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Introduction. 1. This paper gives another construction of (0, /?)-forms on a complex 
analytic space and of the 3 operator. This construction is independent of the one in [1] 
and apart from the general result of Section 1 of [1], it can be read independently. As in 
[1], the hypotheses on S are the following: S has normal singularities, its singular locus 
X is smooth, the exceptional divisor X in a desingularization of S is irreducible. But now, 
we do not assume that S is a relatively compact open set of a complex space or is itself 
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DIFFERENTIAL FORMS AND RESOLUTIONS 729 

compact. The price to pay is that we have to impose on the forms an infinite number of 
conditions on the exceptional divisor. 

2. As a result of our construction, the functions or forms that we construct define flat 
modules over the sheaf of holomorphic functions. We could not obtain such results in 
[1]. As a consequence, it seems that this resolution is more canonical than that of [1], 
although it is also more complicated. 

3. In Section 1, we define infinite jet of forms along the exceptional divisor. We also 
prove that, in some sense, we can define infinite jet of forms along the singular locus X in 
S. In Section 2, we define the complex of (0,/?)-forms on Sy together with the 5 operator 
and we prove that it is a resolution of Os- However, the proof is more complicated than 
in [1], because we cannot compare this resolution directly to the Dolbeault resolution of 
the desingularization 5. We have to construct a special resolution of 0$ which can be 
compared to the resolution of Os. Sections 3 and 4 prove that these sheaves of forms on 
S are flat O^-modules. This is rather technical and can be skipped at first: our method is 
to reduce the situation to the global theorems of Malgrange about ideals of differentiable 
functions ([5]). 

1. Jets of forms along an irreducible exceptional divisor. 
1.1 The formal neighborhood of an exceptional divisor 

a) Notation: We shall assume the properties of Section 2.1 of [1]. Namely, S is a 
complex analytic space, X is its singular locus, which is supposed to be smooth and the 
singularities of S are normal. We call ip: S —> S a desingularization of S and X — (f~l(X) 
the exceptional divisor lying above X and we assume that X is irréductible. 

b) The formal neighborhood of X: 0$ is the sheaf of holomorphic functions on S and 
we shall denote 0$ the formal completion of 0§ along X, so that if /^ is the ideal of 
definition of X, we have 

0$ — limproj 0$jl\. 

c) The formal neighborhood of X in S: Let Os be the sheaf of holomorphic functions 
on 5, Os the formal completion of Os along X. It is known that for all i > 0, the natural 
morphisms 

(1-D [/?W^)]A^#V*(<^) 
are isomorphisms (see [3] p. 21, without the "this is the relative form of the comparison 
theorem of Grothendieck [2]). 

1.2 Jets of C°° functions along X. We shall adopt conventions different from [1] con­
cerning jets of functions and forms along X. 

a) Coordinates along X: Let V be an open set in S with VHX nonempty. We can cover 
y by a finite number of coordinates charts ( V/)/G/ such that X D V, has a local equation 
£(,) = 0, and such that we have local coordinates (£(,),zw) on Vt where the z(l) define 
holomorphic coordinates along XHVi. The change of coordinates in Vt Pi V) is given by 

(1-2) #> = ifij(z{i)) 
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730 V. ANCONA AND B. GAVEAU 

b) Jet of a function along X: L e t / be a C°° function in V. We can take at any point 

m E X D V / , the complete Taylor expansion off with respect to ( w and we call it 

(1-3) 
x ^ o d ^ W C(/)=o A:! €! 

Moreover, we define the purely holomorphic p a r t j ^ 0 ^ ) of the total jet f^°}(f) to be 

(1-4) 
<0)= 0 

£<0* 

IT' 
In [1], we had defined the holomorphic jet of order r to be 

,<:>(f) =Y-^L 
x to dCi)k 

C w 

C(,)=o it! 

and we had proved tha t^ i / ) can be identified to a C°° section of a vector bundle £ ^ —> X 
and is thus intrinsically defined. 

Then,/~°^(f) is intrinsically defined on X as an element of limr p ro jC^(VHX,£p 

where C°°(X D V, ££>) is the space of C°° sections of Efg over X H V. 
In particular, the equality 

(1-5) /^(f) = 4°°V) = lim projy^lf) 

has an intrinsic meaning. 

DEFINITION. We shall say that the jet /^(f) is purely holomorphic along X if the 

equation (1-5) holds. In this case we say that/ has a purely holomorphic jet along X. 

1.3 Jets of(0,p)-forms along X. 
a) Splitting of (0,/?)-form along X: Let TT be a C°°(0,/?) form on V. In the coordinate 

chart Vi, we have a natural splitting of ir 

(1-6) 7T= X)7Tf rff(,V+ £ Ad^Ad?1'-
\J\=p \K\=p-\ 'C 

in components containing d£(l) and components which do not contain d^K Here the sets 

J (resp. K) are multi-indices of length/? (resp. p — 1). 

b) Jet of 7T.along X: In V,, we can take the formal Taylor expansion in C,il) and £(,) of 

the components of the form ix 

(1-7) 

4°°v;v= E 

m 

WKM Hl)kM 

C(,,=o 
g*+M') 

K£ 

k,t=0 ac(/)^c 
:(i)« 

&!£! 

<i)kXi)l AUVI 

C«>=o £!£! 

When we change coordinates according to formulas (1-2) between Vt and V7, all these 

jets get mixed up a priori. Nevertheless, we have the following lemma. 
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DIFFERENTIAL FORMS AND RESOLUTIONS 731 

LEMMA 1.1. The fact that all A°°:\it®'-) = 0 for all multi-indices K oflength p - 1, 
X K,Ç 

does not depend on the coordinate chart V( chosen. Moreover, if this condition is fulfilled, 
the fact that all the jets f£° (TTJ ) are equal to their purely holomorphic partj?° (TT/) for 
all multi-indices I of length p, does not depend on the coordinate chart Vi chosen. 

PROOF. When we do the coordinate change (1-2), we see that 

<#/>/ = e({d^}) 

where £ is a linear function and that 

where I' is a linear function. It is clear that if the irj- vanish to infinite order on X, the 

71-̂ - vanish also to infinite order on X, because they are combinations of the T$? with 

C°° coefficients. If this condition is fulfilled, the jet of the n^ along X becomes linear 

combinations of the jets of the TT^ along X with coefficients which are antiholomorphic 

of the variables zw. This means that if the A 0 0 ^ ^ ) depend only on ̂  (and not on ((j)), 

the same happens with the A 0 0 ^ ^ ) . 

DEFINITION. We shall say that a (0,/?) form 7r, C°° in V has a purely holomorphic jet 
o n ! , if 

(1-8) 
4 ° ° V ^ ) = 0 for all \K\=p- 1, all i G / 

jfW?) = jfW?) for all \L\=p, all iel 

NOTATIONS. Let TT be a (0,/?)-form on V, which has a purely holomorphic jet on X: 
we define 

d-9) jf\ir) = £ jf\*?) *~°V in Vt H V. 

This is clearly an element in limrproj C°°(VnX,É£ ®c A°~p). 

c) Action of df 

LEMMA 1.2. Lef 7r be a C°°(0,p)-form on V in S which has a purely holomorphic jet 
in X. Then d^rc is a (0,p)-form on V which has also a purely holomorphic jet on X and 
we have 

(1-10) jf\dsir) = limproj5*(4r)(7r)) 

where j^in) is the usual jet of order r of IT (defined as in formula (2-4) of [1]) and d% 

denotes the usual d with respect to X acting on C°° section of holomorphic vector bundles 

over X. 

PROOF. We fix a chart Vt and compute 3§7r using the splitting ( 1 -6) of TT. Then the dC, 
part of d§7r comes from -7-7^ and the jets of these terms X are 0 because TT has a purely 
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732 V. ANCONA AND B. GAVEAU 

holomorphic jet on X. The pure dél)-terms of d^n comes from J-TT^ only and the jet of 

these terms on X are obviously purely holomorphic. We thus see that 

r Mi)k _ / 3*^(0 

fc=0 \A=P 
dt =ov 

<«=o 

= limproj3^ r )(7r)). 

1.4 77ié? sheaf ÔÔ ®0 . A ^ . 

a) 6>£ is a O^-module: We know that O^/I^ are all O^-modules (as sheaf of holo­

morphic sections of the bundle Ef£ (see [1] Section 2.3). Moreover the natural mappings 

O^/F^1 —> O^/K are morphisms of 0^-modules, so that 0$ is an 6^-module. 

In particular, we can define the tensor product over 0%, 0$ 

b) Identification of OÔ Q 

A0,p) 

AK~,P) as jet of forms: Let us consider an element UJ G 

nv,o5. 

( i - i i ) 

v«V)\ A^,p)). Around any point m G X Pi V, we can say that 

7=1 

i(O^) where #/ are a finite number of elements of 0$ and a ; are in A!~ . We consider the 
mapping 

d-12) UJ • 

N 

7=1 

which has as image a (0,/?) form with coefficient in 0$ and can be identified to 

oo /ii)k N 

where we have written 

k=0 ^ 7=1 

*=0 Kl 

LEMMA 1.3. The mapping (1-12) is injective. 

PROOF. Because A^,/?) is a direct sum of the A^0), it is sufficient to prove the lemma 
for/7 = 0. 

The first fact we need is that the natural map 

(1-13) (OS/I$
1)*®OHC%,^(OS/I$*).C%[ 
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DIFFERENTIAL FORMS AND RESOLUTIONS 733 

is injective, which is obvious because 0§/r£ is the sheaf of holomorphic sections of a 
vector bundle over X. Moreover it is an isomorphism. 

Let us now consider 
0§tX = limproj(05/4)jf 

and in O^ let us denote by Ô§^ the submodule of the projective systems (fr)r>o G 
liïïvproj(0ç//£)jc such that/r = frQ for all r > ro for a certain ro. Then Ô§^ is dense 
for 7^-adic topology in Ô§^ and from the injectivity of the mapping (1-13) we deduce 
the injectivity of 

a-14) ^ ® 0 f e c & - % c & 
and in fact it is an isomorphism. 

From the injectivity of <5̂ ~ <—> 0 ^ , we deduce the injectivity of O^C-P. c—• 
[O^C^J A which is the space of formal series in £ with coefficient in C~°. and because 
Ĉ ?_ is flat over (9^, we deduce also the injectivity of 

(1-15) Ôs®o^C?^ôs,®ouC$x 

Now, we have the following diagram (where the dotted arrows will be constructed below) 
and where <g>o- is the completion of the tensor product. 

ÔS®xCf^Ôs.Cf - [ôsCfr 

Ôsê0iCf 

The arrow © exists because of the universal property of the tensor product. 
The arrow @ exists because [O^C^]A is the completion of 0§Cg, because O^o^C^ 

is complete and because of the universal property of the completion [Ô§Cg]A. 
The arrow (3) exists because © exists and because of the universal property of the 

completions ®0r These arrows ® and @ are then reciprocal isomorphisms, and ® is 
injective. But © is the natural mapping (1-12) (for/? = 0). 

1.5 The sheaf Af?\ 

a) Definition: For x G X — 5, we define simply 

Fori G X, we call A~'̂  . the space of germs of C°°(0,/?)-forms TT in a neighborhood V of 

Jc which have a purely holomorphic jet on X such that 

(i-i6) ^ (TT) G r(vnx,d5 0o, Afp)). 

This last definition has a meaning because of the injectivity of the mapping (1-12). 
b) The df 
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734 V. ANCONA AND B. GAVEAU 

LEMMA 1 A. Let x E X, and an element ofA~p~ _. Then 3?7r is in K~p~. and moreover 
J S,Xjc J S,X,x 

if we consider/^°\TT) as an element in 0$^ (g)o A-'77, f/zerc 

(1-17) jf)(h*) = *X>V(*) 

where dx is the d defined naturally as 

(1-18) S ^ Ô ^ ^ A ^ ^ Ô ^ ^ A ^ ' . 

PROOF. By Lemma 1.2 we know that 3̂ 7r has a purely holomorphic jet on 
. . i - . r ^ o n / 1 i i 7 0 L^t-»/̂ iT7 VI / - \ IT/ f/-\ ^ n t Y i n n t o i f 1 \^ 

N 

XJ^°\d^7r) and we know how to compute it. More precisely, in our case 

x ;=i 

where Qj G Ô^, OCJ G A|'P_, and then 

7=1 

But because of the injectivity of the mapping (1-12) (now for forms of type (0,/? + 1)), 
we see that up to an identification 

y=i 

which is exactly what we want. 

1.6 The sheaf <p*(0§) ®ox A ^ . 
a) (p*(0§) is an Ox-module: This statement is obvious because 0$ is an Ox-module 

(see Section 1.4). In particular, we can take the tensor product over Ox with Ax
,p. 

b) Identification of ip*(Ô§) ®ox Ax'
p a s Jet °f f ° r m al°ng ^ : Take a point m G X, an 

open neighborhood U of x in S and w 6 r f (/, <f*(0§) 0ox A/7) . We have 

TV 

where 07- are in T((p~l(U), 0$) and a7 are in r(/ynx,Ax'^).We can consider the mapping 

(1-19) •u>->(<p\iT<j 

where 

(1-20) &\x)*v = E0Mx)*<xj' 
7=1 

This is a (0,/?) form with coefficient in 0$. 
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DIFFERENTIAL FORMS AND RESOLUTIONS 735 

THEOREM 1.1. The mapping oo —> ((p\x)*u) defined by (1-19) and (1-20) is injective. 

c) Proof of Theorem 1.1 : We shall refer mainly to the proof and notations of the ana­
logue Theorem 2.2 given in [1] Section 2.4. We fix a point x G X, and x G (f~l(x) such 
that we can choose around x the coordinate (z\ • • • zn-m+i, H>I , . . . , wm) where the w's are 
coordinates on X around x. We also denote by/ r ) : 0$ —> O^/F^1 the natural projection. 
We have seen that for all r, the mappings 

(1-21) (Os/$
l)g ®oXj C£ - (0§/lfh ®0iJ Cf. ~ (Os/lfh. Cfj 

are both injective (see Lemma 2.3 of [1]) and we can identify 

(1-22) (Os/Ifh ®ox, (% =* (Os/lfh. (%. 

We have 

LEMMA 1.4. The mapping 

(1-23) Ô^®oXjCf^ÔSrCf. 

is injective. 

End of proof of Theorem 1.1: The mapping, 

<P*(Ô§)X -* ÔSjt (x G (f~l(x)) 

is injective (Zariski's main theorem on normal singularities). Because C ^ is a flat Ox*-
module 

<P*(Os)x ®<^ CZ -* ÔSjt ®0xj[ CZ 

is injective. The composition with the injection mapping of Lemma 1.4 gives the result. 
d) Proof of Lemma 1.4: This is a slight modification of the proof of Lemma 1.3. We 

introduce as in Lemma 1.3, the module 0^. Because of the injectivity of (1-21) and the 
identification (1-22), we have an identification 

(1-24) 0 5 t , ® ^ C £ ~ d J i f . C £ . 

Now 

--— ---* 

Of * ®o„ C f 

r ' ® 
ÔSJ&XJC& 

The horizontal arrows are, apart from the identification (1-24), a completion of 
Oz,w ®c Q° (recall that the coordinates of X are the w's) and then a completion with 
respect to the 7^-adic topology. The vertical arrows are first an injective mapping 

ÔS ®o*„ C% ̂  Ôs ®oXjc C£ 
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736 V. ANCONA AND B. GAVEAU 

obtained by tensorisation of the injection 0$ °-» 0$ by the flat Ox-module C^0 and sec­
ondly the completion ®oXy Then the diagonal dotted arrows are constructed exactly as 
in Lemma 1.3 using universal properties of the completion and of the tensor product. 
From this the natural arrow (2) is injective. Finally we know that 

which achieves the proof. 

2. Differential forms and resolution of S. 
2.1 A fine resolution ofS. 

THEOREM 2.1. The following complex is a fine resolution of 0$. 

PROOF. The sheaves A~'̂  have been defined in Section 1.5. It is easy to see that they 

Moreover outside X, A~p^ is A~,p
y and the local exactness follows from the Dolbeault 

resolution. 
Let us now choose a point x G X and TT G A-'^ _ on a small open neighborhood V of x 

are fine sheaves (using special partitions of unity as in Section 3.1, Lemma 3.2 of [1]) 

sjc 
in S which is 3^-closed. By Dolbeault theorem, we know that 

(2-1) 7T = d$a 

on a smaller V, where a G A°~p. Moreover we know that J{?°\IT) is in 0?~ ®o A°~p 

and by Lemma 1.4, this is 5^-closed. Now, because A ^ is a flat (9^-module, we have a 

Dolbeault resolution of O^. 

0 - > 

RD(ÔS) 

as 
; — > Ôs®os\f-+ 0§®0iAf —* * 

Os ®otAÏ*>Ô5 ®* A°r ' • • Os ®otAÏ*>Ô5 ®* A°r ' • • 

47' . 
so that we can solve 

(2-2) 

Let us now assume p > 2. 
It remains to modify a so that a G A-'^"1. To do this, we shall use the splitting (1-6) 

for 7T and a. With the same notation as in Sections 1.2 and 1.3, we write 

(2-3) K = 7TZ + ^ 

a = az + a? 
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where -KZ (resp. ocz) is the part of IT (resp. a) which does not contain any d£ and n? (resp. 
ocç) is the part 7r (resp. a) which is divisible by dÇ We have from (2-1) and (2-3) 

yf)(7r) = 4oo)â^(al) = 3^(yf)af) 

so that in the Taylor expansion of A 0 0 ^ the coefficients af '^ of any monomial ÇkÇ£ with 

£ > 1 are S^-closed, and as a consequence they are 5^-exact, so that if/? > 2 

Now let us choose a C00 form &- such that ./^(Â-) = Et>0,i>i /?f C*<* and let us change 
aina' = a — d^fe. Then 

f2 4Ï / * = ^ a ' 
( ' \Jf(cQ=jf\a'i)-

From the first equation of (2-4), because of the choice of TT G A~'̂ , we have that 

o=3 je4ooVf)±â4oo)(«j)Adc. 

The last term of this equation is 0 because of the second line of (2-4), so that 

o = V f }K). 
This means that any coefficient of the Taylor expansion in £*£* of a'- is d% closed, so 

it is 5^-exact, and by the same trick as in (2-4), we arrive at a form a" such that 

(2-5) U = d§a
,r 

\ a" is has a purely holomorphic jet on X 

We compare (2-5) to (2-2) by taking j ^ of both sides of equation (2-5). Then 

so that cj^(p —f£°\a''y) = 0. This means that in the formal Taylor expansion in (k of 

P —f*°\<x'') the coefficient 7* is 5^ closed and so it is 3^-exact. 

Ik = hak 

Let us now extend J2k>o Ck(Tk in a C°° form & around jc, with a purely holomorphic jet 
jf\ci) = £*>oCV Then define 

We have by construction, 

a"' = a" + ds&. 

Jt\2& = p-jf\°''') 
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738 V. ANCONA AND B. GAVEAU 

so that finally 

jf\a>") = Peô§, « ^ Ag~ 
35a'" = 7T. 

This means that a'" is in A^T1 . 

For/? = 1, a is in A~'? and 

But 7T? vanishes to infinite order on £ = 0, so that a has a purely holomorphic jet along 
X. We have from (2-1) 

This means that all the coefficients 7* oiC,k in the Taylor expansion of p —f?°\ct) are 

holomorphic along X, so that p —f?°\a) is in 0 ^ , and so 

/.oo)(«) = P + Ô 5 j e G Ô 5 , ® o ï f A ^ 

ĉ = ^7 dC 

's,* ^ "s* ^o^ " U 

and a as in A°~,0~_. 

2.2 Differential forms on S and the 5 operator. 
a) Definition of the sheaves A5'^: If x is a point in S—X, we define As

,p to be the germs 
of C°° forms of type (0,p) at x on S (or what is the same, at <p~l(x) on S). 

Now let x be a point in X, £/ be an open neighborhood of x in S. We shall say that 

7rera/,A^) 

if 7T is a C°° form of type (0,/?) on if'1 (U) C 5 which has a purely holomorphic jet on 
X, such that 

(2-6) jf\rc) G r ( î / n X , y>,(Ô5) ®ox A ^ ) . 

This definition has a meaning because of Theorem 1.1 of Section 1.6 which identify 
^*(0s) ®ox A £ P to purely holomorphic jets on X through the mapping (ip\x)*. 

We have exactly as in [1] Lemma 3.1. 

LEMMA 2.1. The sheaves As
,p are fine sheaves 

b) The ds operator. 

LEMMA 2.2. d§ preserves As
,p and we have a commutative diagram 

AO.P A , Ao,P+i 

(2-7) r | _ j , r . 
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PROOF. This is exactly the same proof as in Lemma 3.3 of [I] provided we use 
Lemma 1.2 and the injectivity of'(<p\x)*:. 

NOTATION. We shall denote simply 

ds:A°sP->A°sP+l. 

2.3 Local exactness of the complex (As
,p, ds). 

THEOREM 2.2. The following complex is a fine resolution ofOs. 

WsY O^Os^ A0/ ^ A0/ - • • • - A0/ ^ A°/+1 - • • • 

PROOF. Exactness at step O: This results from the fact that the singularity is normal 
as in [1] Section 3.2. 

Exactness at step/?: The proof is basically the same as the one in [1] Section 3.2 except 
for a major modification due to the use of the resolution R(0§) of Theorem 2.1 above 
instead of the Dolbeault resolution of 0§. First of all, we have a resolution of (/?*0£ by 
tensoring this sheaf with the flat O^-modules A^p 

R(Os): O-^Ôs ®0x A£° -» Os ®ox A0/ — • Os ®ox A0/ — Os ®ox A0/" 

where the morphism is / ® 5* which we simply denote dx- (We have used (1-1) to 
identify <p*(Ô§) with Os. 

Let us start with 7r G T(U, A°s
,p) which is 5^-closed. We know from Lemma 2.2 that 

f^M is 5x-closed in Ôs ®ox A0/, and because UHX can be taken a Stein open set, 

(2-8) jf\if) = 9^ ( o o ) 

where UJ(OO) is in Os ®ox A°/~l onUHX. 
Now, we can also consider j^°\n) to be an element of r(<^-1(L0, 0$ ®ox ^p), an^ 

so it is also 5^-exact in tp~l(U) (by considering that LJ(OO) G r((p~l(U), ÔË ®ox ^°/~1)) 
which we rewrite 

(2"9) [j") er(<p-\u)9ôs®0,4*-1)' 

(Here we have used the various identifications which are possible because of Lemma 1.3 
and Theorem 1.1). But because of the resolution IR(Ô )̂, this means that the cohomology 
class [ /^(TT)] in H? (ip-l(U)9Ô§) is 0. 

Now by definition, we have a natural morphism of resolutions. 

jioo) 

(2-10) R\0§) ^ Rm(Os) 
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which is compatible w i t h / ^ : 0§ —» 0§. We also know that this morphism of sheaves 
induces an isomorphism in cohomologies in Lp~x(U) 

HP(^l(U),Os)~Ht>(p-l(U\ÔË) (p>l) 

so that by comparison of cohomologies, (2-10) induces an isomorphism between the 
Dolbeault cohomologies computed with the resolutions lf̂ *(0 )̂ and R9(0^). 

In particular, our TT (which is in A~^ on ip~1 (£/)) is O in cohomology of 0$ on y~1 ( LO, 
and so we can solve 

{ TT = d$a 

aer^-'c^Ag-1)-

1°) Case/7 = 1: From (2-11) and (2-8), we deduce 

(2-12) 5jt(f$
o\*)-<J<x») = 0 

so that/^(a) = w(oo) + r(<p-\U), Ô§) and is thus in r(U, Ôs ®0x A$°) because OJ(OO) 

is in this space. This means that a is in r(£/,A°'°) by definition. 

2°) Case/? > 1: We still have equation (2-12), so t h a t y ^ a ) - UJ(OO) is a 5 rclosed 

element of r(<p-l(U),Ô§ ®0jf A^7-1) (because of (2-11), aismT(ifl(U), A-'^1) so 

that its jet along X is in 0$ ®o^ A^7-1). In particular, ./^(a)—u/00* defines a cohomology 

class in IP^^p^iU), 0$) because of the resolution R*(Ô§). 
Again by the comparison of cohomologies, this class of cohomology comes from an 

element /? in r(<p-\U)9 A g _ 1 ) which is 3^-closed: this means that 

jf\a) - J^ = ffw+a>(00) 

where ^(oo) is in r(ip-l(U), 0~s 0O^ A°/~2)' L e t ^ b e a C°° f o r m i n V^W s u c h t h a t ^ 
has a purely holomorphic jet along X and 

Let us also define 

Because d$f3 = 0, we have 

J T M = v>(oo)-

a' = a — (5 — d^. 

d^a' = d$a = TT. 

Moreover, we have that a' has a purely holomorphic jet along X, and 

so that a ' is in T(U, A°s
,p~l) by definition. 

2.4 Comparison of these results with the results of [1]. In [1], we have defined other 
kinds of C°° forms and functions on S with conditions on jets of finite order on X. To 
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prove the local exactness of the ds, we had to use a vanishing theorem, namely that there 
exists r with 

ir(<p-lmrjt) = o (p>i). 
The problem is the following: if 5 is a compact analytic space, we can choose the same 

r everywhere on X and everything is correct. If S is not compact, we do not know if we 
can choose the same r all over X, so that our previous definition is not sufficient. Here we 
do not assume any theorem of vanishing of cohomology, because we are working with 
the formal completion along X or X. 

Moreover, with this new definition, we shall obtain flat Os,x modules as we shall see in 
the next two sections. We do not know how to prove flatness properties for the definitions 
of forms in [1]. 

3. Flatness of the germs of C°° functions on S. 
3.1 Some definitions and results concerning flat modules. 

1. Let A be a commutative ring with unity, E an A-module, / = (f\ , . . . , /„) n elements 
in A. We denote by R( f , E) the A-module of relations in E among the/ . An element of 
R{ f , E) is a sequence ~t — (e\,...,en) such that 

2. If E is an A-module, the following definitions of flatness are equivalent: 
(i) for all exact sequences M' —> M —• M" of A-modules, the sequence 

E <8U M' —• £ <gu M —• £ <gu M" 

is exact. 
(ii) for any ideal / C A, the natural mapping / 0^ E —-> E is injective. 

(iii) for any ~f = (/i,... ,/„) in A \ 

R(f,E) = R(T,A).E. 

3. If O —* M' —+ M —-+ M" —*• O is a short exact sequence of A-modules, then if M 
and M" are flat, M' is flat, if M' and M" are flat, M is flat. 

4. If A is a local noetherian ring, then its completion A is faithfully flat over A. (An 
A-module E is said to be faithfully flat if it is flat and if E &u M = O implies M = O for 
any A-module M). 

5. If A C B C C are three commutative rings with unity, so that 
(i) C is faithfully flat over A 

(ii) for any ideal / C A, (/C) H £ = IB 
then B is faithfully flat over A. 

6. Let us now consider the space C" and the space of germs of holomorphic functions 
On dX 0, the space of germs of real-analytic functions at 0, J3„, the space of germs of C°° 
functions at 0, C£° and finally the space of formal series at 0, Fn, so that 

On<ZAnCC?<ZFn. 
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Fn is faithfully flat over \ (completion of a local noetherian ring) and from Mal-
grange [5], we know that C£° is also faithfully flat over J%„. 

7. Moreover it is possible to prove that 5^ is faithfully flat over On and thus C£° and 
Fn are faithfully flat over On. 

8. From now on, we shall freely use the preceding results. 

3.2 Formal functions on S. Let M be a smooth complex manifold, x a point in M. We 
shall denote by FM^ the space of formal Taylor series at x on M. If d = dimM, this is 
clearly isomorphic to F£d 0. We also know that FM* is a faithfully flat 0M^-module. 

Now, let S be an analytic space satisfying the hypothesis of Section 1.1, X its singular 
locus, <p: S —• S be a desingularization of S, X = ip~l(X) the exceptional divisor which 
is assumed to be irreducible. If x is a point of S — X, we can define Fs^ as above because 
S is a smooth complex manifold at x. Now, let x be a point in X. We define 

(3-D Fsj = <p*0§)x ®oXj Cxr 

This definition makes sense, because, we know that ^*(0^)x is an Ox^-module. 
We want to prove. 

LEMMA 3.1. Forx € X, Fs^ is a faithfully flat Os^-module. 

This lemma is a direct consequence of the following abstract result. 

LEMMA 3.2. Let A be a ring which is a C-module, B aflat C-module. Then A 0 c B 
is a flat A-module. Moreover ifB is faithfully flat over C, then A 0 c B is also faithfully 
flat over A. 

PROOF OF LEMMA 3.2. Let O —+ M —• N be A-modules. We can always write 

M = M®AA®CC 

N = N®AA®cC 

considered as C-modules. We always have an injection, and because B is flat over C, we 
can tensorize by B over C while keeping injectivity 

O —• (M 0A A 0 C O 0 C B —> (# 0 A A <g)c O 0 C 5. 

But ( M 0 A A ^ c O ® c f i - M ® A (A 0 c B) and the same with N, so that we still 
have an injection 

<9 -^ M 0A (A 0 c #) -> N 0A (A 0 c 5) 

which proves that A 0 c # is flat over A. 
Now let us assume that M is an A-module such that M 0 A (A 0 c B) = O and 

let us again consider M as a C-module writing M ~ M 0A A 0 C C. We know that 
(M 0 A A 0 c Q 0 c ^ ^ M 0A (A 0 c #) = 0. But if B is faithfully C-flat then 
M 0A A 0 c C = O so that M is 0. 
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PROOF OF LEMMA 3.1. We take C = Ox^ A = ÔSrX, B = C ^ . Then we know 
that FXyX is faithfully flat over Ox^ because X is smooth. Moreover by Grothendieck-
Hartshorne proper morphism theorem, we have 

ÔSyX ~ <p*(Ôs)x 

so that Ôsj is a 0^-moduel and Lemma 2 gives the result of Lemma 1. 

LEMMA 3.3. Fs,x is a faithfully flat O s ̂ -module. 

PROOF. ÔS^ is a faithfully flat O^-module (completion of a local noetherian ring), 
so that Fsj is flat over Os^ by Lemma 1 and the transitivity of flatness. To prove that Fs,x 
is faithfully flat over Os^ we have to see that for any ideal 3 of Os^ 

J.FssnOss = 3. 

Now 

J. Fss n ôSjc - J. (ôss ®ox, CxJ n ôSjc. 

But we have seen in Section 1, that 

so that 

and 

J . ^ n Ô 5 ^ = 7.ô5f,F5fXnÔ5^ 

and this is J. Os* because FSyX is faithfully flat over ÔSyX (Lemma 1). Then 

because Ôs^ is faithfully over 0 ^ . 

3.3 Germs of formal functions on S. Let V be a neighborhood of x in 5, and let us define 

FsiY) = n ^ 

where F ^ is defined in Section 3.2. Let us also define 

Fsj = \imFs(V) 

for the set of neighborhoods V of x in S. 
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LEMMA 3.4. Fsj is a faithfully flat Os^-module. 

PROOF. Let ~fx = (fu,... ,/ntX) with/^ G C ^ and ^ G / ? ( / , F ^ ) . 
Because the sheaf Os is coherent by Oka theorem, there exist ~g* , / = 1 • • • £, gener­

ating R(fx, Os,x) and defined on a small neighborhood V of x such that their germs ~gy 

generate R(f y, Os,y) for all y in V. If we restrict V, we can assume that Ip* give relations 

among the / all over V. In particular for all y G V, the germs ^ E R(f y,Fs,y) C 

#( / r Os,y)Fs,y because F 5 j is flat over Os,y, so that 

k i 

where htxy G Os,y, Bkiy G F5o, and then 

i k 

The set of (J2k hixyOk,y)yev define an element of Fs^ and we have proved that 

R(7,Fss)CR(7,Oss)^Fss 

which is the flatness result. 
Let us prove now that F ^ is faithfully flat over Os^. Let M be an Os^-module such 

that 

M ®Os, Fs* = 0. 

Now, we have a surjective mapping 

h* — Fss — 0 

so that 
M ®<^ ^ -> M 0os, Fss — 0 

and so M (g>oŝ  Fs^ = 0. But FSyX is faithfully flat over 05^, so that M — 0. 

3.4 Flatness ofA®. By the definition of A$ , we see that we have injective mappings 

(3-2) Oss^A^^Ps* 

for all JC G S. To define the last mapping, we take a neighborhood V of x in S and a 
/ G r(V, A§). If j G V — X we can define^!/) G F ^ in a natural way because/ is Cg . 
If y G VPlX, we define/,(/) as follows:/ is a C°° function over ^_1(V) such thaty^(/) 
can be identified to an element 

jx(f)er(vnx,<p*(ôs)®oxc?) 
and we take for jy(f) the germ at y of j^(f) 

(3-3) jy(f) = (jt(f))y G F , , r 

Then we associate t o / G T(V, A§) the collection (/^(f )) y G T(V, F$) and this is clearly 
injective. 
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THEOREM 3.5. A°SrX is a faithfully flat Os^-module. 

PROOF. Because of the result recalled in Section 3.1, and because Fs^ is faithfully 
flat over Os^, it is sufficient to prove the following lemma. 

LEMMA 3.6. If J is an ideal ofOs^, then 

J ^ n A ^ = _7.A^. 

PROOF OF LEMMA 3.6. Let us start with a g e J.Fs^n A ^ for x e X (the case 

where x G S — X is proved by Malgrange). By definition g is in r(<£_1(L0> C~°) for a 

small neighborhood U of x in 5. Let / = (/i,...,/«) be generators of J over U. 

1ST STEP: DECOMPOSITION OF g IN (f~l(U). At any point y e v~l(U), the jet of g 
at J, ./>(#) is in JSF^~ where 

*5(V) = II % 

^ = ((/l ° </>)?, •••>(/* ° <P)y)> 0§r 

By the global Malgrange theorem, we see that 

(3-4) g = ][><,• 
1=1 

where m eT(ip-\U)Xf). 
Now, taking the jet along X, we have 

(3-5) frig) = £jx(fi)k(»i) 
i=l 

and we know also that up to identification 

(3-6) jx(g) e 1. <p*(Ôs)x <g>^ CZ - X ¥>*«%)*. C £ . 

2ND STEP: SUPPRESSION OF THE ANTIHOLOMORPHIC PART OF THE j^m). We can 

always write locally in S 

(3-7) ^("«•)=^)(««-) + Cv«-

where f~\ut) is the holomorphic part of the jet m along X {i.e. the part of the Taylor series 
in 0 and £ = 0 is a local equation of X in S and v; is a formal series in (, Ç By taking a 
partition of unity on (f~l(U), we can always find C°° functions v,on (p~l(U) such that 
the complete jety^v/) along X is</^(v/) = v,-. 

Now let us define 
n 

w = EM-

https://doi.org/10.4153/CJM-1992-043-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1992-043-7


746 V. ANCONA AND B. GAVEAU 

Then ./^(O = HtJxdX^i = 0 because of (3-5), (3-6) and (3-7), so that w is in the 
ideal P°(X, ^_1(£/)) of the C°° functions on <p~l(U) which are flat at infinite order in X. 
Moreover w is also in Jy, F§~ for all y G y~ l(U), so that by Malgrange theorem 

w G j / / 0 0 ^ , ^ 1 ^ ) ) 

or 

where v| G F°(X, <p~l(UJ). Then 

£ = J2fi(Ui ~ Vi + v/) 
i = l 

with 
^(w,- - vf + v{) = 7̂ (w/ - v/) +jjtv'i = /~°(w;)-

This means that we can write g as a linear combination of type (3-4) 

(3-8) g = Eft* 
i=i 

with 

(3-9) Mm) =jf(ud G r (XH <p-\U), Ô~s ®0jt Cf ) . 

3RD STEP: CORRECTION OF THE ut so THAT THEY BELONG TO A ^ . We want to 
correct further the w; in equation (3-8), so that they belong to A§ . 

By (3-6), we know that^(g) G J<p*(X>§)xCx# so that 

Jx(g) = Y,Jx(fi)'Wi 

where w, G ̂ • ( Ô ^ C ^ ( w e identify vv, with its lift through ^ to S). 
Let us now find w,- G Coo(^"1(^0) with^(w,-) = wt. Then 

and E/i(w, - M,-) is in the ideal 7°°(X, Lp~x{U)). It is also in JF^ for all je G ip~x(JJ)i so 

that by Malgrange's theorem, it is in J. I°°(X, (f"l(U)^j 

i i 

where/7t G /°°(X, ^ _ 1 ( ^ ) ) . Then 

(3-10) g = Y,fi(yvi-Pi) 

andjx(wi — pi) = jx(w() — wt G <p * ( Ô ^ C ^ which proves Lemma 3.6. 

https://doi.org/10.4153/CJM-1992-043-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1992-043-7


DIFFERENTIAL FORMS AND RESOLUTIONS 747 

4. Flatness of the germs of C°° forms on S. 

4.1 C°° forms in S vanishing at infinite order on X. 
a) Definition: Let us denote by lff] (for x G X) the subspace of Aff] formed by 

the C°°(0,/?)-forms i\ on ip~l(U) (for some open neighborhood U of x in S) such that 
f^M = 0 on a smaller (f~l(U/) x e U' C U. This space is exactly the space of 
C°°(0,/?)-forms on some (p~l(U) such that their coefficients (in any coordinate system) 
vanish to order oo on X on a neighborhood of ip~l (x) in S. It is obviously an 0^-module. 

b) Short exact sequence associated toj^0*. 

LEMMA 4.1. For any x G X, we have a short exact sequence ofOs^-modules 

(4-1) 0 - iff - Aff ^ MÔsh ®ofa A°* - 0. 

(/fere <p*(Ô§)x ®o^ ^A> "" considered as an Os^-module because (f^(Ô^)x = Os;*). 

PROOF. We have, as usual identified <p*(Ô§)x ®ox A^p to jets of forms along X. It 
is clear thatyl0^ is surjective. It is then clear that the kernel of A ^ is lff\ 

c) Flatness of 4°;0). 

LEMMA 4.2. lff} is aflat 0SyX-module. 

PROOF. We know that A°£ is a flat 6^-module (Theorem 3.5 of Section 3.4). We 
also know that Fs^ is a flat (9^-module (Lemma 3.3 of Section 3.2). From the general 
results of Section 3.1 and the short exact sequence (4-1), we know that if^ is a flat 
O^-module. 

4.2 Flatness of formal forms on S. 

LEMMA 4.3. The Os^-module of formal (0,p)-forms on S at x 

Fff = <p.(Ôs)x®0xj,4* 

is faithfully flat over Os^. 

PROOF. A ^ is a direct sum of some copies of A ^ because X is smooth, so Fff) 

is a direct sum of some copies of FSyX which is faithfully flat over Os^ (Lemma 3.3 of 
Section 3.2). 

4.3 Flatness ofAs^. 

THEOREM 4.4. A°s^ is aflat O s ̂ -module for allp > 0. 

PROOF OF THE THEOREM. We already know the result for p — 0. Because of the short 
exact sequence (4-1) of Lemma 4.1, Lemma 4.3 and the general results of Section 3.1, it 
is sufficient to prove the following lemma: 
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LEMMA 4.5. is^ is aflat Os^-module. 

PROOF OF LEMMA 4.5. Let / = (/i,... ,/#) in Os^c so that the^ are holomorphic 
functions on some neighborhood ip~l(U) in S and let 

(4-2) H»eR(T,lff). 

Let us cover (ç~x{U') (for some U' C U, x G £/', so that if vanishes at order oo on 
Xr\ip~l(U')) by coordinates charts (Vi)ieI and call z(l) a coordinate system in V/. Let us 
also take a partition of unity (p0/€/ of <P~l(U') subordinated to (V/)^/. Then 

(4-3) if = J^ptlf 

and it is clear tht pt!f is an TV-tuple of C°°-forms of type (0,/?) in (p~l(Uf), with compact 
support in Vt vanishing at order oo on X P Lp~l(Uf) so that they are in /̂ f*- Moreover, 
we have 

(4-4) PilPeR(T,$f). 

We shall prove that 

(4-5) Pi-r£R(7,OsJ.fg. 

From (4-3), we will then have 

which is our result. 
Now, we are reduced to the case where if has a compact support in a coordinate chart 

Vi with coordinates z, so that 

(4-6) lf=J2^Kdf 
\K\=p 

and 1?K are global C°° functions on ip~l(Uf) vanishing to order oo on XD Lp~x(U') and 

because the dz* are linearly independent. But if^ is Os^-flat by Lemma 4.2. Call 

( 0 j)j=\,...,r a basis of relations R( f , 6 ^ ) . Then 

(4-7) "^ = E ~ ^ Â 
7=1 

where c^. are in lfj^\ 
Now let x be a C°° function which is 1 on the support of if and with compact support 

in the coordinates chart V* where if has its support. Then 
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and so 

r 

7=1 

Now, X^K a r e ^°° functions with support in V/, vanishing at infinite order on X, so that 

I*I=P 

is a globally defined C°°(0,/j>) form on (p~l(U") (for some (JJ" C 10 with compact 
support in Vt and so is in lff\ and 

7=1 
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