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Introduction. Let S denote the integral closure of a complete discrete

rank one valuation ring R in a finite Galois extension of the quotient field

of R, G the Galois group of the quotient field extension, and / an element

of Z2{G,U(S)) where U[S) denotes the multiplicative group of units of S.

A crossed product Δ{f,S,G) whose radical is generated as a left ideal by

the prime element Π of 5 is an hereditary order according to the Corollary

to Thm. 2. 2 of [2], and we call such a crossed product a Π-principal

hereditary order. In previous papers the author has studied Π-principal

hereditary orders J(f,S,G) for tamely and wildly ramified extensions S of

R (see [10] and [11]). The purpose of this paper is to study Π-principal

hereditary orders Δ{f, S, G) with no restriction on the extension S of R.

I n Section 1 we present necessary and sufficient conditions for a crossed

product d(f,S,G) to be Π-principal. Let Gp denote the Galois group of

the quotient field of S over the quotient field of the maximal tamely ramified

extension of R in S. We associate to the cohomology class [/] a subgroup

Rf of the center of Gv called its radical group and prove that the following

statements are equivalent

(1) Δ(f,S,G) is a Π-principal hereditary order

(2) Gp is an Abelian group and Rf = (1)

(3) 2?, = (1).

Thus we generalize a result obtained in [11] for wildly ramified extensions

S of R.

I t is natural to ask if each hereditary crossed product is Π-principal.

I n Section 2 we present an example of an hereditary crossed product which

is not Π-principal. However, if the residue class field extension S of R is

separable, then a crossed product J (/ , S, G) is hereditary if and only if it is

Π-principal. I n order to prove this main result we make use of facts
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concerning the cohomology of wildly ramified extensions presented in an

appendix.

Finally, in Section 3 we present a criterion for determining the number

of maximal two-sided ideals in a Π-principal hereditary order by generaliz-

ing a result obtained by the author for crossed products over tamely rami-

fied extensions (see [10]).

The following notation shall be in use throughout the entire paper.

The multiplicative group of units of a ring R shall be denoted by U(R)

rad R shall denote the radical of R and ctr R its center. If R is a local

ring, then R shall denote its residue class field. Unless otherwise stated, R

shall always denote a complete discrete rank one valuation ring, S the

integral closure of R in a finite Galois extension of the quotient field of R,

and G the Galois group of the quotient field extension. The prime elements

of R and S shall be denote by π and Π respectively, and p shall denote

the characteristic of R.

1. The radical group. The purpose of this section is to present

necessary and sufficient conditions for a crossed product d{f,S,G) over an

integrally closed extension S of a complete discrete rank one valuation ring

R to be a Π-principal hereditary order. According to Thm. 3-4-7 of [9]

we may consider the maximal tamely ramified extension T of R in S.

Let Gp denote the Galois group of the quotient field extension of 5 D T .

The criteria for determining whether or not a crossed product d{f,S,G) is

Π-principal shall be given in terms of a subgroup Rf of the center of Gp

called the radical group of [/] (see Thm. 1. 9).

Observe that the subgroup Gp of G defined above is a p-group. In

the case when the residue class field extension S of R is separable, Gp is

the first ramification group Gx of 5 over R. It is easy to construct an

example to show that when the extension S of R is inseparable, Gp need

not equal Gγ. The following relation between the inertia group Go of S

over R and Gp shall be useful throughout the paper.

PROPOSITION 1. 1. The inertia group GQ of S over R is the semi-direct

product Go = J x Gp where J is a cyclic group of order relatively prime to the

characteristic p of R. Moreover, Gp is a normal subgroup of G.

Proof We first observe that Gp is a normal subgroup of Go. Consider

the chain of rings R a U c T c S where U and T denote the maximal
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unramified and tamely ramified extensions (respectively) of R in S. Let

πt denote a prime element of T and recall that π\ = π for some prime

element π of U and positive integer e relatively prime to the characteristic

p of R (see Prop. 3-4-3 of [9]). The conjugates of πt relative to U are

therefore of the form ζιπt for l ^i ^e where ζ denotes a primitive eth

root of unity. Since the quotient field extension of S ID R is Galois, ζ

must be in S. Let ζ denote the image of ζ under the natural map of S

onto S. The extension D c ϋ(ζ) is separable since (e, p) = 1, so that ζ is

in U because Ό is the separable closure of R in S. The polynomial

Xe — ϊ of U[X] is separable and has ζ as a root; by HensePs lemma we

may now conclude that ζ is in U. Let τ denote an element of Gp and

σ an element of GQ. Since T ^ U[πt] (see Thm. 3-3-1 of [9]) it suffices to

show that a~ιτσ(πt) = πt to prove that Gp is a normal subgroup of GQ.

Using the fact that σ(πt) = ζiπt for some i together with the fact that ζ is

in U it is easy to check that a~ιτa{πt) = πt.

We may now verify that GQ is a semi-direct product. For the factor

group GJGp is a cyclic group of order e relatively prime to the order of

the normal subgroup Gp. Thm. 15. 2. 2 of [4] now implies that there

exists a cyclic group / of order e such that GQ = JxGp.

Finally we shall make use of the fact that the inclusions Gp c Go and

Go c G are normal to prove that Gp is a normal subgroup of G. Consider

elements σ of G and r of Gp, and let n denote the order of r. Then

στσ"1 is in GQ so we may write aτa~ι = pω for some element p of / and ω

of Gp. Using the definition of semi-direct product we may now obtain

the equalities 1 = (pω)n = pnUωpn~i where l < ί < « , from which it follows

that pn = 1. The order of p is relatively prime to n. Therefore p = 1

and στσ'1 is in Gp .

We proceed to define the radical group Rf of [/]. Let C denote the

center of Gp and consider the crossed product d(f,S,C) where / denotes

the image of / under the natural maps Z2{G,U{S)) -+Z2(G, U(S)) -+Z2{C, U(S)).

The radical group of [/] was defined by the author in [11]. For the

convenience of the reader we present the definition here. Let C = Ex X

• xEt be a decomposition of C into a direct product of cyclic ^-groups.

According to Cor. A. 3 of [11] we may assume that / is normalized on

CxC in the sense of Abelian p-groups, so that / = fx ft where each

element / t of Z2{Eί9U{S)) is normalized in the sense of cyclic groups. For
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^t let άt denote the element of U(S) which corresponds to /< under

the canonical identification H2(Eί9U(S)) = C/(S)/[ί/(S)f where et denotes the

order of Ex, and consider the polynomials ht{X) = Xβi — at of S[X]. The

element [/] of H2(C, U(S)) determines a chain of fields L o c . . c i . c £.+ 1

c . . - c Lt_! defined inductively in the following way. Let Lo = S, and

when Lt has been defined we then define Li+1 to be a splitting field for

the polynomial hi+1{X) over L*. We next define Rfti for l ^ i ^ t to be

the maximal subgroup of Et with the property that [ft] is in the kernel of

the natural map H2(Ei,U(S))-+H2(Rfti,U{Lί-1)). The radical group Rf of

the element [/] of H2(C,U(S)) is defined to be the direct product RfΛx

X Rftt. The significance of the radical group of [/] is indicated by the

fact that the crossed product J(/, S, C) is semi-simple if and only if Rf = (1),

(see Prop. 1. 10 of [11]).

DEFINITION. The radical group Rf of an element [/] of H2(G,U(S)) is

defined to be the radical group of [/] where / denotes the image of /

under the natural map Z2(G,U(S)) ->Z2{C,U(S)) and C is the center of the

subgroup Gp of G.

It follows at once from the definition that a crossed product d{f,S,G)

is a Π-principal hereditary order if and only if the crossed product

Δ(f9 5, G) is a semi-simple ring. And according to Prop. 3. 1 of [11],

J(/, S, G) is semi-simple if and only if the subring Δ{f9 S, Go) is semi-simple.

Observe that the inertia group Go acts trivially on S.

The notion of a splitting field of a crossed product shall be useful for

studying d{f,S,GQ). Given a finite group G, fields F and K such that K

is a G-ring over F, an extension L of K is called a splitting field of

J(/, K, G) if [/] is in the kernel of the natural map H2(G, U(K)) -+ H2{G, U(L))

induced by the inclusion of K in L. If in addition L is a purely

inseparable extension of K, then L is called a purely inseparable splitting field

of Δ(f,K,G).

The next two propositions establish the existence of splitting fields for

certain crossed products. In the proof of Prop. 1. 2 we shall make use of

the notion of the central series of a p-group Gp (see Section 2 of [11]). which

is defined to be the (normal) series Gv = Cn 3 o C< D 3 Co 3 CLj = (1)

where C_i = (1) and lCi+ί is the preimage in Gp of the center of Gp\Ci for
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PROPOSITION 1. 2. Let Gp denote a φ-group with trivial action on a field

F of characteristic p. Each crossed product Δ(f, F, Gp) has a purely inseparable

splitting field.

Proof. The proof is by induction of the length lc(Gp) of the central

series of Gp. If lc{Gp) = 1 then Gp is an Abelian p-group, so that

Δ{f9 F, Gp) has a purely inseparable splitting field according to Lemma 2. 1

of [11].

For the inductive step we assume that the assertion of the proposition

is true for p-groups H for which lc{H) ^ n, and consider a group Gp with

/C(GP) = Λ + 1. Let Gp = Cnz> Cn-X D D d = (1) be the central series

of Gp. It is easy to check that idC^) ^ n9 so that the crossed product

Δ(f9F9Cn-1) has a purely inseparable splitting field Ln^ according to the

induction hypothesis. The sequence H\GpjCn.19U{Ln^))->H\Gp9U{Ln^))

-tH^Cn-uUiLn-t)) (where the maps are inflation and restriction) is exact

according to Prop. A. 7 of [11]. For convenience of notation denote the

image of / under the natural map Z\G, U(F)) -»Z2{G9 U(Ln^)) by / also.

From the definition of Ln-X it follows that [/] is in the kernel of the

restriction map H\Gp,U(Ln-1))-±Hz(Cn-.ι,U(Ln-ι)). The exactness of the

above sequence implies that there exists an element [g] of H2{GpICn-ί9 U{Ln-x))

such that inf ([g]) = [/]. Form the crossed product Δ{g9 Ln-.19 GPICn^). The

factor group GpICn-x is an Abelian p-group with trivial action on Ln-X, so

that d(g,Ln-19GPICn-i) has a purely inseparable splitting field L according to

Prop. 2. 1 of [11]. Observe that I is a purely inseparable extension of F.

It remains to show that L is a splitting field of d{f,F,Gp). Consider

the following diagram of cohomology groups and homomorphisms.

U(F)) -+ H\GP, U(Ln^)) -> H\GP, U(L))

inf inf

H\GvICn-l9 U(Ln-1))-+H*(GpICn-ι, U{Q)

where the horizontal maps are induced by the inclusions F c Ln-ι c L.

Using the commutativity of this diagram together with the fact that the

image of [g] under the map H%GpICn-ί,U{Ln-.ί))-+H2{GpICn_1,U{L)) is trivial,

one may obtain by diagram chasing the fact that [/] is in the kernel of

the map H2(GP,U(F)) -+H2(GP,U(L))9 i.e. that L is a purely inseparable

splitting field for J{f9F9Gp).
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COROLLARY 1. 3. Let Gp be a p-group with trivial action on a field F of

characteristic p. A crossed product Δ = Δ(f, F, Gp) has the property that Δjrad Δ

is a field. [In fact Δjrad Δ is a purely inseparable extension of F and is contained

in every splitting field of Δ).

Proof Let L denote a purely inseparable splitting field of Δ whose

existence is guaranteed by Prop. 1. 2. Since [/] is in the kernel of the

natural map H2{GP,U{F))->H2{GP,U{L)) the crossed product Δ{f,L,Gp) is

L-algebra isomorphic to the trivial crossed product Δ{l,L,Gp). Now

Δ(l, L, Gp)/rad Δ{1, L, Gp) is isomorphic to L (see p. 435 of [3]) so that

Δ(f, L, Gp)/rad Δ{f, L, Gp) is isomorphic to L. The natural map Λ/rad Δ

-> Δ(f, L, Gp)/rad Δ{f, L, Gp) is well-defined because rad Δ is contained in

rad Δ(f, L9 Gp) according to Lemma 1.4 of [11]; and it is an injection

because the intersection [rad Δ{f, L, Gp)] Π Δ is contained in rad Δ (see

Lemma 2. 4 of [11]). We may conclude now that z//rad Δ is a field since

a semi-simple subring of a field is a field.

Combining Cor. 1. 3 with Prop. 2. 9 of [11] we obtain at once the

following result.

COROLLARY 1. 4. Let Gp denote a p-group with trivial action on a field F

of characteristic p, and f an element of Z2{GP,U{F)). Then the following

statements are equivalent:

(1) Δ(f,F,Gp) is a semi-simple ring

(2) J(f, F, Gp) is a field

(3) Δ{f, F, C) is a field where C denote the center of Gp .

Observe that the equivalence of statements (1) and (2) of Cor. 1. 4 does

not depend upon the fact that Δ{f,F,Gp) has a splitting field which is purely

inseparable. However we did make use of the existence of a purely

inseparable splitting field to prove that (3) implies (1), (see Section 2 of

[11]). This stronger implication shall be used to prove the main result of

Section 2 of this paper.

COROLLARY 1. 5. Let S denote an inertial extension of a complete discrete

rank one valuation ring R with no tame part, and let Gp denote the Galois group

of the quotient field extension. If [/] is an element of H2(GP, U{S)), then the

following statements are equivalent:
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(1) Δ(f9S9Gp) is an hereditary order

(2) Δ(f,S9Gp) is a maximal order.

Proof. Assume that the crossed product Δ{f9S9Gp) is hereditary. The

fact that Δ(f, S, Gp)/rad Δ{f, S9 Gp) is a simple ring (Cor. 1. 3) implies that

rad Δ(f9 S, Gp) is the unique maximal two-sided ideal of Δ(f9 S9 Gp). Therefore

Δ{f9 S9 Gp) is a maximal order according to the Corollary to Thm. 2. 2 of

[2]. To complete the proof we recall that each maximal order is

hereditary.

Consider the inertia group Go of an extension S of R and the Galois

group Gp of the quotient field of S over the quotient field of the maximal

tamely ramified extension of R in S. The next proposition concerning the

existence of splitting fields shall be useful in proving that Δ(f9 S, Go) is

semi-simple if and only if Δ(f9 S, Gp) is semi-simple.

PROPOSITION 1. 6. Let GQ denote the inertia group of S over R. The

crossed product Δ(f9 S9 Go) has a splitting field.

Proof Prop. 1. 2. implies that the crossed product Δ{f, S, Gp) has a

splitting field Lp. For convenience of notation denote the image of /

under the natural map Z2{G09 U(S)) -> Z2{G09 U(LP)) by / also. Consider the

sequence (1) -> H2{GJGp9 U{LP)) -> H2(G0, U{LP)) -» H\Gp9 U{LP)) where the

maps are inflation and restriction. This sequence is exact according to

Prop. 5 p. 126 of [7] because H\Gp9U(Lp)) = (1), (see Lemma A. 6 of [11]).

The definition of Lp implies that [/] is in the kernel of the restriction

map H2(GQ,U(LP)) ->H2(Gp9U(Lp)). The exactness of the above sequence

implies that there exists a 2-cocycle g in Z2(G0IGp9U(Lp)) such that

inf {[g]) = [/], and we may assume that g has been normalized in the sense

of cyclic groups. Consider the crossed product Δ{g9 Lp9 GJGP). Let a be

an element of U{LP) corresponding to g under the canonical identification

H2{GJGp9U(Lp)) = U(Lp)l[U(Lp)]e which holds because GJGP is a cyclic group.

Let a denote a root of the polynomial P(X) = Xs — a of LP[X]9 and define

L = Lp(a). It is easy to check that L is a splitting field for the crossed

product Δ{g9Lp9GJGp).

In order to prove that L is in fact a splitting field for the crossed

product Δ(f9S9GQ) consider the following diagram:
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H*(G0,U(S))

I
H%GJGP, 17(1,)) -> #2(G., tf (I,)) -» ίΠ(G,, tf (Z.,))

I I
H*{GJGp9U{L)) ->H*(G0,U(L))

where the horizontal maps are inflation and restriction, and the vertical maps

are the obvious ones. The commutativity of this diagram together with the

above observations implies that [/] is in the kernel of the map H2(G0, U(S))

-*HZ(GQ,U{L)). Therefore L is a splitting field for J(/,S,G0) and this

completes the proof.

PROPOSITION 1. 7. The radical of Δ{f, S, Go) is generated both as a left

and a right ideal by the radical of Δ(f9S9Gp).

Proof According to Prop. 1. 6 we may consider a splitting field L for

the crossed product Δ(f, S, Go) The definition of splitting field implies

that Δ(f,L,G0) is L-algebra isomorphic to the trivial crossed product

Δ(l, L, Go). We shall make use of this isomorphism to prove first of all

that the radical of J(/,L, Go) is generated as a right ideal by rad Δ{f,L, Gp).

For the exercise on p. 435 of [3] implies that rad Δ(l9 L, Go) is generated by

rad Δ(l,Z,,Gp). Let φ : GQ-+U(L) be the map which makes / cohomologous

to the trivial 2-cocycle in Z2{GQ,U(L)). Consider the L-algebra isomorphism

ψ : Δ{f,L,Go)-> J(1,L,GO) induced by φ. The restriction of ψ to Δ(f,L,Gp)

establishes an isomorphism of d(f,L,Gp) with Δ(l,L>Gp). From the above

observation concerning J(l, L, Go) we may conclude therefore that rad J(/, L, Gβ)

is generated as a right ideal by rad Δ{f, L, Gp).

Now we may prove that rad J(/, S, Go) is generated as a right ideal by

rad Δ(f,S,Gp). The radical of Δ(f,S,Gp) is contained in rad Δ(f,L,Gp),

(see Lemma 1. 4 of [11]) and so rad Δ(f, S, Gp) is contained in rad (/, S, Go)

by the above observation. The fact that [rad Δ{f, L, GQ)] Π Δ{f, S, Go) is

contained in rad Δ{/9 S, Go) (Lemma 2. 4 of [11]) now implies that the

right ideal generated by rad Δ(f, S, Gp) is contained in rad J(/,S,G0). To

obtain the opposite inclusion consider a disjoint right coset decomposition

Go = U Gpσt of Go relative to the subgroup Gp. The fact that rad Δ{/9 S, Go)

is contained in rad Δ(f9 L9 Go) (see Lemma 1. 4 of [11]) implies that an
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element δ of rad J(/, S, Go) may be written uniquely in the form δ = ̂ n,iUat

with each nt in rad Δ{f, L, Gp), since rad Δ(f, L, Go) is generated as a right

ideal by rad Δ(f,L, Gp). Each n< must be in Δ{f,S,Gp) since 5 is an

element of J(/, 5, Go) The intersection [rad J(f, L, Gp)] Π J(/, 5, Gp) is

contained in rad Δ(f, S9 Gp) by Lemma 2. 4 of [11]. Therefore each nέ is

in ra.d Δ{f,S,Gp), and this completes the proof of the fact that rad Δ{/9 S, Go)

is generated as a right ideal by rad Δ{f, S, Gp). A similar computation

shows that radJ(/,S, Gβ) is generated as a left ideal by rad Δ(f,S,Gp).

The following corollary follows at once from Prop. 1. 7 and shall be

useful in Section 2 of this paper (see Prop. 2. 1).

COROLLARY 1. 8. The radical of Δ{f, S, Go) is generated both as a left

and a right ideal by the radical of Δ(f,S,Gp).

Now we may prove the main theorem of this section.

THEOREM 1. 9. Let S denote the integral closure of a complete discrete rank

one valuation ring R in a finite Galois extension of the quotient field of R and let

G denote the Galois group of the quotient field extension. If [/] is an element of

H2{G,U(S)), then the following statements are equivalent:

(1) Δ{f,S,G) is a ΐl-principal hereditary order

(2) Gp is an Abelian group and Rf = (1)

(3) ^ = (1).

Proof We have already observed that Δ{f9S9G) is a Π-principal

hereditary order if and only if Δ(f, S,G) is a semi-simple ring and that this

in turn is equivalent to the semi-simplicity of Δ(f9 S9 Go). Prop. 1. 7 now

implies that Δ{f,S,G) is Π-principal if and only if Δ(f,S,Gp) is semi-simple.

According to Cor. 1. 4, Δ(f, S, Gp) is semi-simple if and only if it is a

field. Using Prop. 1. 10 of [11] we see that Δ(f, S, Gp) is a field if and

only if Gp is Abelian and Rf = (1). Therefore statements (1) and (2) are

equivalent. On the other hand, Δ{f,S,Gp) is semi-simple if and only if

Δ(f,S,C) is a field (Cor. 1. 4) which is equivalent to Rf - (1).

2. Wild ramification. The purpose of this section is to prove that

a crossed product Δ{f,S,G) is hereditary if and only if it is Π-principal in

the case when the residue class field extension S of R is separable. And

we present an example to show the necessity of the assumption that the
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residue class field extension be separable. In [6], Harada has proved that

if R is perfect, a crossed product Δ(f9 S, G) is hereditary if and only if S

is a tamely ramified extension of R. The proof of this fact suggested to the

author a way of viewing the more general problem considered here. Each

crossed product over a tamely ramified extension is Π-principal; so for the

purpose of this section we may as well restrict our attention to crossed

products over wildly ramified extensions.

Unless otherwise stated, throughout this section 5 shall always denote

a wildly ramified extension of a complete discrete rank one valuation ring

R. The first step is to reduce the problem to a study of the crossed

product Δ(f, S, Gp) where Gp denotes as usual the Galois group of the

quotient field of S over the quotient field of the maximal tamely ramified

extension of R in S. For Prop. 2. 1 we make no restriction on the

extension S of R.

PROPOSITION 2. 1. The crossed product Δ(f9 S, G) is hereditary if and only

if the subring Δ(f, S, Gp) is hereditary.

Proof According to Harada's criterion (Lemma 3 of [6]) a necessary

and sufficient condition for an order A to be hereditary is that there exist

an element a in A and a positive integer t such that (rad A)1 = a A = Aa.

For convenience of notation denote Δ(f,S9G) by Δ and the subring

Δ(f, S, Gp) by Δp let N = rad Δ and Np = rad Δp . Prop. 3. 1 of [11]

together with Cor. 1. 8 implies that N = NPΔ = ΔNP.

Let π denote a prime element of R. According to Thm. 6. 1 of [5],

the assumption that Δ is hereditary implies the existence of a positive

integer t such that Nι = πΔ because πΔ is an invertible ideal. We shall

show that Np~πΔp. The equalities N = NpΔ = ΔNP imply that πΔ=Nι-NpΔ.

Let G = U Gpat be a disjoint right coset decomposition of G relative to the

subgroup Gp. Using the fact that Δ{f,S,G) is a free left Δ(f,S,Gp)-

module with free basis {ua,y one may obtain the inclusion {NPΔ) Π Δp ciVJ,

from which it follows that πΔp is contained in Np. To obtain the

opposite inclusion, observe that Nρ is contained in (πΔ) Π Δp. Using the

fact that Δ(f> S, G) is a free left S-module with free basis {ua} for a in G,

one may obtain the equality (πΔ) Π Δp — πΔp, so that Np is contained in

πΔp. Therefore Np = πΔp = Δpπ since π is in ctrΔp . It now follows from

Harada's criterion that Δp is an hereditary order.
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The proof of the assertion in the other direction follows at once from

Harada's criterion together with the equalities N = NVΔ = ΔNV.

We proceed to prove that if Δ{f,S,G) is hereditary, then it is Π-

principal. The proof shall be indirect; so we assume that Δ(f,S,G) is an

hereditary order which is not Π-principal and contradict the assumption

that S is a wildly ramified extension of R.

Consider a decomposition C = £\x xEt of the center C of Gp into

a direct product of cyclic groups. We next observe that we may assume

that the restriction of / to ^ x Et is normalized in the sense of cyclic

groups. Since cohomologous 2-cocycles determine ίsomorphic crossed

products it suffices to prove the following lemma.

LEMMA 2. 2. There exists a 2-cocycle g in Z2(G,U(S)) cohomologous to f

such that the image of g under the restriction map Z2(G,U(S)) ->Z2(E ι9U(S)) is

normalized in the sense of cyclic groups for each i.

Proof Let ft denote the restriction of / to Et X E%. It is well known

(see p. 82 of [1]) that there exists a 2-cocycle g% in Z2(Ei9 U(S)) such that

fi is cohomologous to gt and gt is normalized in the sense of cyclic groups.

For each i let φi :Ei-+U(S) be the map satisfying gt((T,τ) = fi(σ9τ)φt(σ)φϊ(τ)l

φi(aτ) for all elements a and τ in Et, and note that 0,(1) = 1. We next

extend the φt to a map φ : G-+U{S) by defining φ(o) = φ^a) if a is in Et

and φ{σ) = 1 if o is not in any subgroup Et. It is easy to verify that the

2-cocycle g of Z2{G,U(S)) defined by g(σ,τ) = f{σ9τ)φ{σ)φa{τ)lφ(σir) has the

desired properties.

The assumption that Δ(f,S,G) is not Π-principal implies that the

radical group Rf of [/] is non-trivial according to Thm. 1. 9. Recall (see

Section 1) that Rf is by definition a direct product of cyclic groups

Rf = RftlX xRf,t where Rf>i is a subgroup of Et. Since Rf is non-

trivial we may consider the subgroup Qx of order p contained in the first

non-trivial component RfiX of Rf. Observe that the choice of x implies

that the crossed product J(/, S, Eλ x xE^-j) is a field, and that there exists

an element b in J(/,S,£iX x ^ - i ) such that f{p,p~λ) = bp where p

denotes a generator of Qx. Write b in the form b = 2 άaua with a in

Exx XEX^ and άa in S. Since Δif.SyE^ xEx^) is a commutative

ring of characteristic p, it follows that bv = 2 {aa)p{ua)
p . Observe that

£P = Σ {άa)
p{ua)

p with ord <r = p since &p is in S. Therefore the element
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b of Δ(f,S9Exx xEx-x) satisfying f(p,p~ι) = bv may be taken to be of

the form b = J]aaua where each element a has order p. Now let β denote

an element of Δ{f,S9Exx xEx^) in the preimage of b. Since U = S

where U denotes the inertia ring of S over R, the element β may be

chosen in such a way that β — Y^aaua where each a a is in U and each

element a of Eλx xEx-t has order p. The notation introduced in this

paragraph shall be in use throughout the rest of this section. The following

technical lemma shall be useful in proving that the non-triviality of the

radical group of [/] implies that Δ{f,S,G) is not hereditary when S is a

wildly ramified extension of R.

LEMMA 2. 3. Let p denote a generator of Qx and let βp~ι denote the element

of Δ(f,S,Exx XEX-X) defined by the equality βu9i = Upiβp~ι for 0 ^ i ^p — 1.

Then the element f{p, p~ι) - P Π j9p~' is in I P J C Λ S ^ X xEx).

Proof Recall that by Lemma 2. 2 we may assume that the restriction

of / to Et x Et is normalized in the sense of cyclic groups. In order to

make use of Props. A. 4 and A. 5 of the appendix, we first observe that

we can restrict our attention to a crossed product over an elementary

Abelian p-group. For l^i^x, let Qt denote the (unique) subgroup of

Ei with order p, and observe that QjX xQx is an elementary Abelian

p-group. Recall that β is of the form β = Y\a<sUa where each aa is in the

inertia ring U and each element a of Exx xEx-t has order φ, so that

β is in fact an element of the crossed product Δ{f,S,Q1x xQx).

The next step is to show that there exists an element a in the fixed

ring Sx of Qx = (p) such that βp = a mod Π2J(/,S,2?!X xEx). Consider

the crossed product Δ{f,S/Π^^x xQx) where / denotes the image of

/ under the natural map Z\Qxx xQx9U(S)) -^Z2{Q,x xQx9U(SIIL2S)).

According to Prop. A 4, the crossed product Δ(f9S/Π2S,QjX xQx) is a

commutative ring with characteristic p, so that the image β of β = Σ aau<s

in Δ{f, S/Π2S, Qi x xQx) satisfies the equalities βp = Σ (aa)
p{ua)

p

= Σ(£*)P/(*,<Γ1). The element Σ (^Γ/V, O of S/IPS is in the image of

the fixed ring SQ of ζ^x XQX under the natural map of S onto S/IPS

(see Prop. A. 5). It suffices therefore to let a denote an element of SQ in

the preimage of Σ (£*)*/(<*> <J~ι) to guarantee that βp = a mod
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Now we may complete the proof of the lemma. The congruences

Ap, P~ι) ~βp=0 mod UΔ(f9 S, Ex X xEΛ) and f(p, p~λ) - βp s f(p9 p-*) - a

mod Π 2J(/,S,£Ίx xEx) imply that f{p,p-ι) — a = Q mod US since

f{p> P'1) —« is in S. The fact that the extension S of Sx is a wildly

ramified inertial extension of degree p implies that f(p, p~ι) — a = 0 mod

IPS since f{p9p~l) — a is in Sx. On the other hand, the fact that

Δ{f,S/IPS^x xQx) is a commutative ring implies that f{p9p~1) — βp

= fipfP'1) - W'1 βp) mod Π 2J(/,5,£Ίx xEx). By combining the

above congruences we may now conclude that f{p,p~1)—ΊIβί)l is in

Π 2 J(/,5,^χ. xEx).

PROPOSITION 2. 4. Let S be a wildly ramified extension of R9 and [/] an

element of H2{G, U(S)) such that Rf is non-triviaL Then the crossed product

J(f,S,G) is not an hereditary order.

Proof The proof is by contradiction. Suppose therefore that J(/, S, G)

is hereditary. Then the subring Δp = J(f, S, Gp) is hereditary according to

Prop. 2. 1. The fact that Jp/rad Δp is a field (Cor. 1. 3) now implies that

Δp is a maximal order with the property that all ideals are two-sided and

are powers of the radical (see Thm. 3. 11 of [2]).

Throughout the proof of this proposition we shall assume the notation

introduced in the statement of Lemma 2. 3. The ideals UΔP and

(ufi — β)Δp are therefore two-sided and either UΔP is contained in (uP — β)Jp

or the opposite inclusion holds. Since the residue class ring ΔPIUΔP is not

semi-simple, we may conclude that the ideal Π Δp is contained in

(up — β)Δp. This inclusion of ideals shall be used to contradict the

assumption that 5 is a wildly ramified extension of R.

According to the above we may write Π = {uP — β)δ for some element

δ of Δp. Observe that the elements of Ex may be taken as part of a

system of representatives of a disjoint coset decomposition Gv

= U (£αx xEx~ι)a of Gp relative to the subgroup ϋ^x x i ^ - i .

Therefore δ has a (unique) expression in the form δ = 2 uaδa with the δa
a

in the crossed product Δ{f9S9Eλx x ^ - i ) and so Π = (ufi — β) Σ uaδa.

Now {up — β) 2 Uaδσ = 2 / (p, σ)upaδa — 2 Uσβ^δa where βΓ1 denotes

the element of Δ(f9S,Exx xEx^) defined by the equality βua = Uoβ*'1.

Let τ = pa. From this change of variable we obtain the equality

Π =Σ^τ[/Γ~1(p,/r1τ)<5p-1r — βτ~ιδτ]. Using the fact that the elements {uβ<}
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form part of a free basis for d(f,S,Gp) over Δ{f,S,Eγx xEx-x) together

with the fact / is normalized on Ex x Ex in the sense of cyclic groups we

may now obtain the equalities

Π = f(p, p^δo-i - βδ,

0 = δpt-i — β^δpi for 0 < i < p,

which in turn combine to imply that Π = [f{p,p~ι) — Π βQ~ι]δP-ι.

Now we may complete the proof of the proposition. For according

to Lemma 2. 3 the element f(ρ, p'1) — Π β"'* is in the submodule

U2Δ{f,S,Gp). The fact that Δ{f,S,Gp) is a free left S-module with free

basis {w*} for a in Gp now implies that the equality Π =[f{p,ρ~1)

— Π βpt]δp-i cannot hold. This contradiction completes the proof of the

proposition.

Thus we have established the following main theorem.

THEOREM 2. 5. Let S denote the integral closure of a complete discrete rank

one valuation ring R in a finite Galois extension of the quotient field of R, and G

the Galois group of the quotient field extension. If the residue class field extension

S z> R is separable, then for each element [f] of H2{G, U(S)) the following

statements are equivalent:

(1) J(f,S9G) is an hereditary order

(2) Δ(f,S9G) is a U-principal hereditary order.

Finally, we present an example to show the necessity of the assump-

tion that the residue class field extension be separable.

EXAMPLE 2. 6. Let R = Z[X](2) be the localization of the ring of

polynomials with integral coefficients at the minimal prime ideal generated

by 2. Let K = k{X'2) where k denotes the quotient field of R, and let

G = {1, σ} denote the Galois group of K over k. The integral closure of

R in K is S = R[X^] and the residue class field extension S of R is purely

inseparable of degree two. Let / be the element of Z2{G, U{S)) correspon-

ding to the element 2 — X of U(R) under the canonical identification

#2(G, U(S)) = U(R)IN(U(S)), and consider the crossed product Δ = J(/, S, G).

An easy computation shows that rad Δ = {ua—X^)Δ is a free right J-module,

so that Δ is an hereditary order according to the Corollary to Thm. 2. 2

https://doi.org/10.1017/S0027763000026593 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000026593


/7-PRINCIPAL HEREDITARY ORDERS 55

of [2]. However, Δ is not a Π-principal hereditary order since UΔ is

strictly contained in rad Δ.

3. The conductor group. Harada has shown in [5] that the

number of maximal two-sided ideals in an hereditary order A in a central

simple algebra Σ over the quotient field of a discrete rank one valuation

ring R is equal to the length of a saturated chain of orders in Σ

containing A. We are interested therefore in determining the number of

maximal two-sided ideals in a Π-principal hereditary order Δ{f,S,G). In

[10] the author proved that the number of maximal two-sided ideals in a

'crossed product Δ(f,S9G) over a tamely ramified extension S of R is equal

to the order of the conductor group Hf of Δ{f,S,G) where Hf is defined

to be the maximal subgroup of the inertia group of 5 over R such that

[/] is in the image of the inflation map H2{GIHf9U{S))-+H2(G,U(S)). In

this section we shall generalize the notion of the conductor group to the

case of any Π-principal hereditary order Δ(f,S,G) and then observe that

the number of maximal two-sided ideals in Δ(f,S,G) is equal to the order

of its conductor group.

The number of maximal two-sided ideals in a Π-principal hereditary

order Δ{f9 S, G) is equal to the number of primitive orthogonal idempotents

required to generate the center of the (semi-simple) ring Δ{f,S,G).

PROPOSITION 3. 1. Let S denote the integral closure of a complete discrete

rank one valuation ring R in a finite Galois extension of the quotient field of R,

and G the Galois group of the quotient field extension. Then the center of Δ{/9 S, G)

is contained in the center of Δ{f, 5, Go) where Go denotes the inertia group of S

over R.

Proof Consider the separable closure Ό of R in S, and let θ denote

an element of Ό for which Ό — R{θ). A non-zero element δ = 2 saua (with

sa y= 0) in the center of Δ(f, S, G) has the property that δθ = θδ. Now

δθ = Σ Saθaua so that δθ = θδ if and only if θa = θ for each a. But θ' = θ

if and only if a is in Go since G/GQ is the Galois group of Ό over R.

Therefore δ is in the subring Δ(f9 S, Go).

The next two propositions pertain to the center of Δ(f9 S, Go). "Recall

(Prop. 1. 1) that the inertia group Go is the semi-direct product / x Gp

where Gp is a p-group normal in G, and the order e of / is relatively

prime to p.
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PROPOSITION 3. 2. The center of Go = / x Gp is of the form Jc x Cc

(direct, product) where Jc is a subgroup of J and Cc is a subgroup of the center of

Gp. Furthermore, Jc is a normal subgroup of G.

Proof Let pτ denote an element of the center C(G0) of Go, where p is

in / and τ is in Gp. To prove the proposition it suffices to show that

both p and τ are in C(G0). To prove that p is in C(G0) we first observe

that the fact that / is an Abelian group may be used to show that τ

commutes (element-wise) with every element of /. Let n denote the order

of τ. Then (pτ)n — pn since τ commutes with p, so that pn is in C(Gύ)m

The fact that the order of p is relatively prime to n implies that p is in

C(G0). We may conclude at once that τ is in C{G0) since pτ and p are

in C(G0).

We next show that Jc is a normal subgroup of G. Let a denote a

generator of the cyclic group Jc, and τ an element of G. Since a is in

Go and Go is a normal subgroup of G, it follows that τaτ~ι is in Go. Let

p denote the image of an element p of G under the natural map of G

onto G/Gp. The homomorphic image J of J under this map is a normal

subgroup of G\GV since / is the inertia subgroup of G\GP. From this it

follows that the subgroup Jc of the cyclic group / is also a normal

subgroup of GjGp . Therefore τσ = σ*τ for some integer i, and so we may

write τa = paιτ for some element p of Gv. It remains to show that p = 1.

Let n denote the order of σ and observe that n is relatively prime to p .

Then τστ"1 — pσi has order n. The fact that a is in Jc implies that

1 = [pa1)1"1 = pn . Since p is in the p-group Gp and {n, p) = 1, we conclude

at last that p = 1.

PROPOSITION 3. 3. The crossed product Δ{f, S, Jc x Cc) is contained in the

center of J (/ , S, Go).

Proof In order to establish the inclusion J(f, 5, Jc x Cc) c ctrJ(/, S, Go)

it suffices to show that every element of the form uΛ with a in Jc x Cc

commutes with every element of the form u@ with β in Go. Now &<*#/3

= UβU* if and only if f{a,β) = f{β9a) since α is in the center of Go.

It remains to show that f{a,β) = f{β,a) for each a in / c x Cc and β

in G o. Write a in the form a = aιτι with σ1 in Jc and ^ in Cc, and

write β in the form β = a2τ2 with σ2 in / and r2 in Gp . We first observe
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that f(σ2τ29σί) = f(σ19σ2τ2). For the equalities f(σ2τ29σ1)f(σ29τ2)=f(σ29τ2σ1)f(τ29σί)

and f{a29 σxτ2) f(σ19 τ2) = f(σ2σ19 τ2) f(a29 τx) together imply f(σ2τ29 σx)

0l)f[*29 *l) 1/(029 U) /(<*19 *i) S m C e ^ 1 = <^2 NθW

according to Lemma A. 1 of [11] because the order of τ2

is a pth power. Therefore f((r2τ29σ1)=/{σ2σ19τ2)/(σ29σί)lf(σ29τ2). On the

other hand, the associativity property of / implies that /(<yί9σ2τ2)f(02,τ2)

=/(^i^2>^2)/(^i>^2) Since / is a cyclic group it follows that /(tfi,tf2)

= f(*29 *i). Therefore f(a2τ29 aλ) = f(σ19 a2τ2).

Now we may prove that f(oxτX9a2τ^ = f(ΰ2τ29aγτx). The equalities

f(*iTi9 0z?z) f{<Ί> *i) = / W ^1^2*2) f(*i9 ^2^2) and /{σ19 ΰ2τ2τ^ f(σ2τ29 τx)

= f(kaιa2τ29 τ1)/(<;1, σ2τ2) imply that f(pxτX9 a2τ2) = f{axa2τ29 zx)f(al9 σ2τ2)f(τί9 a2τ2)\

since τxa2τ2 = ΰ2τ2τx . On the other hand, f(σ2τ29a1τι)f{a19τλ)

*i9?df (02*29 <*i) Now f(τl9a2τ2) = /(a2τ29τ1) by Lemma A . I of [11],

and f(ol9σ2τ2) = f(a2τ29ΰ1) by the above observation. Therefore f((yιτl9σ2τ2)

= f((j2τ29σ1τ1) and this completes the proof.

Observe that for Props. 3. 1, 3. 2 and 3. 3 we did not need to assume

that Δ(f,S9G) is Π-principal.

PROPOSITION 3.4. If the crossed product J(/,S,G 0 ) is Π-principal, then

the center of Δ(f9 S, Go) is contained in Δ(/9 S9 Jc X Gp).

Proof. Recall that the assumption that Δ(f,S9G0) is Π-principal implies

that Gp is Abelian (Thm. 1. 9). Since Go is the semi-direct product

/ X Gp9 the elements of / may be taken as representatives of a disjoint

coset decomposition of Go relative to the (normal) subgroup Gp. An

element δ of Δ(/9S9G0) has therefore a unique expression in the form

d = ̂ daUa with each a in / and each δa in the subring Δ(/9S9GP)

according to Lemma 2.5 of [11], If o = ̂ jdaua (with δa ψ 0) is in

ctr Δ(f9 S9 Go) then uτδ — δuτ for each element τ of Gp. By an easy

computation one may obtain the equality δuτ = Y\δa[f(<y9τ)lf(τa

9a)]uτaUτ

where τa is the element of Gp defined by aτ = τσσ. The fact that

uτδ = δuτ now implies that δa = δa[f(a9τ)jf(τa

9a)]uτa for each <;. The

assumption that Δ(f9 S, Go) is Π-principal implies that Δ(/9S9GP) is a field

(see Thm. 1. 9). Therefore 1 = [f(σ9τ)l/(τa

9σ)]uτa which implies that uτa is

an element of S and so τa must equal 1. We have shown that each a in

the expression δ = J]δaua for an element δ in the center of Δ(/9S9G0)

commutes with each element of Gp9 and this completes the proof.
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Combining Props. 3. 3 and 3. 4 we may now determine the idempo-

tents in the center of d(f,S,G0) when d(f,S,G) is Π-principal.

PROPOSITION 3. 5. If d(f,S,G) is a U-principal hereditary order then the

idempotents in the center of d{f, S, Go) are precisely the idempotents of the commutative

ring J(f,S,Jc).

Proof Prop. 3. 4 implies that the idempotents in the center of

J(/, S, Go) are present in the commutative ring d{f,S, Jc x Gp). Let d

denote an idempotent element in J{f, S, Jc x Gp) and observe that d has an

expression in the form d = J]dτuτ with each τ in Gp and dτ in d(f,S,Jc).

The assumption that d is an idempotent implies that dn = d where n

denotes the order of Gp . The fact that J(f, S, Jc x Gp) is a commutative

ring of characteristic p implies that dn = Σ (dτ)
n{uτ)

n since n is a φth power;

thus dn is in d{f,S,Jc) since (uτ)
n is in S by the choice of n. Therefore

d is in J(/,S,/C).

On the other hand, Prop. 3. 3 implies that each idempotent of Δ(f9 S, Jc)

is in the center of J(/, S, Go).

If d(f,S,G) is Π-principal, then Props. 3.1 and 3.5 together imply

that the idempotents in the center of J(/, S, G) are precisely those

idempotents of J(/, S, Jc) which are also in the center of J(/, S, G). This

motivates us to generalize the notion of the conductor group in the

following way.

DEFINITION. Let d{f,S,G) be a Π-principal hereditary order, and let

Je denote the subgroup of the inertia group defined in Prop. 3. 2. Then

the conductor group Hf of J(f,S,G) is defined to be the maximal subgroup

of Jc with the property that [/] is in the image of the inflation map

H2{GIHf,U{S))-+H2(G,U{S)) where / denotes the image of / under the

natural map Z2(G, U(S)) -> Z2(G, U{S)).

Observe that Jc = Go when S is a tamely ramified extension of R.

Therefore the above definition of conductor group is indeed a generalization

of the definition given in [10] for the tamely ramified case.

The arguments used in Section 2 of [10] may now be extended to

prove that the number of maximal two-sided ideals in a Π-principal heredi-

tary order is equal to the order of its conductor group.

LEMMA 3. 6. Let c denote the order of Jc. For each element τ of G we
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have τ(ζ) = ζn{τ) for each cth root of unity ζ in S where n{τ) is the integer defined

modulo c by the equality TOT'1 = σn(T) and a denotes a generator of Jc.

Proof Consider the maximal tamely ramified extension T of R in S,

and recall (Prop. 1. 1) that f contains a primitive eth root of unity where

e denotes as usual the order of /. The image / of / under the natural

map of G onto G/Gp is the inertia group of T over R. Denote the image

of an element τ of G in G/Gp by τ. Then Prop. 2. 1 of [10] implies that

τ(ζ) = ζn(ΐ) for each eth root of unity ζ in 5 where n(τ) is the integer

defined modulo e by the equality τώτ'1 = ωn{τ) where ω denotes a generator

of /. Let a denote a generator of Jc. The equality τaτ~ι = σniT) holds

because Jc is a normal subgroup of G. This is sufficient to prove the

lemma.

It is convenient to introduce the following subgroup of Jc in order to

determine the number of primitive orthogonal idempotents in ctr J(/, S, G).

DEFINITION. Let Γf denote the maximal subgroup of Jc with the

property that the image of [/] under the restriction map H2{G, U(S))

-+H2{Γf,U{5)) is trivial.

Observe that the conductor group Hf of d{f,S,G) is a subgroup of

Γf. An easy computation shows that / is cohomologous to a 2-cocycle

whose restriction to Γf X Γf is trivial. Thus we shall always assume that

/ is a properly normalized 2-cocycle; i.e. that /(<r,τ) = 1 for all a and τ in

The next two lemmas are essentially the same as Props. 2. 2 and 2. 3

of [10] and so we refer the reader to [10] for their proofs.

LEMMA 3. 7. The number of simple components of J (/ , S, Jc) is equal to

the number of simple components of d{f,S,Γf) and the primitive orthogonal

idempotents are given by V{ = — 2 (ζiUr)k for l^Li^Lm where m is the order of2
Γf and the ζt are the m distinct mth roots of unity.

LEMMA 3. 8. Let f be a properly normalized 2-cocycle and p an element

of Γf. Then the cyclic group generated by p is contained in Hf if and only if

f(τ,p) = f{pMτ\τ) for each element τ in G.

Combining these three lemmas we may now obtain the following

result.
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PROPOSITION 3. 9. The number of simple components of Δ(f, S, G) is equal

to the order of the conductor group Hf.

Proof The number of simple components of Δ(f, S, G) is equal to the

number of primitive orthogonal idempotents required to generate its center.

According to Props. 3. 1 and 3. 5 the idempotents in ctr Δ(f, S, G) are

precisely those partial sums P of elements Vt such that P is in ctr J(/, S, G)

where the Vt are defined in Prop. 3. 7. Let P = Σ Vt be any partial sum

of elements Vt (with a suitable reordering) and observe that P is in

ctrJ(/, S, G) if and only if uτP=Puτ for every τ in G. By an easy

computation we obtain that

m

Lemma 3.6 implies that *•(?<*) = ?i*nCr) so that uτP = Puτ if and only if

f(τ,7k) = f(rkn(T),τ) for every r in G and every integer k for which Σ τ{ζ*)

is non-zero. Prop. 3. 8 now implies that P is in ctr J(/, S, G) if and only

if P is in the subring d(f,S,Hf). Therefore J(/,S,G) has precisely as

many simple components as d(f,S,Hf) and this is equal to the order of

Hf since / = 1 on Hf x Hf .

The main theorem of this section follows at once from Prop. 3. 9.

THEOREM 3. 10. The number of maximal two-sided ideals in a U-principal

hereditary order is equal to the order of its conductor group.

Appendix. Cohomology. In this appendix we shall study the second

cohomology group HZ{G, U(S)) where S is a wildly ramified inertial extension

of a complete discrete rank one valuation ring R for which the Galois

group G of the quotient field extension is an elementary Abelian p-group.

The results are used in Section 2 of this paper.

We first prove two preliminary facts which may be presented in a

more general context.

LEMMA A. 1. Let G be a finite group, A a left G-module, and (τ) the

cyclic group generated by the element τ of G. Let f denote an element of Z2(G,A)

such that the image of f under the restriction map Z2{G,A)-+Z2((τ),A) is

normalized in the sense of cyclic groups. Then
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for each a in G commuting with τ where n denotes the order of τ.

Proof. From the associativity property of the 2-cocycle / we obtain at

once the equalities f\ύτ"\τ)f\ό9τ~ι) = fσ(τ~\τ)9 f\τ~ι(j9τ)f'(τ~ί

9σ) = f\τ'x,στ)f^\ύ,τ)

and f{τ"ι

9τa)fτ~ι{τ9σ) — f{τ"ι

9τ) which together imply that

We next obtain an expression for f{τn'\σ). Consider / ( τ ^ " 1 , ^ for

i ;< n — 1. From the associativity property of / together with the fact

that / is normalized on (τ) x (τ) in the sense of cyclic groups we obtain

that / (τ"-*-1, τa) f^'1 (τ, σ) = f(τn'\ a) and / ( r ^ " 1 , aτ) f^'1 (<r, τ)

= /(τw~<~1<r,τ)/(τn~<" 1,<7). Together these equalities imply that

Combining these equalities we finally obtain that

On the other hand, by combining the equalities f{(r9τ
n'"ί)

= f{aτn'ί-1

9τ)f{a9τ
n-ί''1) for l^i^n-1 we obtain that /(^τ7*"1)

= U2f(στn-\τ).

Substituting these expressions for f(τ"~x

9σ) and /(^τ74"1) into the

equality established in the first paragraph of the proof we conclude that

DEFINITION. Let G = Ex x x Et be a decomposition of an Abelian

group G into a direct product of cyclic groups, and A a left G-module.

An element / of Z2{G9Λ) which is of the form / = fx - ft where each

element /< of Z2{Ei9Λ) is normalized in the sense of cyclic groups is said

to be normalized in the sense of Abelian groups; i.e. / is normalized in the sense

of Abelian groups if and only if f{σx σt9 ω^ ωt) = /(<TI,G>I) f(βt><»t)

where at and ωt are in Et.

LEMMA A. 2. Let G = £Ί x x Et denote a decomposition of an Abelian

group G into a direct product of cyclic groups, and A a left G-module. For each
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element f of Z2{G,A) there exists a 2-cocycle g of Z2(G9A) cokomologous to f such

that

1). g(σi9 Oj) = 1 for all elements Oi in Et and όj in Ej with i < j

2) the restriction of g to Eι X Et is normalized in the sense of cyclic groups

for 1 :< i < t .

Proof An argument similar to that of Lemma 2. 2 shows that / is

cohomologous to a 2-cocycle h satisfying assertion 2). Now define a

map0 : G ^A by setting φ{τ)=h(σi9σj) if τ is an element of the form τ = σ^j

with <fi in Et and a5 in Ej and i < j , and φ(τ) = 1 otherwise. It is easy

to verify that the 2-cocycle g defined by g{τ, p) = h{τ9 p)φ{τ)φτ{p)lφ{τρ) has

the desired properties.

Now we proceed to establish results concerning cohomology and wild

ramification.

PROPOSITION A. 3. Let S be a wildly ramified inertial extension of a

complete discrete rank one valuation ring R such that the Galois group G of the

quotient field extension is an elementary Abelian p-group, and let f denote the image

of an element f of Z2{G9U{S)) under the natural map Z2{G9U{S)) -* Z2{G9U{S/U2S)).

If f is normalized in the sense of Lemma A. 2, then f is normalized in the sense

of Abelian groups.

Proof Observe first of all that the action of G on S/Π2S induced by

the action of G on S is trivial because G is the first ramification group of

S over R.

The proof of this proposition is facilitated by choosing judiciously a

decomposition of the elementary Abelian p-group G into a direct product

of cyclic groups. Let G2 denote the second ramification group of S1 over

R9 i.e. G2 is the set of all elements a of G such that σ(s) Ξ= S mod IPS for

all 5 in S. An elementary p-group is completely reducible. Therefore G2

is a direct factor of G according to the theorem on p. 148 of [8], from

which it follows that G is isomorphic to G/G2 XG2 in a natural way. Let

G/G2 = ζ)j x x Qs be a decomposition of G/G2 into a direct product of

cyclic groups, and let G2 = Qs+1 x x Qt be such a decomposition of G2,

so that G = Qx x x Qt.

For l ^ i ^ t define Si to be the fixed ring of Qi9 and let Π* denote

a prime element of Si. If l^i^s then the second ramification group
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Gψ of S over St vanishes. For, an element a of Gψ has the property

that σ[s) = s mod IPS for each s in S, and therefore a is in G2 Since

G/G2 Π G2 = (1) we conclude that a = 1. On the other hand, for

s + l ^ i ^ t it is easy to see that Gψ = Qt.

Let Ni'. S-+Si denote the norm function from S into St. We next

observe that for elements at of Qt and a5 of Q} with / < j , the congruences

Ni{f{σj9σi))^l mod Π^S* and Nj{f{ΰj9a%))^l mod Π/S, hold. For the

assumption on / together with Lemma A. 1 implies that Nj{f(<fj9σi))

= /(</%*/)//*'(</S<7/) Now f{aγ9σ3) is in S, (see p. 82 of [1]). Therefore

fai{aγ,όj) ^fipΫiύj) mod Π/Sy since the Galois group of the quotient field

extension of S ; z> 7? is G/Q; , and hence Nj(f{σj9σi)) = 1 mod Π/Sy. A

similar application of Lemma A. 1 shows that Ni{f(aj9σ^)^l modϋ^S*.

We show next that f{aj9σ^)^l mod IPS for all a5 in Q i and σt in Qt

with i < . Consider the filtration U{SΫ of U{S) defined on p. 74 of [7],

and observe that / ( ^ , ^ ) = 1 modΠS according to Prop. A. 1 of [11] so

that f{σj9σi) is in U{SY. If s<j then the second ramification group of S

over Sj is non-vanishing. Therefore the map Nj$1 : U(SY/U(S)2-+U(Sj)
ίIU{Sj)

2

is an injection according to Cor. 1 on p. 93 of [7], and so /(*y,<r<) = l

mod IPS. On the other hand, if i<j^s then the second ramification

group of S over Sd vanishes. Therefore the sequence

(o) —* Qj - ^ u(sy/u(sy ^ > msy/msy

is exact according to Cor. 1 on p. 93 of [7] where θltj is induced by the

map<r->IF/Π of Qj into U{S)K The fact that Nj{f (σj9 σt)) Ξ= 1 mod Π/Sy

now implies that / ( ^ ^ Ξ Π ^ / Π mod£/(S)2 for some element ωj of Q y .

In a similar way, the fact that Ni{f(σj9σi)) = l mod Π^S* implies that

f{σj9 βi) = Πωi/Π modί/(S)2 for some element ωέ of Qί. Together these

congruences imply that ΠωVΠα)i is in ί/(S)2 from which it follows that

Π^^"1 — Π is in IPS and so ωόωfι is in the second ramification group G2

of S over R. But ωt and ωj are elements of G/G2 . The fact that

G/G2 Π G2 = (1) implies that ωj = α><, and so ωy = 1 since Q* Π Oy = (1).

This completes the proof of the fact that f{<yj9σ^ == 1 mod Π25.

We have shown that f{a59aί) — f{σί9ύj) — 1 for all σt in Q̂  and <7j in

Qj when / f= j . A computation similar to that of Cor. A. 2 of [11] shows

that this is sufficient to guarantee that / is normalized in the sense of

Abelian groups.
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PROPOSITION A. 4. Let S denote a wildly ramified inertia! extension of a

complete discrete rank one valuation ring R such that the Galois group G of the

quotient 'field extension is an elementary Abelian p-group, and f an element of

Z2(G,U(S)). Then the crossed product Δ(f, S/Π2S, G) is a commutative ring where

f denotes the image of f under the natural mapZ2{G,U{S)) ->Z2(G,U(S/Ώ.2S)).

Proof The 2-cocycle / is cohomologous to an element g of Z2{G,U(S))

which is normalized in the sense of Lemma A. 2. The fact that g is

normalized in the sense of Abelian groups (Prop. A. 3) together with the

fact that G acts trivially on S/IPS implies that the crossed product

Λ(g,S/U2S,G) is a commutative ring. Since / is cohomologous to g it

follows that J(/,S/Π2S,G) is isomorphic to J(</, S/IPS, G) and this completes

the proof of the proposition.

PROPOSITION A. 5. Let S denote a wildly ramified inertial extension of R

such that the Galois group G of the quotient field extension is an elementary Abelian

p-group, and let G = ftx x Qt be a decomposition of G into a direct product

of cyclic φ-groups. Let f be an element of Z2(G9 U(S)) with the property that the

restriction A of f to Qtx Qt is normalized in the sense of cyclic groups for each i.

Then there exists an element at in U(R) such that f (σif σf1) = at modUpS for

each i where at denotes a generator of Et.

Proof Let S* denote the fixed ring of Qt and Π^ a prime element of

Si. Recall that St = R[Ui] according to Cor. 3-3-2 of [9] where the

brackets denote ring adjunction. Therefore the element /(<;*, tf/"1) of Si

may be written in the form fi^σf1) = bQ + δjΠ* + . . + bm^xlli

m^1 with

coefficients in R, where m denotes the order of G/Qi. Since Π { = 0

mod IPS it suffices to choose at = bQ to prove the proposition.
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