemma 1.4 gives the result.

d) Proof of Lemma 1.4: This is a slight modification of the proof of Lemma 1.3. We
introduce as in Lemma 1.3, the module Ogj. Because of the injectivity of (1-21) and the
identification (1-22), we have an identification

(1-24) OS',Z @0y, C)o(o,x = OS,x CS)(O.X'

Now
Os; @0y, C3r ™~ 05, €7, — 05 (0:0cCY) — O30 cCFT"

— -
f @/’,”’/’ @ ’,::::”/
OS,)E ®0x,( Cg’(o.x - ::::://
@
f ="
05,£®X.XC§)(OJ

The horizontal arrows are, apart from the identification (1-24), a completion of
O, Q¢ C° (recall that the coordinates of X are the w’s) and then a completion with
respect to the I3-adic topology. The vertical arrows are first an injective mapping

05 ®o,, C¥ — 05 Qo,, CY
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obtained by tensorisation of the injection OS — 05 by the flat Ox-module C3° and sec-
ondly the completion ®o, . Then the diagonal dotted arrows are constructed exactly as
in Lemma 1.3 using universal properties of the completion and of the tensor product.
From this the natural arrow Q) is injective. Finally we know that

0.8cCy — CP&cCy ~ €3,
which achieves the proof.
2. Differential forms and resolution of S.
2.1 A fine resolution of S.

THEOREM 2.1.  The following complex is a fine resolution of Os.

0s s
. ~ 0,0 Y5 40,1 . 0p 95 A0,p+1
R(Og):0 — Og — AZY = AQ}p — -+ — Agh = AR —

PROOF. The sheaves A2§z have been defined in Section 1.5. It is easy to see that they
are fine sheaves (using special partitions of unity as in Section 3.1, Lemma 3.2 of [1]).
Moreover outside X, A2§ is Ag”’ , and the local exactness follows from the Dolbeault
resolution.

Let us now choose a point ¥ € X and 7 € A(Sf")’.u on a small open neighborhood V of ¥

in § which is dg-closed. By Dolbeault theorem, we know that
(2-1 T = s

on a smaller V, where o € A(Sf‘;’ . Moreover we know that j}‘”)(w) is in Og + Qo Ag’:
and by Lemma 1.4, this is dg-closed. Now, because A?z"’ is a flat Oz-module, we have a
Dolbeault resolution of Og 5

0—*O§—‘é§ ®0)Z A(}(‘O—*O§®Oi A%l —
Rp(O;)
R 9 A
s 05 ®o, AY = O5 ®g, AP -
so that we can solve
€ 05, ®o, AV
(2-2) { /;oo) $x S0k Dz )
Jg (M) = dgp
Let us now assume p > 2.
-1

It remains to modify o so that o € Ag";., _ . To do this, we shall use the splitting (1-6)
for 7 and . With the same notation as in Sections 1.2 and 1.3, we write

(2-3) =T+ T

o= ozt o
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where 7; (resp. ;) is the part of 7 (resp. &) which does not contain any d¢ and 7z (resp.
O‘E) is the part 7 (resp. ) which is divisible by d{. We have from (2-1) and (2-3)
I = I dx(a) = 05U o)
so that in the Taylor expansion of J;ZO") o the coefficients ag."’z )
{ > 1 are éf-closed, and as a consequence they are 3X-exact, so thatif p > 2

of any monomial ¢*¢ with

N )
Now let us choose a C* form 3; such that .];200)(55) = Y0051 BHCKCE and let us change

ain @ = a — 953;. Then

™= 85&’
@9 {J;;(ag—) =

From the first equation of (2-4), because of the choice of ™ € Agfz, we have that
0= é,yj;")(ag) + ij(.o")(a;)A dc.
a X
The last term of this equation is 0 because of the second line of (2-4), so that
0 = 0/ ().

This means that any coefficient of the Taylor expansion in ¢*C¢ of aé— is 33 closed, so

it is dg-exact, and by the same trick as in (2-4), we arrive at a form o such that

=9z’
(2:5) {rns o
o’ is has a purely holomorphic jet on X
We compare (2-5) to (2-2) by taking j;;’") of both sides of equation (2-5). Then
Sm) = 0gig (@)
so that dg(p — j(a)) = 0. This means that in the formal Taylor expansion in ¢* of
P —j}”)(a”) the coefficient Y, is 3)2 closed and so it is éi-exact.

Y = 5;20k

Let us now extend x> (*oy in a C* form & around %, with a purely holomorphic jet
j}“’)(c“r) = Y4>0C*ox. Then define

We have by construction,

J$2056) = p— g @")
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so that finally

. A 0p—
i@ = p € O @o, AF

9z = .
This means that o’ is in A2
S.X X
Forp =1, aisin Agfx} and
Jda -
T = ——= d .
¢ ac C

But 7 vanishes to infinite order on ¢ = 0, so that o has a purely holomorphic jet along
X. We have from (2-1)

j§z°°)(7f) = é)zj}oo)(a) = dgp.
This means that all the coefficients v, of ¢* in the Taylor expansion of p — j(;"’(a) are
holomorphic along X, so that p — j”(a) is in O, and so

jg?oo)(a) =p+ Ogj € Ogj Xoy, Agg

. 200
and « as in ASXX'

2.2 Differential forms on S and the 9 operator.

a) Definition of the sheaves A(;f If x is a pointin S — X, we define Ag’: to be the germs
of C® forms of type (0, p) at x on S (or what is the same, at ¢ ~'(x) on S).

Now let x be a point in X, U be an open neighborhood of x in S. We shall say that

™€ T(U,A)

if 7 is a C* form of type (0,p) on ¢~ !'(U) C § which has a purely holomorphic jet on
X, such that

(2-6) J&(m € T(UNX, ¢.(03) @o, AY).

This definition has a meaning because of Theorem 1.1 of Section 1.6 which identify
©+(03) ®o, AY to purely holomorphic jets on X through the mapping (| ¢)*.
We have exactly as in [1] Lemma 3.1.

LEMMA 2.1. The sheaves Ag"’ are fine sheaves
b) The ds operator.

LEMMA 2.2.  J; preserves AY” and we have a commutative diagram

3
A(S).p s A0+

2-7) | Lo

X ~ X
[&0dx

2.(05) ®o, A = 0.(05) ®o, AY"
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PROOF.  This is exactly the same proof as in Lemma 3.3 of [1] provided we use
Lemma 1.2 and the injectivity of (¢|5)*.

NOTATION.  We shall denote simply
ds: AyY — AP
2.3 Local exactness of the complex (Ag‘” ,0s).

THEOREM 2.2. The following complex is a fine resolution of Os.

R(OS):0—+OS—>A2'0$A‘S” —»-~—>Ag‘” ﬁ>Ag”’+' — e

PROOF.  Exactness at step O: This results from the fact that the singularity is normal
as in [1] Section 3.2.

Exactness at step p: The proof is basically the same as the one in [1] Section 3.2 except
for a major modification due to the use of the resolution R(Os) of Theorem 2.1 above
instead of the Dolbeault resolution of Os. First of all, we have a resolution of <p*05~ by
tensoring this sheaf with the flat Ox-modules A?("’

R(Os): O — Os Roy Ag)(‘o — 05 oy Ag)(’l —_, e — 05 ®oy Ag)(‘p — Os Koy Af\),‘p"'l —

where the morphism is / ® dx which we simply denote dy. (We have used (1-1) to
identify ¢.(Os) with Os.

Let us start with m € T'(U, Ag"’ ) which is dg-closed. We know from Lemma 2.2 that
j}m)(w) is dy-closed in Og ®oy A%” , and because U M X can be taken a Stein open set,

(2-8) I () = 0y

where W™ is in O5 ®o, A())(""l onUNX.

Now, we can also considerj}“)(w) to be an element of F(ap" ), 05 ®oy A%”), and
so it is also dg-exact in ¢! (U) (by considering that w* € T'(p~ (1), O5 ®o, Ag.,‘p*'))
which we rewrite

(2-9) {j}"‘”(ﬂ = 0z

) —1 A 0op—1Y\ *
W™ € T(p~'(U), 05 @o, AF™")
(Here we have used the various identifications which are possible because of Lemma 1.3
and Theorem 1.1). But because of the resolution R(Og), this means that the cohomology
class [ (m)] in B (=" (U), O) is 0.
Now by definition, we have a natural morphism of resolutions.

{00)

(2-10) R*(0;) - R°(O5)
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which is compatible with j Jx 000 :05 — Os We also know that this morphism of sheaves
induces an isomorphism in cohomologles in o~ }(U)

H (07! (U), 05) > H" (07! (U).05) (0= 1)

so that by comparison of cohomologies, (2-10) induces an isomorphism between the
Dolbeault cohomologies computed with the resolutions R*(Oz) and R'(Os)

In particular, our 7 (which is in A % on 0~ 1(U))is O in cohomology of Ozon g L),
and so we can solve

7(‘:8_5(1
-1 {aer( -, AO” -

1°) Case p = 1: From (2-11) and (2-8), we deduce
(2-12) I (/57(m) — ™) =0
SO thatjg.(o")(a) =™ 4 F(<p“(U), OS) and is thus in F(U, Os @0, A%") because W™
is in this space. This means that o is in ['(U, Ag‘o) by definition.

2°) Case p > 1: We still have equation (2-12), so thatj}m)(a) — W is a dg-closed
element of '~ (U), O5 ®o, AYP™") (because of (2-11), ais in (o~ (U), AO” " so
thatits jetalong X isin Og ®o A%p ~!). In particular, j;’o)(a)—w(“) defines a cohomology
class in H”“((p“(U), Og) because of the resolution R*(Os).

Again by the comparison of cohomologies, this class of cohomology comes from an
element 3 in F( L), AOP 1) which is 3§-closed: this means that

S = = jEB) + g™

where 1> is in F(cp”'(U), Os ®o, A%”'z). Let ¢ be a C* form in ¢ ' (U) such that v
has a purely holomorphic jet along X and
J$W) = .
Let us also define
o =a—f3—ds.
Because 5§ﬁ = 0, we have
050 = dzax = .

Moreover, we have that o’ has a purely holomorphic jet along X, and
JPUa) = > € TXNU, 05 @0, AR ™)
so that o' is in T(U, Ag"’ ~!) by definition.

2.4 Comparison of these results with the results of [1]. In [1], we have defined other
kinds of C* forms and functions on § with conditions on jets of finite order on X. To
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prove the local exactness of the ds, we had to use a vanishing theorem, namely that there
exists r with

H(o™'(U).I;) =0 (p>1).

The problem is the following: if S is a compact analytic space, we can choose the same
r everywhere on X and everything is correct. If S is not compact, we do not know if we
can choose the same r all over X, so that our previous definition is not sufficient. Here we
do not assume any theorem of vanishing of cohomology, because we are working with
the formal completion along X or X.

Moreover, with this new definition, we shall obtain flat Og , modules as we shall see in
the next two sections. We do not know how to prove flatness properties for the definitions
of forms in [1].

3. Flatness of the germs of C* functions on S.
3.1 Some definitions and results concerning flat modules.

1. Let A be acommutative ring with unity, £ an A-module, 7’ =(f1,...,fn) nelements
in A. We denote by R(T, E) the A-module of relations in E among the f;. An element of
R(T,E) is a sequence & = (ey,...,e,) such that

fe@=>fe=0.
i=1

2. If E is an A-module, the following definitions of flatness are equivalent:
(i) for all exact sequences M’ — M — M" of A-modules, the sequence

E®AMI-—‘E®AM—>E®AM”

is exact.
(i1) for any ideal I C A, the natural mapping I ®4 E — E is injective.
(iii) forany f = (fi,....f,) in A",

R(f,E)=R(f,A).E.

3.If O — M’ — M — M"” — O is a short exact sequence of A-modules, then if M
and M" are flat, M’ is flat, if M’ and M" are flat, M is flat.

4.1f A is a local noetherian ring, then its completion A is faithfully flat over A. (An
A-module E is said to be faithfully flat if it is flat and if E ®4 M = O implies M = O for
any A-module M).

5.1f A C B C C are three commutative rings with unity, so that

(i) Cis faithfully flat over A

(ii) for any ideal / C A, (IC)NB = IB
then B is faithfully flat over A.

6. Let us now consider the space C" and the space of germs of holomorphic functions
0, at 0, the space of germs of real-analytic functions at O, 4,,, the space of germs of C™
functions at 0, C° and finally the space of formal series at 0, F,, so that

0,C A, CCy CF,.
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F, is faithfully flat over 4, (completion of a local noetherian ring) and from Mal-
grange [5], we know that C° is also faithfully flat over 4,,.

7. Moreover it is possible to prove that 4, is faithfully flat over O, and thus C;,° and
F, are faithfully flat over O,,.

8. From now on, we shall freely use the preceding results.

3.2 Formal functions on S. Let M be a smooth complex manifold, x a point in M. We
shall denote by Fys, the space of formal Taylor series at x on M. If d = dimM, this is
clearly isomorphic to F.,. We also know that Fyy, is a faithfully flat Oy ,-module.

Now, let S be an analytic space satisfying the hypothesis of Section 1.1, X its singular
locus, ¢: S — S be a desingularization of S, X = »~'(X) the exceptional divisor which
is assumed to be irreducible. If x is a point of S — X, we can define Fs as above because
S is a smooth complex manifold at x. Now, let x be a point in X. We define

(3-1) Fsx = +(0g)x oy, Ca-
This definition makes sense, because, we know that ga*(és)x is an Oy ,-module.
We want to prove.
LEMMA 3.1. Forx € X, Fs, is a faithfully flat Osx-module.
This lemma is a direct consequence of the following abstract result.

LEMMA 3.2. Let A be a ring which is a C-module, B a flat C-module. Then A ®¢ B
is a flat A-module. Moreover if B is faithfully flat over C, then A Q¢ B is also faithfully
flat over A.

PROOF OF LEMMA 3.2. Let O — M — N be A-modules. We can always write

M=MQPsARcC
N=N®ysA®C

considered as C-modules. We always have an injection, and because B is flat over C, we
can tensorize by B over C while keeping injectivity

O—- MR A®cC)®cB—(N®sARcC) JcB.

But(M ®4 A ®¢c C) ®c B~ M ®4 (A ®c B) and the same with N, so that we still
have an injection

O—M®p(ARcB)— N ®s (A QcB)

which proves that A ®¢ B is flat over A.

Now let us assume that M is an A-module such that M ®,4 (A ®¢ B) = O and
let us again consider M as a C-module writing M >~ M ®4 A ®c C. We know that
M @4 A R C) @ B>2M ®4 (A @ B) = 0. But if B is faithfully C-flat then
M &4 A ®c C= 0Osothat Mis O.
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PROOF OF LEMMA 3.1. We take C = Ox,, A = Os,, B = C%,. Then we know
that Fy, is faithfully flat over Ox, because X is smooth. Moreover by Grothendieck-
Hartshorne proper morphism theorem, we have

Osx ~ ¢4(05)s
so that Og. is a Ox,-moduel and Lemma 2 gives the result of Lemma 1.

LEMMA 3.3.  Fjs, is a faithfully flat Os .-module.

PROOEF. Os  1s a faithfully flat Os,-module (completion of a local noetherian ring),
so that Fy, is flat over Og, by Lemma 1 and the transitivity of flatness. To prove that Fj ,
is faithfully flat over Og,, we have to see that for any ideal J of Os

].FSJDOSJ =7

Now
]'FS,X ﬂos,r = .7 (és,x ®0X,x C‘;OJ)HOSJ.

But we have seen in Section 1, that
OSJ ®0X,x C;(o,t ~ OSJC)O(?)(’

so that
9. Fsy > J05,C, ~ 9. O5.:(Osx ®0y, CF)

and
9. Fs.NOs, = J.05.Fs.NOs,

and this is 7. Os « because Fi is faithfully flat over Os + (Lemma 1). Then
].stﬂos,,( = j.OSJHOS,x =9

because Os,, is faithfully over Os.,.

3.3 Germs of formal functions on S. Let V be a neighborhood of x in S, and let us define

Fg(V) =[] Fsx

x€V
where Fy, is defined in Section 3.2. Let us also define
Fs, = limFg(V)

for the set of neighborhoods V of x in S.
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LEMMA 3.4, FV‘SVY is a faithfully flat O x-module.
PROOF. Let £, = (fix. .. fux) Withfix € Osy and @ € R(f . ).

Because the sheaf Os is coherent by Oka theorem, there exist ?(i), i=1---/, gener-

— (i)

ating R(Tx, Os ) and defined on a small neighborhood V of x such that their germs g’y
generate R(Ty, Os,) for all y in V. If we restrict V, we can assume that @’ give relations
among the T all over V. In particular for all y € V, the germs &', € R(?y,Fs,y) -
R(?y, Osy)Fs, because Fg, is flat over Og,y, so that

i)
?y = Z(Z ?;l hi,k,y)gk,y
ki
where hjy € Os,y, Ok € Fs, and then

7y = Z ?(yi)(zk: hiskwgksy‘)'

1

The set of (S hixy0ky)yev define an element of Fs x and we have proved that
R(T " Fsz) CR(f,Osx) @ Fs,

which is the flatness result.

Let us prove now that F, is faithfully flat over Os,. Let M be an Os_,-module such
that

M®05J FS,X =0.
Now, we have a surjective mapping
st - FS,x —0

so that
M ®oy, Fsx— M Qo,, Fsx— 0

and so M ®oq,, Fsx = 0. But Fs, is faithfully flat over Os,, so that M = 0.
3.4 Flatness of AY,. By the definition of A, we see that we have injective mappings
(3-2) Osx — Ag, = Fix
for all x € S. To define the last mapping, we take a neighborhood V of x in S and a
feET(V,AD.Ify € V— X we can define jy(f) € Fy, in a natural way because f is C).
If y € VN X, we define j(f) as follows: f is a C* function over ¢ ~'(V) such that j;(f)
can be identified to an element

J#f) €T(VNX, ¢.(05) ®o, CY)

and we take for j,(f) the germ at y of j3(f)

(3-3) ) = (jz()), € Fsy-
Then we associate tof € I'(V, A(S)) the collection ( Jy(f ))vev € I'(V, Fs) and this is clearly
injective. '
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THEOREM 3.5.  AY, is a faithfully flat Og x-module.

PROOF. Because of the result recalled in Section 3.1, and because Fs . 18 faithfully
flat over Os,, it is sufficient to prove the following lemma.

LEMMA 3.6. If J is an ideal of Os,, then

jFSyxmAg,x = ]'Ag,x'

PROOF OF LEMMA 3.6. Let us start witha g € J.Fs N A, for x € X (the case
where x € § — X is proved by Malgrange). By definition g is in I"(ga“(U), C‘S"’) for a
small neighborhood U of x in S. Let T = (fi,...,fs) be generators of J over U.

1ST STEP: DECOMPOSITION OF g IN ¢! (U). Atany pointj € ¢~ !(U), the jet of g
at y, j5(g) is in ]y-f' %5 where

Fs(V) = I1 Fs;
yev

%= (i o 95, Ga o 9)- Oy

By the global Malgrange theorem, we see that
n

(3-4) g = fui
i=1

where u; € T(p~!(U), CT).
Now, taking the jet along X, we have

n
(3-5) Jx(8) = 2 ig(flig(u)
i=
and we know also that up to identification

(3-6) (@) € 3. 0409 ®o,, CT = J. 02(0g). CF,.

2ND STEP: SUPPRESSION OF THE ANTIHOLOMORPHIC PART OF THE jz(u;). We can
always write locally in §

3-7) Jiu) = jP ) + oy

where jg')(ui) is the holomorphic part of the jet u; along X (i.e. the part of the Taylor series
in ¢) and ¢ = 0 is a local equation of X in S and ¥; is a formal series in ¢, . By taking a
partition of unity on ¢ ~!(U), we can always find C* functions v; on ©~(U) such that
the complete jet jz(v;) along X is jy(v;) = V.

Now let us define

n
w=> f.
i=1
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Then j;(f) = Z,’-’le)-((ﬂ)éﬁi = 0 because of (3-5), (3-6) and (3-7), so that w is in the
ideal I® (X, ! (U)) of the C* functions on ¢~ !(U) which are flat at infinite order in X.
Moreover w is also in J;, F Sy for all § € o~ !(U), so that by Malgrange theorem

we I (X, ¢~ '(U))

or

w=>3 fivi
i=1
where v/ € I°°()?, <p“(U)). Then
u !/
g = filui —vi+v))
i=1

with
T = vi +V)) = jglui — vi) + jgvi = j(;:')(ui)-

This means that we can write g as a linear combination of type (3-4)

(3-8) g = fiui
i=1
with
(3-9) Jxw) = jPw) € (XN o~ '(U), 05 @0, CF).

3RD STEP: CORRECTION OF THE u; SO THAT THEY BELONG TO Ag X We want to
correct further the ; in equation (3-8), so that they belong to AY -
By (3-6), we know that j(g) € ]w*(OS)XC}‘;, so that

Jz(®) = 3 jz(f)- Wi

where w; € w*(ég)xcg’& (we identify w; with its lift through ¢ to S).
Let us now find w; € C*(~'(U)) with jg(w;) = ;. Then

j;((Zf;w, — Zﬁ‘u,‘) = O

and ¥ fi(w; — u;) is in the ideal I°(X, ¢ ~'(U)). It is also in JF7, for all £ € ¢~ (U), so
that by Malgrange’s theorem, it is in 7. 1°(X, a,o"(U))

2 fiwi —ui) =3 fipi
where p; € I°(X, ¢~'(U)). Then

(3-10) 8= _fiwi—pi)

and jz(w; — pi) = jg(wi) = W; € p * (OS)XC?& which proves Lemma 3.6.
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4. Flatness of the germs of C* forms on S.
4.1 C* forms in S vanishing at infinite order on X.

a) Definition: Let us denote by I(S?;” ) (for x € X) the subspace of Af&” ) formed by
the C*°(0, p)-forms 7 on p~!(U) (for some open neighborhood U of x in S) such that
j}oo)(w) = 0 on a smaller ¢~ !(U’) x € U’ C U. This space is exactly the space of
C>(0, p)-forms on some o~ !(U) such that their coefficients (in any coordinate system)

vanish to order oo on X on a neighborhood of ¢ ~!(x) in §. It is obviously an O ,-module.

b) Short exact sequence associated to j};’o).

LEMMA 4.1. Forany x € X, we have a short exact sequence of Os x-modules

{00)

5 A
@-1) 0— 97 = AGY 5 ¢.(0g) @0y, AY, — 0.
(Here ¢.(05); R0y, A?('ﬂ is considered as an Os ;-module because p,(03); = Os.).

PROOF. We have, as usual identified np*(és)x ®oy Ag”’ to jets of forms along X. It

is clear that j}oo) is surjective. It is then clear that the kernel of Ag:f is I(S(j;p ),

¢) Flatness of 1(5(3;(0).
LEMMA 4.2. I{S(l’(o) is a flat Og x-module.

PROOF. We know that A(S)’f: is a flat Og,-module (Theorem 3.5 of Section 3.4). We
also know that Fs is a flat Os,-module (Lemma 3.3 of Section 3.2). From the general
results of Section 3.1 and the short exact sequence (4-1), we know that I(S?;O) is a flat
Os x-module.

4.2 Flatness of formal forms on S.

LEMMA 4.3. The Os-module of formal (0, p)-forms on S at x
FOP = ¢.(0g)k ®oy, AY,
is faithfully flat over Os .

PROOF. A}, is a direct sum of some copies of Ay, because X is smooth, so FQP
is a direct sum of some copies of Fs, which is faithfully flat over Os, (Lemma 3.3 of
Section 3.2).

4.3 Flatness ang'f:.
THEOREM 4.4.  AY” is a flat Os-module for all p > 0.

PROOF OF THE THEOREM. ~ We already know the result for p = 0. Because of the short
exact sequence (4-1) of Lemma 4.1, Lemma 4.3 and the general results of Section 3.1, it
is sufficient to prove the following lemma:
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LEMMA 4.5. Ig;’ is a flat Os .-module.

PROOF OF LEMMA 4.5. Let T = (f1,...,fn) in Os, so that the f; are holomorphic
functions on some neighborhood ¢ Y(U)in S and let

(4-2) = € R(F, 1P

S Sx

Let us cover o~ '(U") (for some U’ C U, x € U, so that 7= vanishes at order co on
XN ~(U")) by coordinates charts (V;);c; and call z” a coordinate system in V;. Let us
also take a partition of unity (p;)ic; of ¢~ ! (U") subordinated to (V;);c;. Then
4-3) ™= ZP;‘T

iel
and it is clear tht p; 7 is an N-tuple of C*®-forms of type (0, p) in ¢~ '(U’), with compact
support in V; vanishing at order oo on X N ¢~ !(U’) so that they are in I(S(f;” ). Moreover,

we have
(4-4) pi ™ € R(FLIED).
We shall prove that
-
4-5) piT €R(S,0s5.). 137,

From (4-3), we will then have
—
7T €R(f,0s.). 197

which is our result.
Now, we are reduced to the case where 7 has a compact support in a coordinate chart
Vi with coordinates z, so that

(4-6) =3 TxdX
[Kl=p

and 7'k are global C* functions on ¢ ~!(U’) vanishing to order oo on XM ¢~ (U’) and
—
Tk € RO L)

because the dzX are linearly independent. But I(S(f;co) is Og,-flat by Lemma 4.2. Call

@7 k= 0,0
=1
where @) are in I{"".

Now let x be a C* function which is 1 on the support of 7 and with compact support
in the coordinates chart V; where 7 has its support. Then

— —
Tk =XTK
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and so
,

_7?1( = Z 7J(XJK)

j=1
Now, X@’k are C* functions with support in V;, vanishing at infinite order on X, so that

d =3 (x)dF

|K|=p

is a globally defined C*°(0,p) form on »~!(U”) (for some (U” C U) with compact
support in V; and so is in I(S(;” ), and

Sx

= Z _934:)1 € R(T, OS,x) 0,p)'
=1
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