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1. Introduction. 

The purpose of the present paper is to give an introduction to the nomencla-
ture, and a few of the results, of helio- and asteroseismology. I t is hoped 
that this may provide a useful background for the more specialized reviews, 
and the contributed papers, in these proceedings. Other recent , general 
reviews are , e.g., Deubner & Gough (1984) , Leibacher et al (1985) , and 
Christensen-Dalsgaard et al (1985a) . 

Sect ion 2 gives a br ief overview of the observations of solar and stellar 
oscillations. In Sect ion 3 I discuss the behaviour of the oscillations, on the 
basis of both computations and asymptotic theory. Finally Sect ion 4 gives a 
small tas te o f the results obtained by means of helioseismology. 

2 . OBSERVATION OF SOLAR AND STELLAR OSCILLATIONS. 

Oscillations with small amplitudes of a spherical body can be separated into 
normal modes, each of which has a harmonic dependence on time, and 
depends on the spherical coordinates θ and φ (co-latitude and longitude) as a 
spherical harmonic. Thus the displacement for a single mode can be written 

6r(r ,0,çp,t) = Re f r ( r ) Y ï a r • f h ( r ) -a* 
sind 

-iui (1) 

where a 0 and a^ are unit vectors in the r , θ and φ directions. Here Yf 
is a spherical harmonic, and the variation of the displacement with the dis-
tance r from the centre is determined by the eigenfunctions f r ( r ) and Çh(r). 
The mode is characterized by three wave numbers: η is the radial order 
which, roughly, gives the number o f zeros in f r ; Ζ is the degree, and m, 
which must be between -Z and Z, is the azimuthal order of the mode. 

In addition to the angular frequency ω, which is used in equation (1 ) , 
the cyclic frequency u = ω/ (2π) = 1/P, is commonly used, particularly in dis-
cussions of observed frequencies; here Ρ is the oscillation period. 
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The degree is related to the horizontal wavenumber feh and wavelength λ 
of the mode a t radius r by 

(2) 

where L = JZ(Z+1). The special case Ζ = 0 corresponds to radial oscilla-
tions, where the star expands or contracts spherically. Finally \m\ is twice 
the number o f zeros around the equator. 

From observations of the variation of the oscillations over the surface 
of the Sun, Ζ and m can in principle be determined directly. For observa-
tions of other stars, on the other hand, on is in general limited to measure-
ments in light integrated over the disk o f the star. The resulting cancella-
tion between regions with positive and negative perturbations strongly 

Figure 1. Schematic illustration of the oscillations observed in 
the Sun. The 5 min oscillations are standing acoustic waves. The 
/ modes, which are essentially standing surface gravity waves, 
have been observed a t high degree. The identity o f the long 
period modes has not been definitely established, but they are 
probably standing gravity waves of low degree. The hatching indi-
ca tes the region in Ζ that can be observed in light integrated 
over the disk, as is generally the case for stars. 

https://doi.org/10.1017/S0074180900157638 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900157638


AN OVERVIEW OF HELIO- AND ASTEROSEISMOLOGY 5 

reduces the sensitivity to modes with Ζ > 4 (e.g. Christensen-Dalsgaard & 
Gough 1 9 8 2 ) . Such observations therefore only give information about low-
degree modes. 

In general the frequency u - unZm depends on all three wave numbers. 
However i f rotation or other departures from spherical symmetry are ignored, 
ï / n i m does not depend on m. This follows from the fac t that in this case 
there is no preferred axis in the star; since m depends on the choice of 
coordinate axis, the physics of the oscillations, and hence their frequencies, 
must be independent of m. For slow rotation a modal description as in 
equation ( 1 ) is still possible, provided that the rotation axis is chosen as 
coordinate axis. As discussed in Sect ion 4 , the dependence of i/n£m on m 
can then be found from a perturbation analysis; rotation introduces a split-
ting in ι/ of order τηΩ /2π, where Ω is an average of the angular rotation 
frequency. 

Figure 1 gives a schematic illustration, neglecting rotation, of the 
observed modes of solar oscillation in an Z-v diagram, where ν is plotted as 
a function of Ζ for each value of n. The 5 min oscillations have frequen-
cies between about 2 and 4 mHz, and extend in Ζ from 0 to about 1 0 0 0 , 
where the observations are restr icted by seeing in the Ear th ' s atmosphere. 
They have been studied with a variety of techniques; the most detailed 
observations have so far been made in Doppler velocity (e.g. Deubner, Ulrich 
& Rhodes 1 9 7 9 ; Claverie et al 1 9 7 9 ; Grec , Fossat & Pomerantz 1 9 8 0 ; Duvall 
& Harvey 1 9 8 3 ) , but they have also been seen in irradiance measurements 
from the SMM satell i te (Woodard & Hudson 1 9 8 3 ) . These oscillations are 
identified with standing acoustic waves, or ρ modes, of high radial order or 
degree. At intermediate frequencies, between 0 .1 and 2 mHz, there have 
been reports, although not substantiated by other observing techniques, of 
oscillations observed in the solar limb intensity (e.g. Hill & Caudell 1 9 8 5 ) . 
At even lower frequencies, corresponding to periods of more than 2 hours, 
there have been observations of a number of modes, both in Doppler velocity 
(e.g. Severny, Kotov & Tsap 1 9 7 6 ; Brookes, Isaak & van der Raay 1 9 7 6 ; 
Scherrer & Wilcox 1 9 8 3 ) and, somewhat less directly, in intensity (e.g. 
Fröhlich & Delache 1 9 8 4 ) . Among these, the 1 6 0 min oscillation has been 
studied since 1 9 7 4 , and may have maintained phase throughout this period 
(cf. Henning & Scherrer , these proceedings; Severny, Kotov & Tsap, ibid.). 
The oscillations have been seen in integrated light; thus i f they are linear 
modes of the Sun, their degrees are low. Furthermore oscillations of the 
Sun with periods in excess of about 1 0 0 min must be standing gravity waves, 
or g modes (Christensen-Dalsgaard, Cooper & Gough 1 9 8 3 ) . However a defin-
ite identification of the oscillations has not been possible. 

The 5 min oscillations are the only modes where determination of π and 
Ζ has been made. Consequently helioseismology has up to now principally 
been based on these modes. A character is t ic feature is that their distribu-
tion of power as a function of frequency, and the average amplitude per 
mode, is largely independent of Z (Libbrecht et al 1 9 8 6 ) . The distribution 
for low-degree modes is illustrated by the observed power spectrum shown on 
Figure 2 . The maximum velocity amplitude for a single mode is about 15 
c m / s e c , corresponding to a amplitude in relative intensity of about 10" 6 . The 
mode lifetimes appear to be strongly dependent on frequency (Grec et al 
1 9 8 0 ; Isaak 1 9 8 6 ; Libbrecht & Zirin 1 9 8 6 ) , varying from about a day a t high 
frequency (as directly visible in the width of the peaks on Figure 2 ) to 
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Figure 2 . Power spectrum of solar oscillations, obtained from 
Doppler observations in light integrated over the disk of the Sun. 
The ordinate is normalized to show velocity power per frequency 
bin. The data were obtained from two observing stations, on 
Hawaii and Tenerife, and span 53 days. (See Claverie et al 
1984) . 

possibly several months a t the lowest frequencies observed. As is also visible 
on the figure, a t low degrees the peaks are approximately uniformly distri-
buted in frequency. This is also predicted by asymptotic theory (cf. equa-
tion (9) below), and can be used as a signature in the search for solar-like 
stellar oscillations. 

The distribution of power a t higher degrees is illustrated on Figure 3. 
This shows the ridge structure of the oscillations, each ridge corresponding 
to a definite value of the radial order n. In the original data the ridges can 
be followed down to Ζ = 1, thus connecting up with the observations shown 
on Figure 2. The ridges continue to degrees as high as about 1000 (e.g. 
Deubner et al 1979) where the order can be determined directly. This has 
enabled the identification of the radial order for all observed 5 min modes. 

Given the mode identification, we can make a direct comparison between 
the observed frequencies, and the frequencies of the corresponding modes of 
solar models. Such a comparison has been made on Figure 3, by superposing 
the computed frequencies of Model 1 of Christensen-Dalsgaard (1982) (other, 
socalled standard models, give very similar results a t this level of precision). 
Superficially there is good agreement between observations and theory. I t 
might be mentioned that the model predates the observations, so that no 
attempt has been made to adjust the model parameters to fit the data. Thus 
the agreement supports the mode identification, and indicates that there are 
probably no gross errors in the modeL A more careful comparison, however, 
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Figure 3 . Observed spectrum of solar oscillations, as a function 
of the degree Ζ and the frequency ν (from Duvall & Harvey 
1983) . The light ridges are regions of high power, each 
corresponding to a definite value of the radial order n. Also 
shown, with the dots, are computed frequencies of a solar model. 

reveals differences that far exceed the internal accuracy of the observed 
frequencies, showing that modifications are required in the model {e.g. 
Christensen-Dalsgaard & Gough 1984) . 

Observation of stellar oscillations a t the very low amplitude level seen 
on the Sun is a t present a t the limit of feasibility (see Harvey, these 
proceedings). Possible detections of solar-like oscillations have been made in 
ε Eri (Noyés et al 1984) , α Cen A and Procyon (Gelly, Grec & Fossat 1986). 
In each case indications were found of the pattern of approximately uni-
formly spaced peaks seen in the solar case on Figure 2. The interpretation 
of the observations is somewhat problematic, however {cf. Däppen, Dziem-
bowski & Sienkiewicz, these proceedings). 

Other types of stars also show oscillations with complicated spectra. 
Thus a number of Ap stars are known to pulsate in several modes (Kurtz 
1986) . As for the solar 5 min oscillations, these are high-order ρ modes, and 
in a few cases the same uniform frequency distribution has been observed. 
However the amplitudes observed for the Ap stars are approximately three 
orders of magnitude higher than for the Sun; furthermore there is strong evi-
dence that the excitation of the oscillations is linked to the large-scale mag-
net ic field in these stars. Complex spectra of oscillations have also been 
detec ted in white dwarfs {cf. Winget, these proceedings). Their periods are 
also around 5 - 1 0 min, which, a t the very high mean density of white 
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dwarfs, corresponds to g modes of fairly high radial order. The destabiliza-
tion of the modes in these stars might be controlled by composition discon-
tinuities, caused by gravitational settling. Thus information about the struc-
ture of the stars may be contained in the selection of modes which are 
observed. - Further classes of stars pulsating with low amplitudes will 
undoubtedly be detected, as the observing techniques are improved, and the 
extensive survey programmes required to de tec t such oscillations are under-
taken. 

The principal problems facing observations of solar and stellar oscilla-
tions from the surface of the Earth are the nighttime (or daytime) gaps and 
the atmospheric noise. The frequency resolution in a given time string is 
roughly 1 / Γ , where Τ is the duration of the observation (e.g. Loumos & 
Deeming 1978) . To obtain adequate frequency resolution, observations over 
many days are required. I f such observations are obtained from a single site 
a t intermediate latitudes, gaps in the data are unavoidable; these cause side-
bands, which greatly complicate the interpretation of the observations. The 
gaps can be avoided, in the solar case , by observing from the South Pole 
during Austral Summer (Grec et al 1980; Duvall, Harvey & Pomerantz 1986) . 
S te l la r observations from the South Pole during the Winter might be possible, 
although obviously difficult, but such observations have so far not been 
attempted. Networks of observing stations are now being set up to allow 
more extended time series o f solar oscillation observations. Limited sets of 
observations from two sites have been obtained for pulsating Ap stars 
(Matthews, Kurtz & Wehlau, these proceedings), and more extensive networks 
for stellar observations are being planned. 

Fluctuations in the Ear th ' s atmosphere add noise to the data. This is 
particularly troublesome at long periods, and may res t r ic t the ability to study 
g modes from the ground. Also, due to seeing distortion, accurate observa-
tions of modes with degree higher than 200 are difficult or impossible. 

Space observations {cf. Noyes, these proceedings) would eliminate the 
problems caused by the Ear th ' s atmosphere; with a proper choice of orbit 
uninterrupted observations are also possible. The satel l i te SOHO will carry 
instruments to study solar oscillations to the Lx point. This will enable the 
detection of modes with very low amplitudes, including, hopefully, long period 
g modes, and detailed observations of high-degree modes, which will allow 
the study of the structure and dynamics close to the solar surface. 

3 . PROPERTIES OF THE OSCILLATIONS 

In contrast to other observed dynamic phenomena on the Sun or other stars, 
the oscillations are related in a rather straightforward way to the properties 
of the stellar interiors. This is due to the fac t that the oscillations have 
small amplitudes, and therefore can be t reated in linear theory; 1 also the 
e f fec t s of heat loss or gain on the oscillations are negligible except very 

*Even for normal pulsating stars, like Cepheids, the amplitude is rather low 
in the parts of the star where the period is determined, and so the period is 
obtained reasonably accurately from a linear calculation. For stars like the 
Sun, where the typical relative displacement of the surface in each mode is 
only of order 1 0 6 to 1 0 8 , linear theory is an excel lent approximation. 
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near the surface, and so the oscillations can be assumed to be adiabatic with 
adequate precision. 

3.1 Numerical results. 

Based on the remarks above, most of the extensive calculations of solar and 
stel lar oscillation frequencies have used the following simplifying assumptions: 

1) The oscillations are linear. 
2) The oscillations are adiabatic. 
3) Rotational distortion of the star can be neglected. 
4) Effects of magnetic fields can be neglected. 
5) The dynamical e f fec ts of convection (the "turbulent pressure") can be 

neglected. 

Under these assumptions, the computation is relatively straightforward. The 
assumptions can be questioned, however. In particular, calculations have 
been made that included ef fec ts of non-adiabaticity, with a small but non-
negligible e f fec t on the frequencies (Christensen-Dalsgaard & Frandsen 1983; 
Kidman & Cox 1984) . Nevertheless the assumptions form a convenient base-
line for the study of the complicating ef fec ts . Obviously any deviations 
between the observed and the computed frequencies must lead to reconsidera-
tion of the assumptions. 

Given a solar model and the standard assumptions, the physics of the 
oscillations is completely determined. The computation of the frequencies and 
eigenfunctions reduces to the solution of a boundary value problem for a set 
of ordinary differential equations. The main difficulties are the number of 
modes that must be calculated, and the high precision required to match the 
accuracy of the observed frequencies. Several studies have shown, however, 
that adequate precision can be achieved. 

Computed frequencies for a model o f the present Sun are shown on Fig-
ure 4. The modes obviously fall in two classes. Those labelled ρ modes have 
frequencies that increase roughly as £ 1 / 2 for high Z. For these modes the 
main restoring force is pressure, and hence they are predominantly standing 
acoustic waves. They are responsible for the 5 min oscillations. Towards 
high frequency they are limited by the acoustical cut-off frequency i / a c (e.g. 
Lamb 1909) where the atmosphere ceases to ref lect the oscillations. For the 
Sun i/ac is about 5 mHz. The modes labelled g modes have frequencies that 
tend towards a constant limit a t large Z. This limit is given by the max-
imum in the solar interior o f the buoyancy frequency 2V, with 

* • - «> 

where g is gravity, ρ pressure, ρ density, and rx = ( d l n p / a l n p ) a d . The main 
restoring force for these modes is buoyancy, and they are predominantly 
standing gravity waves. They extend to very low frequencies. The / modes 
are generally intermediate in frequency between the ρ and g modes. At high 
Ζ their frequency approaches that of a surface gravity wave, 
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Figure 4 . Adiabatic oscillation frequencies for a normal model of 
the present Sun, as functions of the degree Z. For clari ty points 
corresponding to modes with a given radial order have been con-
nected by straight lines. Only g modes with radial order less than 
4 0 have been included. 

( 4 ) 

where gs is surface gravity and R is the radius of the star. 

3.2 Asymptotics of the oscillations. 

As an aid to understanding the results of the numerical calculations, and to 
interpret the observations, asymptotic theory has been very useful. This is 
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mainly due to the fac t that the oscillations observed on the Sun have high 
radial order or degree. The ρ modes can be approximated locally by plane 
sound waves, with the dispersion relation fe2 Ξ fe2 • kg = oJ*/c2. Here fer and 
feh are the radial and horizontal components of the wave vector , and c is the 
adiabatic sound speed. For a mode of oscillation, feh is given by equation 
( 2 ) . We then obtain 

w • 4 - 4 »> 
c 2 r 2 

Close to the surface, c is small and hence kT is large. Here the modes pro-
pagate almost vertically. With increasing depth, c increases and fer decreases 
(see Figure 5 ) , until the point is reached where kt = 0 and the wave pro-
pagates horizontally. The location r = r t of this turning point is determined 
by 

ψ- · τ <·> 
I t corresponds to a point o f total internal reflection; for r < r t , ft2 < 0, and 
the mode decays exponentially. At the surface the wave is reflected (pro-
vided ω < c j a c = 2 7 T i / a c ) by the steep density gradient. Thus the wave pro-
pagates in a series of , fbounces" between the surface and the turning point. 
A mode of oscillation is a standing wave, formed as an interference pattern 
between such bouncing waves. 

Figure 5. Schematic illustration of the propagation of sound 
waves in a star. Due to the increase of the sound speed with 
depth, the deeper parts of the wave fronts move faster. This 
causes the refraction of the wave described by equation ( 5 ) . No-
t i ce that waves with a smaller wavelength, corresponding to a 
higher value of the degree >6, penetrate less deeply. 
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From equation ( 6 ) one may calculate r t as a function of Ζ a t given fre-
quency. As shown on Figure 6 , r t increases with increasing Z. Modes with 
highest values o f Ζ observed are confined to the outermost fraction of a 
percent of the solar radius. 

The ray description of the ρ modes may be extended to give an asymp-
to t ic dispersion relation for their frequencies (Gough 1 9 8 4 ) 

Le 1 
b 2-nur J 

dr β 

c 
π + « 

2v 
( 7 ) 

where α is a quantity (which in general is a function of y but not Z) that 
depends on conditions near the surface. As r t is a function of 2 n i / / L , this 
equation may be written as 

η • « 
2u 

( 8 ) 

where F(w) is defined by equation ( 7 ) . That solar oscillations satisfy such a 
relation was first found by Duvall ( 1 9 8 2 ) from observed frequencies. 

For small Z, equation ( 7 ) , with L replaced by Ζ + \ , reduces to 

0.8 

0.01 

100 200 500 
0.001 

1000 

Figure 6. The turning point radius r t (a) and the penetration 
depth R - r t (b ) , in units o f the solar radius R, as a function of 
degree Ζ for three values of the frequency v. This has been ca l -
culated from equation ( 6 ) for a normal model of the present Sun. 
On b) the curves terminate a t the degree where the frequency 
equals the f mode frequency; for ρ modes the degree is below this 
value a t a given frequency (see also Figure 4 ) . 
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where 

Δ" - 21 ^ - (10) 

is the inverse of twice the sound travel time between the centre and the 
surface (e.g. Tassoul 1980) . Thus there is approximately a uniform spacing 
Δι/ between modes of same degree, but different order. Equation (9) also 
predicts the approximate equality unZ - ινι,*.2· T h i s frequency pattern has 
been observed for the solar 5 min modes of low degree (cf. Figure 2 ) , and 
may be used in the search for stellar oscillations of solar type. 

The deviations from this simple relation have considerable diagnostic 
potential. Thus the separation δι/ηΖ = un£ - v n - i t Z . 2 is predominantly deter-
mined by conditions in the solar core (e.g. Provost 1984; Gough 1986) . Phy-
sically this may be understood from the fac t that only near the centre is feh 

comparable with fer. Elsewhere the wave vector is almost vert ical , and the 
dynamics of the oscillations is largely independent o f their horizontal struc-
ture, i.e. of Z. More generally the behaviour of modes with almost the same 
frequency, but different Z, are very similar except near and below the turn-
ing point of the mode with the highest Z. 

High-order, low-degree g modes satisfy an asymptotic relation analogous 
to equation ( 9 ) : 

1 _ „ _ p o . Ζ 

(e.g. Tassoul 1980) , where 

P 0 - 2 * > [ . f > ^ ] ' 1 , (12) 

r c being the radius a t the base o f the convection zone. Thus these modes 
are approximately uniformly spaced in period, with a spacing that decreases 
with increasing Ζ as L 1 . 

Τ ( » * 7 * « ( I D 

3.3 Effects of rotation. 

Rotation induces a splitting of the frequencies, 

"ntm = *Veo + màVnJlm (13) 

where àunJtm is approximately a weighted average over the Sun of the rota-
tion frequency Ω ( Γ , 0 ) / 2 π ; in general Ω is a function of both r and θ. 

In the special case where Ω is independent of θ, LunZm is independent 
of m, 

Δ*Ή*η = ßnt S^KnAr)-^dr (14) 

where βηΖ is a normalization constant which, for the 5 min modes, is close 
to 1. The kernels KnJt are determined from the eigenfunctions f r and f h . 
Some examples are shown on Figure 7. I t follows from asymptotic theory 

(9) 
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"Kn. t<0 

0.2 O A OJ6 0 3 1.0 

Figure 7. Kernels KnZ for the frequency splitting caused by spher-
ically symmetric rotation (cf. equation (14))· On a ) is plotted 
RKn*(r) for a mode with Ζ = 1, η = 22 and u = 3233μΗζ. The 
maximum value of RKnJt(r) is 57· On b) is shown the same mode, 
on an expanded scale, together with the modes Ζ = 20 , π = 17, 
ν = 3367A^HZ ( ) , and Ζ = 60 , π = 10 and 
ν = 3231 μΗζ ( ) . 

that the envelope of the kernel is roughly proportional to c 1 ; thus the 
weighting is heavily concentrated towards the solar surface. The kernel is 
vanishingly small below the internal turning point r t . 

In the more general case of latitudinally dependent rotation one may 
show that, approximately, 

Δ " η * η * R . ι ~2 · ( 1 5 ) 

Here the weighting with 1 / c , as in KnJt9 corresponds to Ω affecting άι/ηΙτα in 
proportion to the time spent by the mode in a given region of the Sun. In 
addition Ω is weighted by the square o f the Legendre function, which gives 
the latitudinal distribution of the mode. Modes with fairly low m are distri-
buted over all latitudes, whereas sectoral modes, with \m\ - I , are concen-
trated in a band near the equator of latitude width roughly 2/2/>e radians. 
Observations of the splittings of the la t ter modes therefore provide 
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measurements of the equatorial rotation inside the Sun. - In general, obser-
vation of ài/nJtm a t all m should allow determination of the variation of Ω 
with latitude. 

4 . SOME HELIOSEISMIC RESULTS. 

A detailed review of the results o f helioseismology is outside the scope of 
the present paper. Instead I present a few selected results on three key 
aspects of the solar interior: the structure of the solar core , the sound speed 
in the Sun and the solar internal rotation. 

The solar core. 

As discussed in section 3.2, for small Ζ the difference δι/ηΖ = unZ - vn.lti.2 is 
mainly determined in the solar core. Thus it is particularly well suited to 
test effects o f modifications to the models aimed a t reducing the neutrino 
flux. Two such modifications are partial mixing due to turbulent diffusion 
(Schatzman et al 1981) , and contribution from weakly interacting massive 
particles (WIMPs) to the transport of energy in the core (e.g. Gilliland et al 
1986) . Table 1 (from Faulkner, Gough & Vahia 1986; see also Däppen, Gilli-
land & Christensen-Dalsgaard 1986) shows a summary of the results. The fre-
quency separation is represented by the average Su0 over π of δι/η0. 

Table 1 

δ ι / 0 

Observations 9.2 ± 0.6 μΗζ 
Normal models 10.0 ± 0.4 μΗζ 
Mixed model 13.4 μΗζ 
Model with WIMPs 9.2 μΗζ 

The value and standard deviation for the normal models have been obtained 
by averaging different calculations; thus the deviation is a measure of the 
uncertainty in current theoretical estimates. I t is evident that both the nor-
mal models and the model with WIMPs are consistent with the observations, 
the lat ter being the closer. On the other hand the mixed model seems to be 
ruled out by the oscillation data. 

The sound speed in the solar interior. 

The asymptotic relation in equation (8) is a relation between observed quan-
t i t ies , and so the function F can be determined observationally. Given F , 
equation (7) provides an integral equation for the sound speed c as a func-
tion of r . This can be inverted analytically (Gough 1984) to yield the sound 
speed as a function of r . The results of such an analysis (Christensen-
Dalsgaard et al 1985b) are illustrated on Figure 8. This shows the differ-
ence between the inverted sound speed for the a set of observed solar oscil-
lation frequencies, and the sound speed obtained by inverting theoretical fre-
quencies for the same modes in a solar model. This procedure gives an 
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Figure 8· The relative difference between squared sound speed cl 
obtained by inverting observed frequencies o f solar oscillation, and 
the corresponding c£ obtained by inverting computed frequencies 
of the solar model. The shaded area estimates the ef fec ts of the 
errors in the observed data. 

π 1 1 1 1 1 1 1 1 r 

1.0 

SL 
In 

(μΗζ) 
0.5 - - ϊ - f ^ z F ^ m ^ ^ - ' 

4 
0,2 0,4 0,6 0,8 1,0 

r/R 

Figure 9. The equatorial rotation frequency Ω / 2 π , obtained by in-
verting the observed splittings o f sectoral modes. The inversion 
was carried out by representing Ω as a piecewise constant func-
tion, and determining the constant values by fitting equation (14) 
to the splittings. The error bars indicate the observational uncer-
tainties. 
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estimate of the actual difference between the sound speed in the Sun and in 
the model. The differences in c 2 are below about 4 percent in the part of 
the Sun, where the inversion method succeeds. Between r/R = 0.3 and 0.6, 
c 2 in the Sun appears to exceed that o f the model by a few per cent . This 
corresponds to a similar difference in the temperature. The cause for this 
difference is a t present unknown; however a relatively modest (of order 20 
per cent) error in the opacity, with a suitable temperature dependence, might 
well be sufficient to account for i t . 

The solar internal rotation. 

Duvall & Harvey (1984) measured of the rotational splitting for sectoral 
modes, with \m\ = As discussed in Sect ion 3.3 , this is mainly determined 
by the equatorial rotation rate . The results were inverted by approximating 
Ω by a piecewise constant function, obtaining the values by a least-squares 
fitting to the observed splittings (Duvall et al 1984) . The inferred Ω, shown 
on Figure 9, is generally below the surface equatorial value, although the 
core may be rotating more rapidly. A consequence of these results is that 
the rotational flattening of the Sun, which can be calculated from n(r), 
probably causes no significant perturbation in the gravitational field outside 
the Sun. Thus measurements of Mercury's orbit agree with the predictions 
of General Relativity (Narlikar & Rana 1985) . 

These brief remarks in no way do just ice to the importance of the results, or 
to the effort required in obtaining them. As is documented elsewhere in 
these proceedings, they all represent very act ive areas of research, as far as 
both the observational and the theoretical aspects are concerned. 

REFERENCES. 

Brookes, J . R., Isaak, G. R. & van der Raay, Η. Β . , 1976. Nature, 259, 92. 
Christensen-Dalsgaard, J . , 1982. Mon. Not. R. astr. Soc, 199, 735 . 
Christensen-Dalsgaard, J . & Frandsen, S . , 1983. Solar Phys., 82 , 165. 
Christensen-Dalsgaard, J . & Gough, D. O., 1982. Mon. Not. R. astr. Soc, 

198, 141. 
Christensen-Dalsgaard, J . & Gough, D. O., 1984. Solar seismology from 

space, Ulrich, R. K. et al (Eds.) , NASA, JPL Publ. 84-84 , p. 199. 
Christensen-Dalsgaard, J . , Cooper, A. J . & Gough, D. O., 1983. Mon. Not. R. 

astr. Soc, 203 , 165. 
Christensen-Dalsgaard, J . , Gough, D. O. & Toomre, J . , 1985a. Science, 229, 

923. 
Christensen-Dalsgaard, J . , Duvall, T. L., Gough, D. O., Harvey, J . W. & 

Rhodes, E. J . , 1985b. Nature, 315 , 378 . 
Claverie, Α., Isaak, G. R., McLeod, C. P., van der Raay, H. B . & Roca 

Cortes, T., 1979. 
Claverie, Α., Isaak, G. R., McLeod, C. P., van der Raay, H. B . , Palle, P. L. 

& Roca Cortes, T., 1984. Mem. Soc. Astron. Ital., 55 , 63 . 
Deubner, F.-L. & Gough, D. O., 1984. Ann. Rev. Astron. Astrophys., 22, 593. 
Deubner, F.-L. , Ulrich, R. K. & Rhodes, E. J . , 1979. Astron. Astrophys., 72, 

177. 

https://doi.org/10.1017/S0074180900157638 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900157638


18 J. CHRISTENSEN-DALSGAARD 

Duvall, T. L., 1982. Nature, 300 , 242. 
Duvall, T. L. & Harvey, J . W., 1983. Nature, 302, 24 . 
Duvall, T. L. & Harvey, J . W., 1984. Nature, 310 , 19. 
Duvall, T. J . , Dziembowski, W. Α., Goode, P. R., Gough, D. O., Harvey, J . W. 

& Leibacher, J . W., 1984. Nature, 310 , 22 . 
Duvall, T. L., Harvey, J . W. & Pomerantz, Μ. Α., 1986. Nature, 321 , 500. 
Däppen, W., Gilliland, R. L. & Christensen-Dalsgaard, J . , 1986. Nature, 321 , 

229. 
Faulkner, J . , Gough, D. O. & Vahia, M. N., 1986. Nature, 3 2 1 , 226 . 
Fröhlich, C. & Delache, Ph., 1984. Solar seismology from space, Ulrich, R. 

K. et al (Eds.) , NASA, JPL Publ. 84 -84 , p. 183. 
Gelly, B . , Grec , G. & Fossat, F . , 1986. Astron. Astrophys., 164, 383 . 
Gilliland, R. L., Faulkner, J . , Press, W. H. & Spergel, D. N., 1986. Astrophys. 

J . , 306 , 703 . 
Gough, D. O., 1984. Phil. Trans. R. Soc. London, A 313 , 27. 
Gough, D. O., 1986. Hydrodynamic and magnetohydrodynamic problems in the 

sun and stars, Y. Osaki (Ed.) , University of Tokyo Press, p. 117. 
Grec , G., Fossat, Ε. & Pomerantz, M., 1980. Nature, 288 , 5 4 1 . 
Hill. H. A. & Caudell, T. P., 1985. Astrophys. J . , 299 , 517. 
Isaak, G. R., 1986. Seismology of the Sun and the distant Stars, Gough, D. 

O. (Ed.) , Dordrecht, D. Reidel Publ. Co., p. 223 . 
Kidman, R. B . & Cox, A. N., 1985. Solar Seismology from Space, Ulrich, R. 

K. et al (Ed.) , JPL Publ. 84-84 , p. 335 . 
Kurtz, D. W., 1986. Seismology of the Sun and the distant Stars, Gough, D. 

O. (Ed.) , Dordrecht, D. Reidel Publ. Co., p. 417. 
Lamb, H., 1909. Proc. London Math. Soc, 7, 122. 
Leibacher, J . W., Noyés, R. W., Toomre, J . & Ulrich, R. K., 1985. Scientific 

American, 253 , 48 . 
Libbrecht, K. G. & Zirin, H., 1986. Astrophys. J . , 308 , 413. 
Libbrecht, K.G., Popp, B.D. , Kaufman, J .M. & Penn, M.J . , 1986. Nature, 323, 

235 . 
Loumos, G. L. & Deeming, T. J . , 1978. Astrophys. Space Science, 56 , 285. 
Narlikar, J . V. & Rana, N. C , 1985. Mon. Not. R. astr. Soc, 213 , 657. 
Noyés, R. W., Baliunas, S. L., Belserene, E . , Duncan, D. K., Home, J . & 

Widrow, L., 1984. Astrophys. J . Lett., 285 , L23. 
Provost, J . , 1984. Proc. IAU Symposium No 105: "Observational Tests of the 

Stellar Evolution Theory", Maeder, A. & Renzini, A. (Eds.) , D. Reidel 
Publ. Co., p. 47. 

Schatzman, E. & Maeder, Α., Angrand, F . & Glowinski, R., 1981. Astron. 
Astrophys., 96 , 1. 

Scherrer , P. H. & Wilcox, J . M., 1983. Solar Phys., 82 , 37. 
Severny, A. B . , Kotov, V. A. & Tsap, T. T. , 1976. Nature, 259 , 87. 
Tassoul, M., 1980. Astrophys. J . Suppl., 43 , 469. 
Woodard, M. & Hudson, H. S. , 1983. Nature, 305 , 589 . 

https://doi.org/10.1017/S0074180900157638 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900157638

	S0074180900157602a
	S0074180900157614a

